=i DL

What's New
in IDL 5.5

RE S EARCH /IAE\ZJL :J/:trSion 5.; ition
SYSTEMS Copyrigh , Systems, Inc
L A Kodak Company

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and documentation
described herein are sold under license agreement. Their use, duplication, and disclosure are sub-
ject to the restrictions stated in the license agreement. Research Systems, Inc., reservestheright to
make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL software package or its documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® is aregistered trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the com-
puter program described herein. Software = Vision™ isa trademark of Research Systems, Inc.

Numerical Recipes™ is atrademark of Numerica Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ jsatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright © 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

CDF Libran

Copyright ~ 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and A pplied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rightsto StoneTable™ and its documentation are retained by Ston-
eTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publishing

WA STE text engine © 1993-1996 Marco Piovanelli
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisysunder U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424,

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

Overview of New Features in IDL 5.5oooiiiiiiiiiiiiiiiee e 11
Visuaization ENNANCEMENTSooiiiiiie e e e 12
High-Resolution Textures Supported by IDLGrSurfaceccoccooeeveeiieieenieenennene 12
New EnhancementS to XOBJIVIEW ..ot s 13
New XOBJIVIEW_ROTATE ProCeaUIEcccveieeieiesieeiereee et seeeeee e 13
New XOBJIVIEW_WRITE_IMAGE Procedurecccoceeoeeeneneseeieesesseneenins 13
New Procedure for Generating Tetrahedral Dataccoeoeeiceininnen e 13
New Support fOr REGION GIOWINGc..cerreeiueeeuieeereeriesseee e esee e seeesaeeeeneeeseee s 14
New XROI FUNCHONAIITYooueiiieeeie ettt s e 14
New TrueColor Support for Any Depth on UNIX ..o 14
New Support for Resolving Stitching Artifacts in Object Graphicscccccveeneenne 16
New QUIET Keyword for RECONS3cooiiiiieeeeniie et s 19
New Keyword for Smoother Results Using WARP_TRI ..o 19

What's New in IDL 5.5 3

ANAlYSIS ENNBNCEMENTS ..ottt e e e 20
The IDL Thread Pool and Multi-Threadingccccoeoeneenenenne e 20
New Functionality for Gridding and INterpolationccoceveeeeeneneneeiniene e 21
New Examples Using the AUTO_GLUE Keyword to CALL_EXTERNAL 21
New REAL _PART FUNCLONoceiiieeiee ettt e e se e ene s seenes 22
New ERF, ERFC, and ERFCX FUNCLIONScoouiiiiiiiie ettt 22
Support for SIMPLEX Method for Linear Programmingcccoceeeveeeeneereseenienene 22
BESELI, BESELJ, BESELK and BESELY Functionality Improvements 22
New NaN Support for SMOOTH and CONVOLc.cceeiriiereeeeie e 22
New LNORM Keyword for COND and NORMcceimiieneiieeine e 23
New DOUBLE Keyword for POLY_AREA ..ot 23
New STATUS Keyword for POLYWARP SUPPOItccovveriereieeiine e 23
New ACOS, ASIN, ATAN Support for Complex INPULccceeeeererenecirene e 23
New Minimum/Maximum Operator Support for Complex Dataccoceeeeevereenne. 24
New SMOOTH Function Multidimensional Width SUpportccccceveveeiieeieene 24
New Dimension-specific Transforming for FETcccooiriininenie e 25
New Dimension-setting functionality for Arraysccceveveeeneneneennneese e 25
Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMPcccceevnennuenn. 25
New Histogram Cumulative Probability Distribution Functionalityccccceee.... 26

Language ENNBNCEMENEScooiiiiieieeieee et e e 27
Maximum String Length Limit Increased for 32-Bit IDLcccceceiiriineeneceeie e 27
New MESSAGE Keywords and Message Block SUPPOItccceeeennneeneceeieieee 27
Relaxed Formatted I nput/Output Record Length Limitsccoocoecieiinienicnienieen, 31
New and Enhanced File Handling ROULINEScccoeiiiininieeee e 31
New Functionality Frees DynamiC RESOUICEScceverereenieiesrerseeseesie e seenees 33
New Ability to Check for Keyword Inheritance Errorsccccoveeeenineneceeieneenne 33
Enhancements to IDL Path EXPaNSIONcccccoveiieieie i 34
New Support for REFORM-Style DImension AITaycccoceeeneeenneseeneeeeie e 35
New DOUBLE Keyword for COMPLEX ..ot 36
New CENTER Keyword for CONGRIDcooiiiiieiinineneeee e e 37
New SIGN Keyword for FINITE ..o s 37
Improvements to Files Created With SAVE ..o 37
Improvements to UNIX Filename EXPansioncccccevevereeneniesenneeseene e 38
Pre-IDL 4.0 C Internals Compatibility Library Removedcccoovvivinineicnenn, 38

User Interface ToolKit ENNANCEMENESocueeiiieieireeee e s 40
New COM and ActiveX Functionality for IDLcccevevenieeiee e 40

Contents What's New in IDL 5.5

New ShortCut MenU WIAQELcccoeriieireeeireee et ene e e 40
Emulating System Colorsin Application Widgetscccooeieirenenecinine e 41
New Functionality to Specify Slider Incrementsin IDL Widgetsccceeeevreenene. 43
File ACCESS ENNANCEMENTScveiiiiiieeeieeie et sttt es e st se e e srae e se e e eneenaenees 44
NeW PATH_SEP FUNCHON ..ottt sttt 44
ENhanced TIFF SUPPOITcooiiiieiee ettt s e 44
New SUPPOIT FOr MISID ..o e e s e e 47
Development Environment ENhanCemMENtScooeiuereirine e 48
Improved ProjeCt EXPOITiNGcoeirerereireerire et sss e e enenie s 48
Scientific Data Formats ENNaNCEMENLSooeirieeiieiierre e e 49
HDF-EOS Data Output ENNGNCEMENTSocceuiriiiereee e 49
New HDF Vdata Attribute ROULINEScooceeiiieiierice et 50
IDL ActiveX Control ENNANCEMENESc..coirririiriiereciet et e 51
IDL DataMiner ENNANCEMENTScceiiiiriiriiie ettt st e e s e e e e e neeeseee s 52
Platform Specific INFOrMaLIONccooeiiieieie e e e 52
Documentation ENNBNCEMENLSceiiiieiiii i e e 56
ENNanced IDL ULHITIESocuiiieiee ettt et e st nee 57
ENhanced IDL ULHITIEScoiiiiiie ettt e 57
New Keywords/Arguments to EXisting IDL ULIItIeSccccoveeeieninieenece e 58
New and Enhanced IDL ODJECESccueiiierireeie ettt s 60
NEW ODJECE CIBSSESoiveieeieie ittt ettt e sr et e e e s en e 60
IDL Object Method ENhaNCEMENEScccoeiiriiriirieiee e e 60
New and Enhanced IDL ROULINESccouiiiriieeie ettt 72
NEW IDL ROULINES ..ottt ettt st ettt e et se e e e eeeesee s 72
IDL ROULINE ENNBNCEMENTSeoiuiiieieieeiee ettt e st s e e see s 80
Updates to EXeCUtive COMMANGScooveeeieriereireeiee st s 120
New and Updated System VariableSoccocviiiieiireeee e s 121
FeatureS ODSOIELEAcooiiie et e e eaee e 122
ODSOIEtEd ROULINEScoviiieie ittt ettt st e e e e e sae e e e e snee 122
Obsoleted Keywords and ATQUMENLScc.overereeiienesreneeeee e s 122
Platforms Supported in thiSREIEASEcc.ooiiiiiie e 124
Chapter 2:
Multi-Threading iN IDL ... 125
The IDL Thread POOIc.oociiiieieee st s e 126
Benefits of the IDL Thread POOI ..o e 126

