AVS
DEVELOPER'’S
GUIDE

Release 4
May, 1992

Advanced Visual Systems Inc.

Part Number: 320-0013-02, Rev B

NOTICE

This document, and the software and other products described or referenced in it, are confidential and proprietary
products of Advanced Visual Systems Inc. (AVS Inc.) or its licensors. They are provided under, and are subject
to, the terms and conditions of a written license agreement between AVS Inc. and its customer, and may not be
transferred, disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT,
INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR
SUITABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A
WARRANTY BY AVS INC. FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF AVS INC.
WHATSOEVER. AVS INC. MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS
DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

AVS INC. SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS
DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED
TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF AVS INC. HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be complete,
current or correct, and are subject to change without notice. The reader should consult AVS Inc. for more
detailed and current information.

Copyright O 1989, 1990, 1991, 1992
Advanced Visual Systems Inc.
All Rights Reserved

AVSis atrademark of Advanced Visua Systems Inc.

STARDENT is aregistered trademark of Stardent Computer Inc.

IBM is aregistered trademark of International Business Machines Corporation.
AIX, AlXwindows, and RISC System/6000 are trademarks of |nternational
Business Machines Corporation.

DEC and VAX are registered trademarks of Digital Equipment Corporation.
NFS was created and developed by, and is a trademark of Sun Microsystems, Inc.
HP is a trademark of Hewlett-Packard.

CRAY is aregistered trademark of Cray Research, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.
SPARC is aregistered trademark of SPARC International.
SPARCstation is a registered trademark of SPARC International,
licensed exclusively to Sun Microsystems, Inc.

OpenWindows, SunOS, XDR, and XGL are trademarks of Sun Microsystems, Inc.
UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.
Motif is atrademark of the Open Software Foundation.

IRIS and Silicon Graphics are registered trademarks of Silicon Graphics, Inc.
IRIX, IRIS Indigo, IRIS GL, Elan Graphics, and Personal IRIS are trademarks of Silicon Graphics, Inc.
Mathematicais a trademark of Wolfram Research, Inc.

X WINDOW SYSTEM s atrademark of MIT.

PostScript is a registered trademark of Adobe Systems, Inc.

FLEXIm is a trademark of Highland Software, Inc.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
the Rights In Technical Data and Computer Software clause at DFARS 252.227—7013.

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
the Commercial Computer Software — Restricted Rights clause at FAR 52.227-19(c)(2).

Advanced Visua Systems Inc.
300 Fifth Ave.
Waltham, MA 02154

TABLE
OF
CONTENTS

1 AVS Overview
introduction _ ...l
AVS Overview o iiiiiiisssssessesobd
Modules o iiiiiiecsesssssccssssessool?
DataTypes i iiiiiiiiiii..... L3
AVS Flow Networks___~~~ -~~~ .14
Data Flow i iiiiiiiiii.....lB
Module Life Cycle _____________ _______________......1l8
Use of Shared Memory__ L liiiiiise....lB
Heterogeneous Network Support __ -~ ____~- - .17
Data Flow Diagram _____________ 18
Multiple Module Processes in AVS 1-10
Release Compatibility. . __.._._____.....ldl
Portability Issues ______________________ 1
Writing Portable Code 1-11
Porting Binary Data Files 1-12
Program Examples Online -~~~ "~ - " __ 143

I TSI TSI TSI SIS ST TSI SITISISISESE ST E S S AT 1

2 AVS Data Types
Introduction = iiiiiisssssessssseseeoild
By e i iiiiiiissiiisccsessseseccesssssccsssseesccld
Integers o iiiiiiiiiiiiiiii....28
Floating-Point Numbers__~~~—~~ "~~~ 24
e
Fields L _...._24
Mapping Computational Space to Coordinate Space 2-4
Uniform Fields 2-5
Rectilinear Fields 2-6
Irregular Fields 2-6
AVS Mapping Information 2-7
Examples of Field Mappings 2-8
Example 1 2-8

AVS DEVELOPER'S GUIDE CONTENTS-1

TABLE OF CONTENTS

Example 2 2-10
Example 3 2-10
Example 4 2-11
Example 5 2-12
Example 6 2-12
Field Components 2-13
Declaring Fields 2-16
Manipulating Fields from C 2-17
Manipulating Fields from FORTRAN 2-19
Creating Fields 2-20
Scatter Data 2-21
Image Data 2-21
Volume Data 2-22
Colormaps, 11111 I
Geometries ... 2-23
Manipulating Edit Lists 2-25
Templates for New Filter Utilities 2-26
Writing a New Filter Utility 2-27
Converting a Polyhedron 2-27
Converting a Polygon 2-28
Converting a Scalar Mesh 2-28
Converting a Mesh 2-28
Converting a Sphere 2-28
Converting a Disjoint Line 2-28
Converting a Polyline 2-28
O -
dnstructured CellData o eeeeeersersenaannanaaa il
Molecular Data Type ¢ cceesssssssssssssssssssssansaod
User-Defined Data Types _ ______________________________._ 2-30
5 1
3 AVS Modules
Modules o iiiiiiii.o 3
Module Components ________________________________.__ 31
Name 3-1
Type 3-1
Ports 3-2
Parameters 3-3
Parameters As Input Ports 3-3
Functions 3-4
The Description Function 3-5
The Computation Function 3-7
Initialization Function 3-8
Destruction Function 3-8
Subroutines and Coroutines ___~_________________________ 39
Subroutine Modules 3-9