What's New in IDL 5.5 Contents

Possible Drawbacks to the Use of the IDL Thread Poolcccooiiriiecinicneneennns 126
Controlling the Thread POOI iN IDLcc.ciiiiiiiiie e 128
Using the Initial Settings of the Thread Pool ..o 128
Programmatically Controlling the Settings of the Thread Poolccccccccevveeeeennnene 128
Disabling the Thread POOIooiiiiiiiiese e 133
Routines Supporting the Thread POOIoooeiiiiineiecr e 134
Chapter 3:
Using COM ODbBjJeCtS iN IDL ..ot 137
Introduction t0 IDL COM ODJECEScuveieeiriiieriee ettt 138
Skills Required to USe COM ODJECLScccerruirririeiireerireeiee e 139
IDL COM NamMIiNG SCHEMESccouiiiiieiieieeiriee sttt s e 140
About Obtaining COM Class [dentifierscccoerireirieie e 140
Using IDL IDispatch COM ODJECESoceeuiriirieriiieiisie s e 142
IDL IDispatch Naming SChEMES ..o 142
IDisSpatCh ODJECE CrEALONc.coueevieecieeeeie sttt e 143
IDispatch Method DiSPatChinNgc..occeereerierieeniise e e s 143
IDispatch COM ObjeCt DESLIUCTIONccevvevererieeeiieiieeetire e 144
IDispatch Property ManagemMentcccooererreeireiene e s 144
COM Objects Returning IDispatch Pointers to Other Objectsovvvveveieieveene, 145
Example: Creating an IDispatch COM Object in IDLcccoveiiieeieie e 145
Using AcCtiveX CONtrolSiN IDLccuoiiiiieeeeie it s 149
ActiveX-based COM Naming SChEMESccooieiiie i e 149
ACtVEX CONLrol CrEaLIONccveeeieiie ettt e e e 150
ActiveX Control Access and DispatChingccccevevereeieeie s 150
Freeing DYNamIiC RESOUICESccocviiueeuireieieesesie e sr e e s s 151
ActiveX Control DESLIUCTIONcocviueeiiriieie et s e 151
Example: Embedding an ActiveX Control inIDLcoceeeieiininiecce e 152
Accessto ActiveX Methods and Propertiesccoceveveeieeie s 155
EVENt Propagalionccoceeeeiiie it st e s e 156
Chapter 4:
Using the Shortcut Menu Widget ..o 157
Introduction to the Shortcut Menu Widgetccooiriieieeiniene s 158
Using WIDGET_DISPLAY CONTEXTMENUccociiiiiiincine e 159
Creating a Base Widget SNOrtCUt MENUcoveiierrerierieiee e e 160
Creating a Draw Widget SNOMCUt MENUcoveiiiireeeieieeceeree e e 162

Contents What's New in IDL 5.5

Creating a List Widget SNOrtCUt MENUcc.eveirieiiecie e e 166
Creating a Text Widget SNOrtCUt MENUc..coeirieerecie et 170
Chapter 5:
NEW ODJECTS oo 175
[DLCOMIDISPALCIiveceieete ettt e e et e nene e 176
IDLCOMIDISPALCNIIINIT ...ttt e 177
IDLcoml DispatCh::GEIPIOPEITYcccoverviieeireeeire et e 179
IDLcoml DispatCh:: SEtPIOPEITYocvvvereeieeireeeire et e 180
[DLFEMISID ittt ettt e et e e bttt s et see e 181
IDLFFMISIDIICIEANUD ..oueviieieeieeeie sttt s e 182
IDLffMISID::GetDIMSALTLEVEL ... e 183
IDLFfMISID::GEtIMAgEDELAccvveveeeiieeieeeie sttt 185
IDLFfMISID::GEIPIOPEITY ..eoiveieiieeeeiie sttt st e e 188
[IDLFEMISIDZINIT ottt et et e 191
Chapter 6:
NEeW IDL ROULINES ..ottt 193
(@1 U ST 194
DEFINE_MSGBLEK ..ottt st sttt st bbb see e 197
DEFINE_MSGBLK_FROM_FILE ..ottt e 200
R et e e R bR R e bR e bt e R bRt ee e 203
ERFC ettt ettt e e e s bR b bt h e n et ee e 204
ERFCX ettt ettt e et b e bbb e h e bbbt e e e e bt er s 205
FILE_INFO ettt ettt e sttt e e 206
FILE_SEARGCH ..ottt ettt e et st se e 210
GRID_INPUT ettt e s et se e et st bt eb st 224
GRIDDATA ettt e h bbbt e e bt e ben e bt et st st b et b en bbb 228
HDF_VD_ATTRFIND ..ottt et et e e 253
HDF_VD_ATTRINFO ..ottt e et e st e e 254
HDF_VD_ATTRSET ..ottt sttt et e 256
HDF_VD_ISATTR ottt ettt e et st eb et s et se e 262
HDF_VD_INATTRS ...ttt ettt b e st s eb et a s s et 263
HEAP_FREE ...ttt et ettt b en s 264
INTERVAL_VOLUME ...ttt st s e 267
PATH_SEP .ttt et et st b e e e st een e 270
QGRIDS ...ttt et e h et bbbt e e bt et bbb bR e bt b st r et 271

What's New in IDL 5.5 Contents

QHULL e e et e bbb et b e e e e r bbb et 276
QUERY _IMRSID ..ottt ettt eh e e e 279
READ_MRSID ...ttt et et et et eaenn e 281
REAL _PART ettt h e et e e eb e e e st ebe e 283
REGION_GROW ...ttt sttt st st e eb e e es e ene e nes 284
SIMPLEX ettt ettt e et e e st h e e ne bt eh b e n et eneas 287
WIDGET_ACTIVEX ettt e e e 291
WIDGET_DISPLAY CONTEXTMENU ..ot 298
XOBIVIEW_ROTATE .ttt e 300
XOBIVIEW_WRITE_IMAGE ..ottt 302
XIROM ettt et ee bbb e st b e e s e er b st n e e 303
Chapter 7:
NEeW EXAMPIES .o 319
Overview of New EX8MPIESccciiiiiiiieric e 320
Mapping an Image ONto @ SUMTECEccccireiieieiirere e 322
Centering an ImMage ODJECEooiiiiiieiece et 325
AlphaBlending: Creating a Transparent Image ODJECtcoeveirinereeneeire e 328
Working with Mesh Objects and ROULINEScccoeiiieiiniciree e 332
ClHPPING @MESN ..ot e e s 333
DECiMALiNg @MESNccueiiiiie ettt e e s 336
MErgiNg MESNES ... e e 339
SMOOLNING BIMESN ... e e s 342
Advanced Meshing: Combining Meshing ROULINEScccccoevrenencniecerecieee 345
Copying and Printing ODJECEScuooiririiieiirie ettt s 351
Copying a Plot Display to the Cliphoardc...oceoereirnne e 351
Printing @ PIOt DISPIay ...cocveeveeiieiieie e e 353
Copying an Image Display to the Clipbhoardcccooeririeeni i 355
Printing an Image DiSplayccoveereiiieieie e e e 357
Capturing IDL Direct GraphiCS DiSPlaysccccceviererieeneeie s s 359
Capturing Direct Graphics Displays on PseudoColor DeviCesccoeveveiereenne. 359
Capturing Direct Graphics Displays on TrueColor DeViCesccocvvereeieieneenne, 360
Creating and ReStOriNg .SAV FIlEScciiiiiieie e e 363
Customizing and Saving an ASCIl TeEMPIatecceoeveririeee e 363
Saving and Restoring the XROI Utility and Image ROI Dataccccceeveveneveene. 365
Handling Table WidgetSin GUIScociiiiiiieieiee et s e 368

Contents What's New in IDL 5.5

Finding Straight LiNeSin IMAJESccccuriiiiiiniiirci et 374
Color Density Contrasting in an IMaJEcoeurieeereeiierene e 376
Removing Noise from an Image With FFT ... 379
Using Double and Triple INtEGrationc..ccoereirninereenieise et 381
Integrating to Determine the Volume Under a Surface (Double Integration) 381
Integrating to Determine the Mass of a Volume (Triple Integration)c.c...... 382
Obtaining Irregular Grid INTEIVAIS ..ot e s 385
Calculating Incomplete Beta and Gamma FUNCLIONSccoeierreeincienecireee e 387
Working With Tolerances in the Incomplete Beta FUNCLIONcccccveiereceennne 387
Working With Iteration Controlsin the Incomplete Gamma Function 388
Determining Bessel FUNCLION ACCUIACYcooreeuirieieneeiineee et e 390
Analyzing the Bessel Function of the First Kind ... 390
Analyzing the Bessel Function of the Second Kindcccooeeiviiincnene s 392
Analyzing the Modified Bessel Function of the First Kindcccooveviiiiennn. 394
Analyzing the Modified Bessel Function of the Second Kindcoccooeveiiennee, 396
IO X it a e e e e e 399

What's New in IDL 5.5 Contents

Chapter 1.

Overview of New

Features In

This chapter contains the following topics:

IDL 5.5

Visualization Enhancements 12
AnalysisEnhancements 20
Language Enhancements 27
User Interface Toolkit Enhancements 40
Development Environment Enhancements . 48
File AccessEnhancements 44
Scientific Data Formats Enhancements 49
IDL DataMiner Enhancements 52

What's New in IDL 5.5

Documentation Enhancements 56
Enhanced IDL Utilities................ 57
New and Enhanced IDL Objects 60
New and Enhanced IDL Routines 72
New and Updated System Variables 121
FeaturesObsoleted 122
Platforms Supported in thisRelease.. 124

11

12 Chapter 1: Overview of New Features in IDL 5.5

Visualization Enhancements

The following enhancements have been made in the area of Visualization in the IDL
5.5 release:

* High-Resolution Textures Supported by IDLgrSurface
* New Enhancements to XOBJVIEW

* New XOBJVIEW_ROTATE Procedure

* New XOBJVIEW_WRITE_IMAGE Procedure

* New Procedure for Generating Tetrahedral Data

* New Support for Region Growing

* New XROI Functionality

* New TrueColor Support for Any Depth on UNIX

* New Support for Resolving Stitching Artifactsin Object Graphics
* New QUIET Keyword for RECON3

* New Keyword for Smoother Results Using WARP_TRI

High-Resolution Textures Supported by IDLgrSurface

Different 3D hardware platforms support different maximum texture resolutions. For
example, OpenGL only guarantees that the maximum resolution will be at |east 64-
by-64 pixels. This presents a problem if a high pixel resolution image needs to be
mapped onto a 3D surface. Previously, IDL solved this problem by scaling the image
down to the maximum texture size supported by the hardware. Thisresulted in aloss
of data that was particularly noticeable when zooming in on the surface. In some
cases, magnification of the low-resolution texture resulted in an unrecognizable
image.

IDL 5.5 addresses this problem with the new TEXTURE_HIGHRES keyword to
IDLgrSurface. Using this new keyword tiles multiple textures across the surface and
may a so divide the surface geometry to fit the texture tiles. Although IDL tilesthe
texture and surface, the original datais unaltered. Use of the TEXTURE_HIGHRES
keyword thus preserves fine detail by allowing a high-resolution image to be mapped
onto a surface.

Visualization Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 13

Note
Because of the way in which high-resolution textures require modified texture
coordinates, if the TEXTURE_COORD keyword is used, TEXTURE_HIGHRES
will be disabled.

New Enhancements to XOBJVIEW

A new JUST_REG keyword has been added to the XOBJVIEW utility in IDL 5.5.
You can set this keyword to indicate that the XOBJVIEW utility should just be
registered and return immediately. This keyword is useful if you want to register
XOBJVIEW before beginning event processing and either:

» your command-processing front-end does not support an active command line,
or

» one or more of the registered widgets requests that XM ANAGER block event
processing. (Note that in this case alater call to XMANAGER without the
JUST_REG keyword is necessary to begin blocking.)