CONTENTS-2 AVS DEVELOPER'S GUIDE

TABLE OF CONTENTS

Coroutine Modules 3-11
Handling Errorsin Modules__________ _____ . _ ... 313
Selective Computation_________ . ____..____...318
Building and Linking Modules ___________________________ 318

Writing Subroutines 3-16

Writing Coroutines 3-16

Include Files 3-16

C Language Include Files 3-17
FORTRAN Include Files 3-17
avs_math.h Include File 3-18

Compiling and Linking Modules 3-18
Converting an Existing Application to 4 Viodiig -~ 7711171111131
Debugging Modules . __ 3-20

Syntax of avs_dbx 3-20
Using avs_dbx 3-21
T
1
4 Advanced Topics
Introduction ...
Memory Allocation Debugging __________________ . ____ 41

Run Time Environment Variables 4-2
Coroutine Synchronization _~__~~ 1 __ [_ [__ 44

Coroutine Scheduling with X 4-5

Coroutine Scheduling with Other Devices 4-6

Synchronous Execution 4-6
Upstream Data _______________________________________ A7

Overview of Upstream Data Feedback Mechanism 4-7

Implementing Upstream Data 4-8

Transformation Information 4-8
Selection Information 4-11

Rules for Picking Obijects 4-13
Picking the Top Level Object 4-13
User-Defined Upstream Data 4-15
Automatic Connections of Ports -~ _____________ 415

Port Classes 4-15

Port Visibility 4-17
User-Defined Data_____ - __ [___ [________ 418

Defining User-Defined Data 4-18

Using a User-Defined Data Type On an Input Port 4-19

Using a User-Defined Data Type On an Output Port 4-20
image Picking DataType ______~~ " - 42
Multiple Modules ina Single Process -~ _ [__ 42

Restrictions 4-22

Implementing Multiple Modules Processes 4-23

Implementing Reentrant Modules 4-24

AVS DEVELOPER'’S GUIDE CONTENTS-3

TABLE OF CONTENTS

Modifying Modules that Share Processes 4-24
Linking Multiple Modules Together 4-24
Module Groups .. &2
5 Command Language Interpreter.
introduction ___51
Access to the CLI 5-1
Command Line Option 5-1
Server Option 5-2
Module Access 5-2
.avsrc File Option 5-3
Basic Concepts 5-4
Commands and Tokens 5-4
Case Sensitivity 5-4
Interrupting CLI execution 5-5
Multiple Line Commands 5-5
Variable References 5-5
Output Redirection 5-6
Identifiers 5-6
Module Names and Aliases 5-6
Parameter Names 5-7
Port Names 5-7
Combining Networks 5-7
Module Tags 5-8
Module Maps 5-8
Pend Operations 5-9
Writing CLI Scripts ______________________ . __________.59
Writing Scripts 5-10
Playing Back Scripts 5-11
The Script Controller Browser 5-11
Script Suites 5-12
Commands ___ oD2
Command Usage Notation % 5-13
Basic CLI Commands________________________________ 513
General Commands 5-14
Script Commands 5-14
Variables Commands 5-15
Network Editor Commands ~__ " ______________ 516
Network Commands 5-17
Module Commands 5-18
Parameter Commands 5-20
Port Commands 5-20
Creating Macro Modules From CLI 5-21
Macro Module Description File 5-22
Another Way to Create Macro Modules From CLI 5-22

CONTENTS-4 AVS DEVELOPER'S GUIDE

TABLE OF CONTENTS

Geometry Viewer Commands_ _ ________________________._ 5-22
Geometry CLI State 5-23
Saving/Restoring Scenes and Objects 5-24
Geometry CLI Versus .obj and .scene Files 5-24
Saving Network Geometry State 5-25
Naming Objects, Cameras and Lights 5-25
Matrix Operations 5-26
Global Object Commands 5-26
Browser Commands 5-27
Object Commands 5-27
Light Commands 5-30
Camera Commands 5-31
Action Commands 5-33

iimage Viewer Commands TRy
Scene Commands 5-34
View Commands 5-34
Image Commands 5-35
Image Processing Technigue Commands 5-36
Label Commands 5-37
Cycle Commands 5-37

Graph Viewer Commands 53
Reading Plot Data 5-38
Modes for Reading Data 5-39
Writing Plot Data 5-39
General Plotting 5-39
Titles and Labels 5-40
Plot Legend 5-40
Miscellaneous Dataset Information 5-41

User Interface Layout Commands T84
Introduction 5-42
Basic Layout Concepts 5-43
Widget Naming 5-44
Geometry 5-45
Module Based Layout Control 5-46

Dynamic Layouts 5-47

Layout commands 5-47

Application Commands ~~ 7T
A . AVS Library Routines

Introduction __ L __.__._Al

Include File A-1

Type Declarations A-1

Routine Summary _____________________________________AZ

Routines for Module Initialization A-2

Routines for Module Description Functions A-2

AVS DEVELOPER'’S GUIDE CONTENTS-5

TABLE OF CONTENTS

Routines for Modifying and Interpreting Parameters A-2
Routines for Coroutine Modules A-3
Status Monitoring Routines A-3
AVS Command Language Interpreter Routine A-3
Routines for Selective Computation A-3
Routines for Creating Fields A-3
Field Accessor Routines A-4
Colormap Accessor Routines A-4
User Data Accessor Routines A-4
FORTRAN Array Accessor Routines A-5
FORTRAN Single Byte Accessor Routines A-5
Routines for Handling Errors A-5
Routines for Module Initialization 7T A