AlsoinIDL 5.5 anew RENDERER keyword has been added to the XOBJVIEW
utility. You can set this keyword to an integer value indicating which graphics
renderer to use when drawing objectsin the XOBJVIEW draw window. Valid values
can be given for either platform-native OpenGL or for IDL’s software
implementation.

New XOBJVIEW_ROTATE Procedure

The new XOBJVIEW_ROTATE procedure is used to programmatically rotate the
object currently displayed in XOBJVIEW. For more information about the new
XOBJIVIEW_ROTATE procedure, see “XOBJIVIEW_ROTATE” in Chapter 6 of this
book.

New XOBJVIEW_WRITE_IMAGE Procedure

The new XOBJVIEW_WRITE_IMAGE procedure is used to write the object
currently displayed in XOBJVIEW to an image file with the specified name and file
format. For more information about the new XOBJVIEW_WRITE_IMAGE
procedure, see “XOBJVIEW_WRITE_IMAGE” in Chapter 6 of this book.

New Procedure for Generating Tetrahedral Data

The new INTERVAL_VOLUME procedure can be used to generate a tetrahedral
mesh from volumetric data. The mesh generated by this procedure spans the portion

What's New in IDL 5.5 Visualization Enhancements

14 Chapter 1: Overview of New Features in IDL 5.5

of the volume where the volume data samples fall between two constant data values.
This can also be thought of as a mesh constructed to fill the volume between two
isosurfaces where the isosurfaces are drawn at the two supplied constant data val ues.
For more information about the new INTERVAL_VOLUME procedure, see
“INTERVAL_VOLUME” in Chapter 6 of this book.

New Support for Region Growing

IDL 5.5 now supports region growing, an image processing technique that extends
the boundaries of a specified region to include neighboring pixels that share a
common trait. The new REGION_GROW function takes a given region within an N-
dimensional array and expands the region to include all connected, neighboring
pixelsthat fall within the specified limits. For more information about the
REGION_GROW function, see “REGION_GROW?” in Chapter 6 of this book. The
XROI utility also offers an interactive implementation of REGION_GROW. See
“Growing an ROI” on page 312 for more information.

New XROI Functionality

The XROI utility has been improved in 5.5, offering several new interactive ROI
definition toolsincluding Rectangle and Ellipse drawing tools. Additionally, any ROI
selected in the drawing window can be translated or scaled using the Translate/Scale
tool. XROI aso includes the functionality of the new IDL routine, REGION_GROW.
An ROI defined in XROI can be grown to include all neighboring pixelswhich match
specified threshold conditions. The Region Grow Properties dialog allows you to
precisely control the properties associated with aregion growing process. Support for
RGB images has been added to the histogram plot feature and is also a part of the
Region Grow properties dialog, allowing you to select the channel used when
growing aregion of an RGB image. For more information about the XROI utility, see
“XROI” in Chapter 6 of this book.

New TrueColor Support for Any Depth on UNIX

In previous releases of IDL, the X Windows device only supported TrueColor with a
visual depth of 24. In IDL 5.5, TrueColor visuas of any depth are now supported.

How IDL Selects a Visual Class

With the new support for TrueColor visuals of any depth, the following is now the
order in which IDL will query the display to find the first available visual class:

1. DirectColor, 24-bit
2. TrueColor, 24-bit

Visualization Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 15

3. TrueColor, 16-bit (on Linux platforms only)
4. PseudoColor, 8-bit, then 4-bit
5. StaticColor, 8-bit, then 4-bit
6. GrayScale, any depth
7. StaticGray, any depth
Setting a Visual Class with the DEVICE Routine

You can manually set the visual class (instead of having IDL determine the visual
class) by using the DEVICE routine to specify the desired visual class and depth
before you create a window. For the TRUE_COL OR keyword, you can now specify
any value (the most common being 15, 16, and 24). For example:

DEVICE, TRUE_COLOR = 16
Setting a Default Visual Class in Your .Xdefaults File

You can set the initial default value of the visual class and color depth by setting
resources in the .Xdefaults filein your home directory. For example, to set the
default visual classto TrueColor and the visual depth to 24, insert the following lines
inyour .Xdefaults ~ file:

idl.gr_visual: TrueColor
idl.gr_depth: 24

How Color is Interpreted for a TrueColor Visual

How acolor (such as!P.COLOR) isinterpreted by IDL (when a TrueColor visual is
being utilized) depends in part upon the decomposed setting for the device.

To retrieve the decomposed setting:

DEVICE, GET_DECOMPOSED = currentDecomposed
To set the decomposed setting:

DEVICE, DECOMPOSED = newDecomposed

If the decomposed vaueis zero, colors (like |P.COLOR) are interpreted as indices
into IDL's color table. A color should bein therangefromO0to !D.TABLE_SIZE - 1.
The DL color table contains ared, green, and blue component at a given index; each
of these componentsisin the range of 0 up to 255.

Note
IDL’s color table does not map directly to a hardware color table for a TrueColor
visual. If IDL'scolor table is modified, for example using the LOADCT or TVLCT

What's New in IDL 5.5 Visualization Enhancements

16 Chapter 1: Overview of New Features in IDL 5.5

routines, then the new color table will only take effect for graphics that are drawn
after it has been modified.

If the decomposed va ue is non-zero, colors (like 'PCOLOR) areinterpreted as a
combination of red, green, and blue settings. The least significant 8 bits contain the
red component, the next 8 bits contain the green component, and the most significant
8 bits contain the blue component.

In either case, the most significant bits of each of the resulting red, green, and blue

components are utilized. The number of bits utilized per component depends upon

thered, green, and blue masksfor the visual. On UNIX systems, anew field (Bits Per

RGB) has been added to the output from HELP, /DEVICE. This Bits Per RGB field

indicates the amount of bits utilized for each component.

Tip
The UNIX command, xdpyinfo , aso providesinformation about each of the
visuals.

New Support for Resolving Stitching Artifacts in Object
Graphics

In previous releases of IDL, it was very difficult to reduce or remove a common
visual artifact called stitching. Stitching may occur when multiple graphic primitives
are rendered at the same depth, or distance from the eye in view space. If the
primitives overlap each other at the same depth, parts of some of the primitives may
poke through other primitives, creating a stitching effect. These artifacts are caused
by unavoidable rounding in rasterization calculations, Z-buffer limitations and by
different algorithms used to rasterize different primitives.

One of the most common examples of this effect is caused by trying to draw lines"on
top" of a surface, using the same vertex data. Even though the lines may be drawn
last, the surface still pokes through the lines, leaving a stitched appearance. An
attempt to correct the situation by moving the lines up or away from the surfacein
world coordinates usually fails because rotating the abjects with atrackball or other
mechanism fails to keep the lines above the surface.

InIDL 5.5, this problem has been addressed by allowing the specification of a
DEPTH_OFFSET valuethat is used to displace polygons away from the eyein view
space as the polygons are rendered. This displacement is applied in the view, after the
model transforms have been applied. If two objects overlap at the same depth, one of
them can be rendered with a non-zero DEPTH_OFFSET to force a separation
between them in view space. For example, if one object is a set of lines, and the other

Visualization Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 17

isasurface, the surface can be rendered with aDEPTH_OFFSET greater than zero to
"push” it back away from the eye and allow the lines to appear without interference
from the surface. Even if the objects are rotated with a model transform, the surface
will always be drawn slightly farther away from the eye. DEPTH_OFFSET has no
effect on the drawing order of objects, and vice-versa.

Note
RSI suggests using this feature to remove stitching artifacts and not as a means for
layering complex scenes with multiple DEPTH_OFFSET values. It is safest to use
only aDEPTH_OFFSET value of 0, the default, and one other non-zero value such
as 1. Many system-level graphics drivers are not consistent in their handling of
DEPTH_OFFSET values, particularly when multiple non-zero values are used. This
can lead to portability problems because one set of DEPTH_OFFSET values may
produce better results on one machine as compared to another. Using IDL's
software renderer will help improve the cross-platform consistency of scenes that
use DEPTH_OFFSET.

The new DEPTH_OFFSET keyword has been added to the following methods:.

Object Class Method

IDLgrContour GetProperty

Init

SetProperty

IDLgrPolygon GetProperty

Init

SetProperty

IDLgrSurface GetProperty

Init

SetProperty

Table 1-1: Methods That Support the New DEPTH_OFFSET Keyword

Asan example, the following program displays a surface. When you run the program,
you can see the “stitching” in the surface.

What's New in IDL 5.5 Visualization Enhancements

18

Chapter 1: Overview of New Features in IDL 5.5

PRO stitch_ex

; Create data.
X = 5.*SIN(10*FINDGEN(37)*'DTOR)
y = 5.*COS(10*FINDGEN(37)*'DTOR)
data = x ## y

; Initialize model to contain surface and
; mesh.
oModel = OBJ_NEW('IDLgrModel’)

; Initialize surface object.
oSurface = OBJ_NEW('IDLgrSurface', data, $
STYLE = 2, COLOR = [200, 200, 200])

; Initialize mesh object.
oMesh = OBJ_NEW('IDLgrSurface', data, $
COLOR = [0, 0, Q])

; Add surface and mesh to model.
oModel -> Add, oSurface
oModel -> Add, oMesh

; Rotate model for better initial perspective.
oModel -> Rotate, [-1, 0, 1], 45

; Display model in XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $
TITLE = 'Example of Line Stitching'

END

Now, modify the program to specify the DEPTH_OFFSET keyword. Change the
lines that initialized the surface object:

; Initialize surface object.
oSurface = OBJ_NEW('IDLgrSurface', data, $
STYLE = 2, COLOR = [200, 200, 200], DEPTH_OFFSET = 1)

Visualization Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 19

When you run the example again, you will not see the “stitching”.

Figure 1-1: Surface Without the DEPTH_OFFSET Keyword (Left) and Using the
DEPTH_OFFSET Keyword (Right)

New QUIET Keyword for RECON3

A new QUIET keyword has been added to the RECON3 functionin IDL 5.5. By
default (QUIET = 0), the RECONS3 function outputs an informational message when
the processing of each image has been completed. This keyword, when set, allows
you to suppress the output of this message.

New Keyword for Smoother Results Using WARP_TRI

The new TPS keyword to WARP_TRI uses Thin Plate Spline interpolation. The Thin
Plate Spline interpolation isideal for modeling functions with complex local
distortions, such as warping functions, which are too complex to be fit with
polynomials.

What's New in IDL 5.5 Visualization Enhancements

20

Chapter 1: Overview of New Features in IDL 5.5

Analysis Enhancements

The following enhancements have been made in the area of AnalysisinthelDL 5.5
release:

The IDL Thread Pool and Multi-Threading

New Functionality for Gridding and Interpolation

New Examples Using the AUTO_GLUE Keyword to CALL_EXTERNAL
New REAL_PART Function

New ERF, ERFC, and ERFCX Functions

Support for SIMPLEX Method for Linear Programming

BESELI, BESELJ, BESELK and BESELY Functionality |mprovements
New NaN Support for SMOOTH and CONVOL

New LNORM Keyword for COND and NORM

New DOUBLE Keyword for POLY_AREA

New STATUS Keyword for POLY WA RP Support

New ACOS, ASIN, ATAN Support for Complex Input

New Minimum/Maximum Operator Support for Complex Data

New SMOOTH Function Multidimensional Width Support

New Dimension-specific Transforming for FFT

New Dimension-setting functionality for Arrays

Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMP

New Histogram Cumulative Probability Distribution Functionality

The IDL Thread Pool and Multi-Threading

With thisrelease, IDL for Windows and IDL for UNIX have the ahility to use
multiple threads of execution in a user transparent manner when performing some
numeric computations on multi-CPU hardware. This can greatly increase the speed at
which calculations are accomplished on large data sets; however, it can also hinder
analysistimein certain cases. Developers are able to control the default use of multi-
threading by using the |CPU system variable, the new CPU procedure, and the new
multi-threading keywords in each routine supporting multi-threading.

Analysis Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 21

What is Multi-Threading?

On systems equipped with multiple processors, IDL automatically evaluates the
advantages and disadvantages of using the processorsin paralel to accomplish the
calculation. Unless otherwise overridden by using the new CPU procedure to change
the new !CPU system variable, IDL may decide to perform calculations using a
thread pool for routines which support this capability. See Chapter 2, “Multi-
Threading in IDL" for a complete description of multi-threading, and alisting of all
routines currently supporting this capability.

Platform Support for Multi-Threading
IDL supports the use of the thread pool on all platforms except AlX and Macintosh.

New Functionality for Gridding and Interpolation

Four new routines have been added to the gridding and interpolation functionality in
thisrelease: GRID_INPUT, GRIDDATA, QGRID3 and QHULL.

* GRID_INPUT preprocesses and sorts two-dimensional scattered data sets, and
removes duplicate points.

» GRIDDATA interpolates data to aregular grid from scattered data values and
locations.

* QGRID3 linearly interpolates dependent variable values to pointsin a
regularly sampled volume.

* QHULL isused to construct convex hulls, Delaunay triangulations, and
Voronoi diagrams for a set of points two-dimensional or higher.