Routines for Module Description Functions

Routines for Mggi‘fyi‘n‘g‘firlol Interpreting Parameters

Routines for Coroutine Modules

Status Monitoring Routine

AVS Command Language Inierpreter Routine ______ """ """

Routines for Selective Com;_)utation

Routines for Creating Fields

Field Accessor Routines

Colormap Accessor Routines

User Data Accessor Routines

FORTRAN Array Accessor Routines

FORTRAI}I‘S‘ngIe Byte Accessor Routines

ISP DY
OGOt ot o rot pot

]
D
A

O RN QN LRI N R PN~

Bt ot
[P4P 4IPS
YL

Routines for Handling Errors 772717111 TT T T TIUAT
B AVS C Language Field Macros
Macros for Qbtaining the Dimensions of aField_____ -~ ______ B
MAXX B-1
MAXY B-1
MAXZ B-1
Macros for Qbtaining Elements of a Scalar Data Array ___________ Bl
12D B-1
13D B-2
14D B-2
Macros for Qbtaining Elements of a Vecior Data Array___________ B2
11DV B-2
12DV B-3
13DV B-3
14DV B-3
Macros for Qbtaining Rectilinear Coordinate Arrays - _______ B4
RECT X B-4
RECT_Y B-4
RECT_Z B-4

CONTENTS-6 AVS DEVELOPER'S GUIDE

TABLE OF CONTENTS

Macros for Obtaining Coordinates for 3D Data Elements __________ B-4
COORD_X_3D B-4
COORD_Y_3D B-5
COORD_Z_3D B-5

5 1

C Examples of AVS Modules

Introduction ___ . ___Cd
AVS Example Modules C-1

A C Language Subroutine Module _ "~ "~~~ "~~~ C4

A FORTRAN Subroutine Module -~~~ "~~~ "~~~ C#

A C Language Coroutine Module -~ "~~~ __ . . CH

D On-Line Help Facility,

Introduction __ o iiiiiiiii.....Dd

Help Files - Format and Naming Conventions______________._ D1

Integrating_ Your Help Files into the Help System______________ D=2
AVS Help D-3

The -reindex Option and AVS_HELP_PATH D-3
AVS Help Search D-4
Man Command D-4

E Unstructured Cell Data Library,

Overview e eiieiiiallEA

Synopsis o iiieiiio...ER

ucd Routine Summary __________________________________E3
Structure Manipulation Routines E-3
Structure Query Routines E-3
Cell Manipulation Routines E-3
Cell Query Routines E-3
Node Manipulation Routines E-4
Node Query Routines E-4

Description ____ . ___._____.__ES8
The Setup of the UCD Structure E-5
Cells, Nodes, and Mid-Edge Nodes E-6
UCD Data Structure and Type Definitions E-7
File Format for UCD Data Files E-9
ASCII UCD File Format E-9
Binary UCD File Format E-13

Structure Manipulation Routines _~___~~________ [____E1I§

AVS DEVELOPER'’S GUIDE CONTENTS-7

TABLE OF CONTENTS

Structure Query Routines_ _ .. iii-ce- E-21
Cell Manipulation Routines _____._.........[E28
Cell Query ROUINES o iiiiiiiiio......E34
Node Manipulation Routines .~~~ EA4l
Node Query Routines. .~~~ e
Examples ... E-56
Allocating a New Structure E-56
C Code: E-56
FORTRAN code: E-58
Storing Information About the Nodes E-59
C Code: E-59
FORTRAN Code: E-60
Storing Information about the Cells E-62
C Code: E-62
FORTRAN Code: E-63

F Field Arguments in FORTRAN
Introduction o iiiii...td
Field passing using multiple arguments __~___ "~~~ "~~~ Fl
Array Allocation ______________________________________F4
Memory Allocation and Application Portability F-4

G Geometry Library.
Introduction i iiiiiiiiiii... G
Synopsis . __...G2
Compiling and Linking G-2
Routine Listing _______________________________________G3
Obiject Creation Routines G-3
Obiject Utility Routines G-4
Obiject Property Routines G-4
Obiject Texture-Mapping Routines G-4
Obiject Vertex Transparency Routines G-4
Object File Utilities G-5
Object Debugging Routines G-5
AVS Module Interface Routines G-5
Overview: AVS Geometry Obiect Data Structure _______________ G-
Geometry Object Types (Geometry Primitives) G-6
Mesh Obijects G-6
Polyhedrom Obijects G-6
Polytriangle Objects G-7
Sphere Objects G-8
Label Objects G-8