New Examples Using the AUTO_GLUE Keyword to
CALL_EXTERNAL

The IDL distribution now includes two new examples of how to use the
AUTO_GLUE keyword to the CALL_EXTERNAL function. The AUTO_GLUE
keyword, introduced in IDL 5.4, allows you to easily access routines within other
programming libraries.

Two new examples show how to use AUTO_GLUE to access routines within the
IMSL C Numerical Library. The examples are located in the examples/imsl|
directory. Thisdirectory also includes areadme.txt text file, which explains how
to use these exampl es.

These examples are implemented as IDL functions. The first example computes the
Airy function using the Visual Numerics IMSL C Numerical Library. Thisexampleis

What's New in IDL 5.5 Analysis Enhancements

22 Chapter 1: Overview of New Features in IDL 5.5

called IMSL_AIRY and isin the imsl|_airy.pro file. The second example
computes the singular value decomposition of an input array using the Visual
Numerics IMSL C Numerical Library. Thisexampleiscalled IMSL_SVDC and isin
theimsl_svdc.pro file.

New REAL_PART Function

Thenew REAL_PART function returnsthe real part of its complex-valued argument.
For more information about the new REAL_PART function, see “REAL_PART” in
Chapter 6 of this book.

New ERF, ERFC, and ERFCX Functions

The new ERF, ERFC, and ERFCX functions return the value of the error function,
the complimentary error function, and the scaled complimentary error function,
respectively. For more information about these new functions, see “ERF”, “ERFC”,
and “ERFCX” in Chapter 6 of this book.

Support for SIMPLEX Method for Linear Programming

The new SIMPLEX function uses the smplex method to solve linear programming
problems and is modeled on the simplx routine found in Numerical Recipes. For
more information about the new SIMPLEX function, see “SIMPLEX” in Chapter 6
of this book.

BESELI, BESELJ, BESELK and BESELY Functionality
Improvements

The BESEL functions now accept any order greater than or equal to zero (within
memory limitations), and also return arrays of the correct dimensions.

New NaN Support for SMOOTH and CONVOL

IDL's CONVOL and SMOOTH functions now support the handling of NaNs.

When using CONVOL and SMOQOTH, the new NAN keyword may be set to cause
the routine to check for occurrences of the |EEE floating-point value NaN in the
input data. Elements with thisvalue are treated as missing data, and are ignored when
computing the convolution for neighboring elements. In the Result, missing elements
arereplaced by the convolution of al other valid points within the kernel. If all points
within the kernel are missing, then the result at that point is given by the MISSING
keyword.

Analysis Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 23

New LNORM Keyword for COND and NORM

A new LNORM keyword has been added to the COND and NORM functionsin I DL
5.5. This keyword allows you choose which norm is used in the computation of the
COND and NORM functions. For NORM with avector input argument, you can
choose L, norm, L4 norm, L, norm, ..., L, norm where nis any number. The default
for vectorsis L, norm. For COND and NORM with a two-dimensional array input,
you can choose L ,, norm (the maximum absolute row sum norm), L1 norm (the
maximum absolute column sum norm), or L, norm (the spectral norm). The default
for two-dimensional arraysis L, norm.

New DOUBLE Keyword for POLY_AREA

InIDL 5.5, anew DOUBLE keyword has been added to the POLY_AREA function.
You can set this keyword to force the computation of the POLY _AREA function to
be performed using double-precision arithmetic.

New STATUS Keyword for POLYWARP Support

When calculating polynomial coefficients for 45-degree rotations with POLY WARP
certain inputs may cause singular matrices. This rarely happens with real data, but
does happen with more idealized data (such as squares or regular shapes). In thistype
of case, itisvery easy to get afailureinthe INVERT. InIDL 5.5, aSTATUS keyword
has been introduced for feedback on such rare occurrences.

New ACOS, ASIN, ATAN Support for Complex Input

InIDL 5.5, new support has been added allowing complex input to ACOS, ASIN,
and ATAN. Previoudly, the inverse transcendental functions ACOS and ASIN did not
accept complex input. The ATAN function accepted complex input, Z=X+iY; but
incorrectly converted the complex number into the 2-argument ATAN(y, X) form and
returned areal result. For ATAN, support has been added for input of two complex
arguments.

ATAN Function Support

The ATAN function now computes the complex arctangent for complex input.
Previoudly, for acomplex number Z=X+iY , internally ATAN(Z) would split Z into its
real and imaginary components and compute ATAN(Y, X). IDL code that uses this
undocumented behavior should be changed by replacing callsto ATAN(Z) with
ATAN(IMAGINARY (Z), REAL_PART(Z)).

For example, in IDL 5.4, to compute the argument (or angle) of a complex number:

What's New in IDL 5.5 Analysis Enhancements

24 Chapter 1: Overview of New Features in IDL 5.5
z = COMPLEX(2, 1)
print, ATAN(z)*180/!PI ; undocumented behavior
IDL prints:
26.5651
Now, in IDL 5.5, to compute the argument:

z = COMPLEX(2, 1)
print, ATAN(IMAGINARY(z), REAL_PART(z))*180/!PI

IDL prints:
26.5651

New Minimum/Maximum Operator Support for Complex Data

Complex data types now work with <, >, LT, LE, GT, and GE operators, utilizing the
absolute value (or modulus) for al comparisons. Behavior is unchanged for EQ and
NE.

New SMOOTH Function Multidimensional Width Support

Since SMOOTH dlows n-dimensional input arrays, IDL 5.5 now allows an n-
dimensional smoothing window (the Width input argument can now have more than
one dimension).

Example

This example shows the use of SMOOTH with the new multidimensiona width
argument on an RGB image.

; Determine the path to the file.
file = FILEPATH(rose.jpg’, $
SUBDIRECTORY = [‘examples', 'data’])

; Import in the RGB image from the file.
image = READ_IMAGE(file)

; Initialize the image size parameter.
imageSize = SIZE(image, /DIMENSIONS)

; Initialize the display.

DEVICE, DECOMPOSED = 1

WINDOW, 0, XSIZE = imageSize[l], YSIZE = imageSize[2], $
TITLE = 'Original Rose Image'

; Display the original image on the left side.
TV, image, TRUE = 1

Analysis Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 25

; Initialize another display

WINDOW, 1, XSIZE = 3*imageSize[l], YSIZE = imageSize[2], $
TITLE = 'Vertically Smoothed (left), Horizontally ' + $
'‘Smoothed (middle), and Both (right)'

; Smooth the RGB image in just the width dimension.
smoothed = SMOOTH(image, [1, 1, 21])

; Display the results.
TV, smoothed, 0, TRUE = 1

; Smooth the RGB image in just the height dimension.
smoothed = SMOOTH(image, [1, 21, 1])

; Display the results.
TV, smoothed, 1, TRUE = 1

; Smooth the RGB image in just the width and height dimensions.
smoothed = SMOOTH(image, [1, 5, 5])

; Display the results.
TV, smoothed, 2, TRUE = 1

New Dimension-specific Transforming for FFT

Previoudly, the FFT function accepted multi-dimensional arguments but did not allow
specification of which dimension to transform, but instead transformed along all
dimensions. Now in IDL 5.5, the new DIMENSION keyword allows you to
transform only along one dimension.

New Dimension-setting functionality for Arrays

The new DIMENSION keyword to the MIN and MAX functions alows you to set
the dimension over which to find the minimum or maximum values (respectively) of
an array of data. If not present or set to zero, the minimum or maximum
(respectively) values are found over the entire array.

Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMP

The IDL source code for the CLUSTER, CLUST_WTS, EIGENQL, and PCOMP
routinesis now available. They can be accessed in thelib subdirectory of the IDL
distribution in the following files: cluster.pro , clust_wts.pro ,eigengl.pro
and pcomp.pro .

What's New in IDL 5.5 Analysis Enhancements

26 Chapter 1: Overview of New Features in IDL 5.5

New Histogram Cumulative Probability Distribution
Functionality

The new FCN keyword to HIST_EQUAL and ADAPT_HIST_EQUAL allow you to
set the resulting histogram’s desired cumulative probability distribution function by
specifying a 256 element vector. |f omitted, alinear ramp, which yields equal
probability binswill result. This function is later normalized, so magnitude is not
important, though it should increase monaotonically.

Analysis Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

Language Enhancements

27

The following enhancements have been made in the area of Languageinthe IDL 5.5
release:

Maximum String Length Limit Increased for 32-Bit IDL
New MESSAGE Keywords and Message Block Support
Relaxed Formatted I nput/Output Record Length Limits
New and Enhanced File Handling Routines

New Functionality Frees Dynamic Resources

New Ability to Check for Keyword Inheritance Errors
Enhancements to IDL Path Expansion

New Support for REFORM-Style Dimension Array
New DOUBLE Keyword for COMPLEX

New CENTER Keyword for CONGRID

New SIGN Keyword for FINITE

Improvements to Files Created with SAVE
Improvementsto UNIX Filename Expansion

Pre-IDL 4.0 C Internals Compatibility Library Removed

Maximum String Length Limit Increased for 32-Bit IDL

Prior to IDL 5.5, 32-bit IDL had a maximum string length limit of 64K (65534

characters) while 64-bit IDL allowed stringsto be up to 2.1GB (2147483647
characters) in length. With IDL 5.5, thislimit has been raised to 2.1GB for both types
of IDL.

New MESSAGE Keywords and Message Block Support

The new message block support in IDL 5.5 allows the MESSA GE routine to issue

any IDL error instead of the single IDL_M_USER_ERR message previously

supported. IDL printf

printf

What's New in IDL 5.5

-style formatting is supported, using the printf
formatting added to explicit formatting in IDL 5.4. For more information on the

-style

-styleformatting, see“C printf -Style Quoted String Format Code” on page
187 of the Building I DL Applications manual.

Language Enhancements

28

Chapter 1: Overview of New Features in IDL 5.5

Two new procedures have been added in IDL 5.5 to further provide message block
support: the DEFINE_MSGBLK and DEFINE_MSGBLK_FROM _FILE
procedures. These new procedures alow the user to define new message blocks
within large applications built on IDL which must manage their own errors. When a
message block isloaded, the messages can be issued to the user-level using the
BLOCK and NAME keywords to the MESSAGE procedure.

The MESSA GE procedure has been changed by implementing three new keywords:
BLOCK, LEVEL, and NAME to allow you to issue any IDL error.

Example Using MESSAGE (Pre-IDL 5.5)

In previousreleases of IDL, messages were issued by programs using the MESSAGE
procedure. The following simple program illustrates how this was done.

This program randomly chooses a number between 0 and 10. It outputs that number
to let you know if the messages from your guesses are correct. Then, the program
prompts the user to guess the number. If the user’s guessis|lower than the number,
the message “Too Low!” appearsin the Output Log. If the user’s guessis higher than
the number, the message “Too High!” appearsin the Output Log. And if the user
guesses the number correctly, the message tells the user their guessis correct.

PRO guessANumber
; Derive a number in-between 0 and 10.
number = LONG(10.*RANDOMU(seed, 1))
; Output the number.
PRINT, *
PRINT, 'The number is ' + STRTRIM(number, 2) + "'
; Initialize variable as a float-point value outside
; of the 0 to 10 range.
guess = -1.
; Loop over guesses until the correct number is inputed.
WHILE (number[0] NE ROUND(guess)) DO BEGIN
; Prompt user to guess.
PRINT, *
READ, guess, $
PROMPT = 'Guess a number between 0 and 10: '
; Output whether user is below or above the
; correct number.
PRINT, “
IF (number[0] GT ROUND(guess)) THEN MESSAGE, $
'Too Low!, /INFORMATIONAL, /NONAME
IF (number[0] LT ROUND(guess)) THEN MESSAGE, $
'Too High!, /INFORMATIONAL, /NONAME
; Loop until correct number is inputed.
ENDWHILE

Language Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 29

; Output correct number.

MESSAGE, STRTRIM(number[0], 2) + ' is the number!, $
/INFORMATIONAL, /NONAME

END

New Message Block Support in IDL 5.5

The same example program in IDL 5.5 can now use the new message block support.
In the two examples that follow, you will see how to use the DEFINE_MSGBLK and
the DEFINE_MSGBLK_FROM_FILE procedures, respectively to improve the guess
anumber program.

M essage blocks can be defined for an IDL session, or in amain routine of an
application using the DEFINE_M SGBLK procedure. For large message blocks, it
may be easier to maintain a message text file and accessit using the
DEFINE_MSGBLK_FROM_FILE procedure.

These exampl es establish message blocks for the IDL session. The message blocks
are defined from the IDL command line. If you were using either of these procedures
in an application, you would define the message block within the main routine of the
application, instead from the IDL command line.

DEFINE_MSGBLK Example

This example uses the same program as before with afew modifications. For this
exampl e the message block is defined using the DEFINE_M SGBLK procedure
entered at the IDL command line.

The program must first be modified as follows before defining the new message
block asfollows.

PRO guessANumber

; Derive a number in-between 0 and 10.

number = LONG(10.*RANDOMU(seed, 1))

; Output the number.

PRINT, ™

PRINT, "The number is " + STRTRIM(number, 2) + ""

; Initialize variable as a float-point value outside

; of the 0 to 10 range.

guess = -1.

; Loop over guesses until the correct number is inputed.