CONTENTS-8 AVS DEVELOPER'S GUIDE

TABLE OF CONTENTS

Geometry File Filters G-8
Geometry Producing Modules G-9
The Edit List G-9
T o
T i
Creating an Object G-11
Extents G-11
Flags G-12
User Supplied Primitive Data G-12
User Supplied Vertex Data G-13
Object Uity Routines 77711111 T I TG
Object Property ROULINGS ___ .. cicremreneannena G20
Object Texture Mapping Routines_______________8&
Object Vertex Transparency Routines __________G3%
Object File Undlities, *___ = .8
Object Debugging Facilities -~~~ """~~~ """~ "~ """ 77777 G33
AVS Module Interface Routines .. _____G 34
Edit Lists G-34
Object Transformations G-36
Light Transformations G-37
Camera Transformations G-37
U
Files -~ T I G-51
1
H The F77_Binding Utility Program
Introduction L iiiiiiesiiio..oH
inter-Language Calling Conventions________________________H1
Function Naming Rules H-1
Matching C and Fortran Calling Conventions H-2
Handling String Arguments H-2
Handling Function Return Values H-2
f77_binding Function Declarations H-3
Return Types H-3
Function Names H-3
Argument Declarations H-4
Other Lines H-5
Fortran Include Files ___ "~~~ ___HS
£77_binding Command:LineSyntax ________________________H®#
Options H-6
Examples . ______ha

AVS DEVELOPER'’S GUIDE CONTENTS-9

TABLE OF CONTENTS

List of Tables

Table 2-3 Field Declarations______________________________ 2-17,
Table 2-4 Template for Filter Utilities _______—_~~ "~~~ 228
Table 3-1 Archive Libraries for Modules__~_~ "~ "~~~ """~~~ "3-18
Table A-1 Parameter Types and C/FORTRAN Data Type !
o Declarations.________________________________A-¥8
Table A-2 Property Name, Data Type, and Widget Type !
L .. Correspondence __________ A-11
Table A-3_Parameter to Widget Correspondence ___—————~~~ "A-14
Table A-4_Data Port Type to String Correspondence. ________~_A-18
Table A-5_Module Flags and Meaning____~—— "~~~ "~~~ "A-(
Table A-6_Module Types and C/FORTRAN Descriptions _—_——~~"A-21,
Table F-1 Field Arguments for FORTRAN Routines_ " F-2
Table G-1_Object Vertex and Primitive Data Applicability _~~~—~~"G-13
Table G-2 Converting C Language Data Declarations !
o toFORTRAN G-50
Table H-1_Recognized C and FORTRAN Types ________________H-4
List of Figures

Figure 1-1 Data Flow Between Kernel and Modules 1.9
Figure 2-1 Trregular Field Computational and Coordinate ~~~~~~~~ ~ !
o Space Mappings 2-1,
Figure 2-2 1D Computational and Coordinate Field __~~~~—~~~ " 29
Figure 2-3 2D Rectilinear Coordinate Field _____—_~_~______~_~2-10
Figure 2-4 2D Computational, 3D Coordinate Irregular Field __~ " 2-11
Figure 2-5 3D Computational, 3D Coordinate Irregular Field __~~~2-13
Figure E-1 Hierarchical Structure of Model, Cells and Nodes _____ E-§
Figure E-2 'UCD Cell Types, Nodes, Mid-Edge Nodes,and” =~~~ !
. _________NodeNumbering ___________________________ E-6

CONTENTS-10

AVS DEVELOPER'S GUIDE

CHAPTER 1 AVS
OVERVIEW

Introduction

The AVS system allows users to dynamically connect software modules to
create data flow networks for scientific computation. These modules pass
data of mutually agreed upon types between each other. Programmers can
extend AVS by developing new modules. There are a variety of ways in
which modules can be integrated into AVS. These allow the user a spectrum
between dynamic configuration and maximum efficiency.

This manual describes what a programmer needs to know to write AVS
modules. The manual assumes an elementary understanding of the concept
of a data flow network and a working knowledge of either the C or the
FORTRAN programming languages. It also assumes familiarity with AVS
on the user level. For AVS user documentation, see the AVS User’s Guide.

AVS Overview

AVS consists of two major parts: the main application (which includes the
AVS Kernel) and AVS modules, which are computational units that can be
linked together into flow networks.

The AVS Kernel includes the Network Editor, the control panel Layout Edi-
tor, the user interface code, functions that control execution of AVS flow
networks, and communications functions. The functions that control the ex-
ecution of flow networks created by the Network Editor are collectively re-
ferred to as the flow executive. When a flow network is active, its modules
are invoked in turn (and only when necessary) by the flow executive.

User-written modules are implemented as separate UNIX programs. They
communicate with the AVS Kernel using the Berkeley UNIX socket mecha-
nism and, in some cases, use shared memory. UNIX domain (local machine)
sockets are used where possible for efficiency, otherwise, TCP domain sock-
ets are used (for example, when modules are running on a remote machine,
or there are no more UNIX domain sockets available).

Modules can also be "builtin," i.e., linked directly into the AVS Kernel. Sev-
eral of the modules supplied by Advanced Visual Systems are currently im-

AVS OVERVIEW 1-1

Modules

plemented as "builtin” modules. While you can develop your own modules,
you cannot create "builtin” modules.

As the number of modules in use increases, AVS may use quite a large num-
ber of process slots in the UNIX kernel. As an efficiency enhancement, users
can place multiple modules into a single executable. Placing multiple mod-
ules in a single executable can cut down on system memory used as well as
reduce the number of process slots needed. The programmer declares multi-
ple modules in a single program by including multiple description functions in
the source code, each of which describes the relevant entry points and data
structures for a single module. Next, these modules are linked together in one
executable. The description functions are registered with the AVS Kernel by
making calls to the AVSmodule_from_desc routine within a user-supplied
function that must be named AVSinit_modules.

AVS passes high-level descriptions of images and geometric data to the
graphics display modules (Data Output modules). AVS implements these
modules using the graphics library interface that each platform supports
(PHIGS, PEX, GL, XGL, Dore, X, etc.). This provides high performance ren-
dering in a device independent manner. AVS also uses the X-Window library
for windowing and for generating the user interface widgets.

Modules

The fundamental unit of computation in AVS is the module. Modules process
inputs to generate outputs. Modules are intended to be fairly high-level units
of computation. For example, a module might be designed to compute a
threshold for a scalar field, but it would be inappropriate to design a module
to add two numbers. Modules also have parameters that the user can adjust
at run time to affect the action of the computation.

Modules specify to the AVS Kernel what data inputs they expect to receive
from other modules (image data or a color map, for example). Data input can
be required by the module, or it can be optional. Modules can also specify
data outputs. You connect these outputs to other modules that have compati-
ble inputs. To allow user interaction, modules define user-interface parame-
ters that are displayed and monitored by the AVS Kernel (for example, a
threshold value or a file name).

The module writer assigns a data type to each user-interface parameter and
can associate with it a particular widget that you use to set and view the pa-
rameter’s value. For example, an integer parameter could be displayed and
controlled using a dial widget, but it could just as well utilize a slider or
typein widget. AVS users generally should be allowed to control parameter
values. However, a module can set a parameter value internally at any time,
which may be necessary if the user sets a parameter to an illegal or nonsensi-
cal value.

You can conveniently extend the capabilities of AVS by writing a new mod-
ule. Because AVS operates on fairly general data types, you can define new

1-2

AVS OVERVIEW

Data Types

modules to work with existing modules. Application developers can concen-
trate on algorithms that implement new functionality by building on capabil-
ities that already exist and utilizing the flexible user interface widgets. The
Module Generator helps developers in the process of creating these new
modules. A complete description of the Module Generator can be found in
the Applications Guide.

There are two kinds of modules, subroutine modules and coroutine modules. A
subroutine module’s computation function is invoked by AVS whenever its
inputs or parameters change. A coroutine module executes independently,
obtaining inputs from AVS and sending outputs to AVS whenever it wants. In
this document, "module” generally refers to a subroutine module, and "corou-
tine" refers to a coroutine module. Most of the modules provided with AVS
are subroutine modules.

Most subroutine modules consist of two main functions: the description
function and the computation function. You can write these functions in ei-
ther C or FORTRAN. The description function describes what data the mod-
ule takes as input and what data it produces as output, as well as the
parameters that control its behavior. The computation function performs the
operations intended by the module developer. It is called whenever an input
or user parameter changes. The data structures implicitly defined in the de-
scription function for inputs, outputs, and parameters are passed as argu-
ments to the computation function. The computation function typically
operates on the inputs and parameters to produce new output.

The flow executive calls a subroutine module’s computation function when
the module is marked as "changed” and it is the next changed module in the
run queue. A module is defined as "changed" when an input or parameter has
been modified. The run queue is only processed when the flow executive is
enabled. You can enable and disable the flow executive from the "Network
Tools" menu in the Network Editor.

You can convert many existing simulations and other scientific applications to
AVS coroutine modules by making the application use AVS data types, insert-
ing calls to transmit data to and from AVS, and writing a description function.

Data Types

There are two general classes of data in the system: primitive data and aggre-
gate data. Primitive data items are simple objects such as bytes, integers, float-
ing point numbers and text strings. Aggregate data items are the large chunks
of data that characterize modern scientific applications. One fundamental
type of aggregate data is called a field. Basically, a field contains computation-
al data along with associated coordinate data. For example, pressure and tem-
perature samples might be stored as computational data in a field, and the
sampling coordinates would be stored as the coordinate data in that same
field. The pressure and temperature samples can be associated as vector ele-
ments comprising each computational sample to be associated with a single
point.

AVS OVERVIEW 1-3

AVS Flow Networks

AVS contains aggregate data types useful for defining geometric as well as
numeric information. The geometry data type provides a flexible mechanism
for defining geometric objects. The unstructured cell data (UCD) type pro-
vides a way to define a geometric object composed of discrete cells with asso-
ciated data. UCD definitions are particularly useful for finite element analysis
and computational fluid dynamics applications. The molecular data type
(MDT) provides a way to define molecular and quantum structures. MDT ad-
dresses the needs of classical, substructure and quantum chemistry fields.

AVS also has other types of aggregate data, including colormaps and pix-
maps. Colormaps are data structures that define color lookup tables which
you can use to map numeric values to colors. Pixmaps are used to keep track
of X-Window pixel maps used to directly update the screen. Most users do
not deal directly with pixmaps because AVS provides modules that create
pixmap outputs from fields, geometries, and unstructured cell data types.

Any data type can be used as module input, but generally, only the primitive
data types are suitable for use as parameters. The only difference between a
parameter and module input is that parameters are usually associated with
user interface widgets.

AVS Flow Networks

An AVS user builds an application by constructing a network of modules. A
typical network might consist of modules performing three kinds of tasks:

* Importing data from outside AVS (or generating their own data) and con-
verting it into data of one of the AVS data types.

* Transforming AVS data in some way, producing output data of the same
or of a different AVS type.

* Rendering the data on a display screen, printer or plotter, or storing the
data to a file.

A module can receive data through an input port and transmit data through
an output port. A user who connects two modules is actually connecting an
output port of one module to an input port of another module. You can con-
nect two ports when they have matching AVS data types.

When a flow network contains remote modules (modules that are executing
on a remote machine), the data architecture (for example, the byte order or the
floating point format) used on the remote machine may be different. Howev-
er, this is not a problem for passing data between modules because the AVS
executive uses the External Data Representation (XDR) format when passing
data between dissimilar machines.

1-4

AVS OVERVIEW

Data Flow

Data Flow

The purpose of constructing a network is to provide a data-processing pipe-
line in which, at each step, the output of one module becomes the input of an-
other. In this way, data can enter AVS, flow through the modules of a
network, and finally be rendered on a display or stored outside AVS.

This process requires that each module in a network be invoked at the appro-
priate time. For a subroutine module, the computation function must be exe-
cuted whenever the inputs or parameters change. AVS has a flow executive
that is normally active during the life of the application. The flow executive
supervises data movement between modules, keeping track of which inputs
and parameters have changed and invoking modules in the correct order.

AVS uses a remote procedure call mechanism to establish communication be-
tween modules. When the user starts up a module, AVS creates a new process
in which that module runs. (When multiple modules are combined into a sin-
gle executable, a new process is hot created.) AVS also sets up a connection
between the module and AVS, using the Berkeley UNIX socket mechanism.
Both sides use remote procedure calls and, if possible, shared memory to
communicate through this connection.

AVS allows coroutine modules to execute independently. A coroutine is often
a simulation or animation; an application that executes multiple times to pro-
duce a series of frames or data sets. AVS communicates with coroutine mod-
ules through the same sort of remote procedure call mechanism it uses to
communicate with subroutine modules.

Modules will attempt to execute in parallel if all of the following conditions
are met:

e The user has specified the -parallel n command line option, where n is the
maximum number of modules that can execute at one time.

* There are multiple processors, local and/or remote, available for module
execution.

* The module has no input dependencies upon other modules that would
be executing at the same time. For example, networks often have multi-
ple, independent, parallel branches made up of multiple filtering and
mapping techniques. These independent branches can execute in parallel.

* Modules executing in parallel must be in different processes. If the mod-
ules happen to be compiled together to execute as one process (as most
AVS modaules are), the user can force execution as separate processes us-
ing either the blanket -separate option to AVS which will cause all mod-
ules to execute separately, or by fine-tuning their networks using the
Module Editor panel’s Process and Group controls to explicitly organize
different modules into different processes. See the "Advanced Topics"
chapter later in this manual and the "Module Editor" section of the User’s
Guide’s "Advanced Network Editor" chapter.

AVS OVERVIEW 1-5

Module Life Cycle

Module Life Cycle

When AVS starts, it searches for libraries of modules to load. The libraries are
specified by the avsrc file ModuleLibraries entry. First, AVS always reads the
system default startup file in /usr/avs/runtime/avsrc. Users may override or
supplement the options in the system startup file with a personal avsrc file.
AVS looks for user avsrc files in the following order: 1) ./.avsrc in the current
directory, 2) SHOME/.avsrc in your home directory.

For each ModuleLibraries entry, the library files specified are used. The mod-
ule palettes are built using information from the library file. Since the library
file is ASCII text, it is easy to edit and comment out modules that are not
wanted prior to starting AVS.

When a module is instanced in a network, the executable for the module is
run as a UNIX process (unless it is a "builtin” module). The module descrip-
tion function is called and information about the module’s inputs, outputs,
parameters, and computation function are sent back to the AVS Kernel. The
Kernel automatically builds user interface widgets for any input parameters.
If the module has specified an "initialize" function, that function is called.
Please note that during the initialization process, calls to AVScommand will
not work.

When it is time for a module’s computation function to run, the flow execu-
tive sends the module a message with the input port and parameter values.
The first message is not sent until all input ports with the REQUIRED option
have been attached and data is available, at which point the module’s compu-
tation function is called.

When a module is "hammered" (destroyed), the AVS Kernel sends a shut-
down message to the module. If the programmer has specified a destruction
function, it is called before the module exits. Please note that during the de-
stroy process, calls to AVScommand will not work.

Use of Shared Memory

Shared memory regions are a form of interprocess communication that allow
sharing of data between processes without having to copy the data. The data
must be placed in a memory buffer that is set up with UNIX system calls to be
a shared memory region. Multiple programs can then map to the same pages
of physical memory using their own virtual addresses, by making UNIX sys-
tem calls. There can thus be a single copy of the data being accessed by muilti-
ple programs.

The AVS field and UCD data types use shared memory. Geometries, pix-
maps, colormaps, user-defined data, the molecule data type, etc., do not.

The AVS kernel attempts to share data among modules when possible, by
placing the data in a shared memory region. Pointers to the data are passed

1-6

AVS OVERVIEW

Heterogeneous Network Support

between modules just as if each module had its own private buffer. This tech-
nigue cuts down on memory usage and also speeds processing because the
data does not have to be copied. (AVS 2 modules do not make use of shared
memory until they are recompiled and linked with AVS 3 or later libraries.)

The use of shared memory is normally completely transparent to the user.
However, because data is placed in a shared memory region by default when
AVS modules are executing on the same machine, modules cannot directly al-
ter data in an input port buffer. The shared data might also be in use by anoth-
er module that would be affected by the change to the data. If a module
wishes to modify data input data, it can set the special flag MODIFY_IN
when creating the port. This will cause a copy of the input data to be passed to
the module. If the module truly needs to directly modify the data in the input
buffer, its users must be aware that they must run AVS with ReadOnly-
SharedMemory 0 (disabled). See the description of AVScreate_input_portin
Appendix A.

AVS creates the shared memory keys as follows: the high-order byte of the
key is Ox1a; the next two bytes are the process id; the low order byte is a se-
guence number that is initially 0 for each process. If the desired key is already
in use, AVS increases the sequence number and tries again.

The use of shared memory may be limited or unavailable on certain plat-
forms. See the AVS Release Notes for more information.

Heterogeneous Network Support

AVS supports remote execution of modules. It uses the External Data Repre-
sentation (XDR) format to provide a machine independent representation of
data flowing between modules. The UNIX socket mechanism is used to pass
requests across the network. The Flow Executive executes modules in the
same order as if they were on a single machine. (AVS 2 modules do not use
the XDR format for data representation and so must be recompiled with AVS
3 or later libraries in order to execute properly across a network.) When ma-
chines on both ends of the socket have the same data representations, the
XDR translation layer is bypassed.

In AVS3, where connected modules on a remote host were in the same pro-
cess, data would be passed directly between them using a pointer passed
through the flow executive. (Most AVS modules were combined into a single
executable to support this.) However, if the remote modules were in different
processes, data flowed from a remote module to the AVS Flow Executive, and
then back to a downstream remote module, resulting in system network over-
head for every module-to-module connection on a remote host. A better solu-
tion is to run more than one remote module from a single UNIX process. See
Chapter Four for information on how to do this. Starting with AVS 4, addi-
tional sockets are created so data can be transferred directly between mod-
ules. This is called Direct Module Communcation (DMC).

AVS OVERVIEW 1-7

Data Flow Diagram

The user interface supporting remote module execution is built on the Mod-
ule Tools sub-menu of the Network Editor. The Read Remote Modules but-
ton brings up a browser panel which prompts the user for the name of a
remote host. The contents of the panel are constructed from a Hosts file, either
the system default in /usr/avs/runtime/hosts, or any such file specified in the us-
er’s .avsrc file with the Hosts keyword. The Hosts file contains the name of the
available remote hosts, a remote command to execute to establish contact
with the remote host (usually rsh) and the pathname to a directory of AVS
modules on the remote host. AVS creates a socket connection to the remote
host and looks for an executable file named list_dir in the specified remote di-
rectory. list_dir is a special program that executes on the remot host and dis-
plays a browser with the contents of the remote directory, i.e., module
binaries, available for execution. For complete information regarding the
loading and use of remote modules, see the AVS User’s Guide.

Data Flow Diagram

Figure 1-1 illustrates the collective impact of running multiple modules in a
single process, shared memory, and direct module communication on data
flow through AVS networks.

K is the AVS kernel. M1 and M2 are AVS modules. D represents an area allo-
cated for data.

Note that the AVS kernel is always in a separate process. Also note that some
twelve modules are "builtin" to the AVS kernel and execute in its process.
The next section describes which of the supplied AVS modules execute in
what processes.

In the AVS 3 and AVS 4 coroutine, no direct module communication case:

* When M1 and M2 are in different processes:

e Without shared memory (for example, when passing geometries be-
tween modules, when the host does not support shared memory, or
with -noshm specified), the data must be copied from M1 to the AVS
kernel, which then copies it to M2. There are three copies of M1’s
output data.

e With shared memory, M1 creates a shared memory segment. The
AVS kernel is involved in two ways: it receives control information
about the output data area from M1 and passes this along to M2, and
the kernel also attaches the shared memory segment itself. M2 at-
taches the shared memory segment. There is only one copy of M1’s
output data.

* When M1 and M2 are in the same process:

* The two modules share data by passing pointers. No shared memory
segments are involved. The kernel has only a control link to the mod-
ules’ process. Itis not involved in passing the data. There is only one
copy of M1’s output data.

1-8

AVS OVERVIEW

Data Flow Diagram

AVS 3 All Modules or AVS 4 Coroutine Modules
(no direct module communication)

M1 & M2 in different processes M1 & M2 in single process
- noshm -shm
M1
M1
M1
/ﬁ v
LD] % l K > D
K| K yy
\ D
M2 t M2
M2

AVS 4 Subroutine Modules
(with direct module commpnication)

M1 M1
D |
l same as above
K D
D] g 7y
M2 \ control
M2 <«—» communication

—_» dataattach or
access

— data copy

Figure 1-1 Data Flow Between Kernel and Modules

In the AVS 4 subroutine, with direct module communication case:

* When M1 and M2 are in different processes:

* Without shared memory, the kernel’s control communication channel
informs M1 that M2 requires its data. M1 then contacts M2 directly,
sending its output data to M2’s DMC socket. M2 copies the data into
its own area. There are two copies of M1’s output data.

* With shared memory, the AVS kernel’s control communication chan-
nel informs M1 that M2 requires its data. M1 then contacts M2 direct-
ly. M2 attaches the shared memory segment created by M1. The
kernel does not attach the shared memory segment. There is one
copy of M1’s output data.

AVS OVERVIEW 1-9

Data Flow Diagram

* When M1 and M2 are in the same process, behavior is the same as with-
out direct module communication.

The pathways are identical when one or both M1 and M2 are on a remote
host, with one exception. Under AVS 3, remote modules in separate processes
would behave has though there were no shared memory even if the remote
host supported shared memory. In AVS 4, remote modules behave the same
as local modules.

Note that parallel modules must execute in separate processes.

Shared memory, direct module communication, and multiple modules in a
single process can all be turned on and off with command line options and/or
.avsrc startup file keywords. Module processes can be further regulated with
the Network Editor’s Module Editor by adjusting the modules’ group. This
last option is described in the "Advanced Topics" chapter of this manual.

Some platforms’ operating systems limit the number and size of shared mem-
ory segments available, and/or the number of processes that can attach to a
shared memory segment. When such limits are encountered, AVS attempts to
fall back on the multiple process/no shared memory approach to passing
data among modules. Such limits are usually documented in the platform’s
release notes, along with information on how to increase the system limits, if
possible.

Multiple Module Processes in AVS

There are two main categories of processes in AVS: the AVS kernel and AVS
modules. The kernel always runs as a separate process. Some AVS modules
are part of the kernel and run in its process. These are the so-called "builtin"
modules:

generate colormap
display image
display pixmap
geometry viewer
graph viewer
image viewer
render geometry
transform pixmap (not present on all platforms)
colormap manager
image manager
render manager

Most of the rest of the AVS modules are compiled together in one of two bina-
ries. All of the modules in one of these binaries execute in a single process.
The actual partitioning of modules varies from release to release. In general:

e Al UCD modules are in the binary /usr/avs/avs_library/ucd_multm

1-10

AVS OVERVIEW

Release Compatibility

* Most of the rest of the supported modules are in the binary /usr/avs/avs_I-
ibrary/mongo

There is a set of modules, mostly coroutines, that each reside and execute in
their own, separate process. The library files /usr/avs/avs_library/Supported
and /usr/avs/unsupp_mods/Unsupported lists all modules and their correspond-
ing binaries.

Release Compatibility

With AVS 4 there are new elements in certain data structures, including the
"field" structure. To access the new elements, modules must be recompiled
and relinked. In general, AVS 3 modules continue to work properly under
AVS 4. You can use AVS 3 and AVS 4 modules together in a single network.

To take advantage of new AVS 4 features, such as mesh ids, existing user
modules must be recompiled using the new AVS 4 libraries. Code that uses
the AVSbuild_field routine cannot make maximal use of shared memory and
is no longer the recommended approach to creating fields. AVS will, however,
continue to support this routine. See Chapter Two for detailed information
about allocating fields in a module.

Portability Issues

This section describes issues to consider when writing code that runs on dif-
ferent platforms.

Writing Portable Code

With a little effort, you can write AVS modules that do not require source code
changes when porting between different platforms. Avoid the use of non-
standard operating system calls and "include” files, and do not rely on hard-
ware specific features such as integer word length.

When allocating space for data, don’t assume a particular size for a type dec-
laration such as short, int, float, or double. For example, to allocate an array of
64 integers, don’t allocate "64*4" bytes; rather, allocate "64*sizeof(int)".

When dealing with data structures built out of bytes, do not manipulate the
bytes as integers. In particular, when dealing with AVS images, the RGB data
is represented as a 4-vector of bytes. Do not assume that integers are four
bytes and manipulate the pixels as integers. When allocating space, for in-
stance, do not use "width*height*sizeof(int)"; rather, use "width*height*4*-
sizeof(char)".

AVS OVERVIEW 1-11

Portability Issues

If you cast a value of "char*" to "int*", add 1 to it, and cast it back to "char *", it
could have the result of adding 4 on some platforms or 8 (e.g., on a Cray) to
the original pointer value, so don’t assume a particular value.

When allocating memory for use within a single function, you should use the
ALLOC_LOCAL and FREE_LOCAL macros in port.h instead of system calls
peculiar to the local implementation of UNIX. This will cause AVS to use the
alloca call on systems that support it, and malloc on other platforms. FOR-
TRAN code should avoid using malloc on the local platform and use AVS-
data_alloc or AVSptr_alloc as appropriate.

Usually, FORTRAN statements cannot exceed 72 characters.

For machines that do not support a FORTRAN BYTE or LOGICAL*1 data
type, there are two routines in the AVS library, AVSload_byte and AVSs-
tore_byte, that you can use to access and store 8-bit integer values.

You should use the FORTRAN include syntax of ’INCLUDE file’, starting in
column 7, rather than the C preprocessor form.

An appendix describes a utility program, f77_binding, that generates inter-
language interface functions. These functions allow code written in C to call
subprograms written in FORTRAN, and vice-versa.

It is strongly recommended that user Makefiles follow the conventions of the /
usr/avs/examples Makefile to enhance portability. Particularly, using Makein-
clude and the macros it provides such as LASTLIBS, can simplify the task o