WHILE (number[0] NE ROUND(guess)) DO BEGIN
; Prompt user to guess.
PRINT, ™

READ, guess, $
PROMPT = "Guess a number between 0 and 10: "
; Output whether user is below or above the correct
; number.

What's New in IDL 5.5 Language Enhancements

30

Chapter 1: Overview of New Features in IDL 5.5

PRINT, ™
IF (number[0] GT ROUND(guess)) THEN MESSAGE, $
BLOCK = "GUESSING", NAME = "GUESS_MSG_LOW", $
/INFORMATIONAL
IF (number[0] LT ROUND(guess)) THEN MESSAGE, $
BLOCK = "GUESSING", NAME = "GUESS_MSG_HIGH", $
/INFORMATIONAL
; Loop until correct number is inputed.
ENDWHILE
; Output correct number.
MESSAGE, STRTRIM(number[0], 2), BLOCK = "GUESSING", $
NAME = "GUESS_MSG_CORRECT", /INFORMATIONAL
END

Now define the message block (named GUESSING) to associate the message “Too
Low!” with the name GUESS_MSG_L OW, the message “Too High!” with the name
GUESS MSG_HIGH, and the message “%s is the number” with the name
GUESS _MSG_CORRECT by entering the following lines of code at the command
line.

name = ['LOW", "HIGH", "CORRECT"]

format = ["Too Low!", "Too High!", "%s is the number!"]
These names and formats are now used to create the message block using the new
DEFINE_MSGBLK procedure as follows.

DEFINE_MSGBLK, "GUESSING", name, format, PREFIX = "GUESS_MSG_"

The message block has now been established for the remainder of the IDL session.
Now when you run the program, this message block supplies the messages as needed.
Once the message block is defined, it exists for the entire session.

Example Using DEFINE_MSGBLK_FROM_FILE

This example uses the same message block but defines it as a separate message text
file rather than entering it at the IDL command line.

Note
Since the same block of messages is used, exit out of IDL before continuing with

this example.

For this example, create a message text file by opening anew filein atext editor.
Copy and paste the following text into that file:

@IDENT GUESSING
@PREFIX GUESS_MSG_

@ LOW "Too Low!"
@ HIGH "Too High!"
@ CORRECT "%s is the number!"

Language Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

Save thisfile as guessANumber.msg inyour IDL working directory.

Start up IDL. At the IDL command line define the message block with the
DEFINE_MSGBLK_FROM_FILE procedure:

DEFINE_MSGBLK_FROM_FILE, "guessANumber.msg"

Now you can run the previous example program to see the messages applied using
the new DEFINE_MSGBLK_FROM_FILE procedure.

Relaxed Formatted Input/Output Record Length Limits

Severa IDL record length limits have been relaxed in IDL 5.5.

The 32K limit for default or explicitly formatted Input/Output has been
removed. Now, the only limit on the length of alineis the maximum length
allowed in an IDL string variable (2.1GB).

The A format code used to require that the width parameter be in the range
(1 < w < 256). This requirement has been relaxed to (1 < w).

TheA,F, D,E G, 0O, Z, X, C(), and open parenthesis (format codes all
allow you to specify arepetition count, n, controlling how many times each
format element is processed before moving on to the next format element.
Previous versions of IDL required this repetition count to fall in the range
(1< n<32767). Thisrequirement has been relaxed to (1 < n).

TheT, TL, and TR format codes al require a parameter n, that specifies the
column to moveto, either directly or as an offset, depending on the format
code used. Previous versions of IDL required that n be in the range

(1< n<32767). Thisreguirement has been relaxed to (1 < n).

New and Enhanced File Handling Routines

The following table describes new and enhanced routinesin IDL 5.5 that improve
IDL’s ability to perform file handling operations:

New/Enhanced Routine Description

FILE_CHMOD New NOEXPAND_PATH keyword allows you to

use File exactly as specified, without applying the
usual file path expansion.

What's New in IDL 5.5

Table 1-2: New File Handling Routines in IDL 5.5

Language Enhancements

32

Chapter 1: Overview of New Features in IDL 5.5

New/Enhanced Routine

Description

FILE_DELETE

New NOEXPAND_PATH keyword allows you to
use File exactly as specified, without applying the
usual file path expansion.

FILE_INFO

The new FILE_INFO function provides file status
information based on a filename, without opening
thefile. Thisdiffersfrom FSTAT because FSTAT
requires the file to be open, and much of the
information FSTAT providesisonly relevant for
openfiles. FILE_INFO returnsfile access, type, and
size information, and together with FSTAT and
FILE_TEST, provides acomplete set of file query
operationsin IDL. See “FILE_INFO” in Chapter 6
for more information.

FILE_MKDIR

New NOEXPAND_PATH keyword allows you to
use File exactly as specified, without applying the
usual file path expansion.

FILE_SEARCH

The new FILE_SEARCH function returns a string
array containing the names of all files matching the
input path specification. Input path specifications
may contain wildcard characters, enabling them to
match multiple files. All matched filenames are
returned in a string array, one file name per array
element. In comparison to the existing FINDFILE
function, FILE_SEARCH is more powerful and
provides full cross-platform compatibility. See
“FILE_SEARCH?” in Chapter 6 for more
information.

Note - Research Systems strongly recommends the
FILE_SEARCH function be used rather than the
FINDFILE function. FILE_SEARCH isintended as
areplacement for FINDFILE.

FILE_TEST

New NOEXPAND_PATH keyword which allows
you to use File exactly as specified, without
applying the usua file path expansion.

Table 1-2: New File Handling Routines in IDL 5.5 (Continued)

Language Enhancements

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 33

New Functionality Frees Dynamic Resources

The HEAP_FREE routine recursively frees al heap variables associated with the
argument which is passed to the routine. This routine will examine the variable data,
traversing arrays and structures, pointer, and object references. When an object value
is encountered, it is released using the OBJ_DESTROY routine. When a pointer
value is encountered, its contents are scanned, freeing any dynamic resources, and
then the pointer itself isreleased using the PTR_FREE routine.

HEAP_FREE may be used:

» Torelease the dynamic resources contained in a structure returned from the
GetRecord method of an IDL dbRecordset object.

» Torelease any dynamic resources associated with an event generated by an
ActiveX control that isembedded in an IDL Widget hierarchy using
Widget_ActiveX().

However, HEAP_FREE does have some disadvantages, see “HEAP_FREE” in
Chapter 6 for more information.

New Ability to Check for Keyword Inheritance Errors

When passing inherited keywords to aroutine, the_ EXTRA keyword quietly ignores
any keywords not accepted by the routine you are calling. Although thisis often the
desired behavior, this can alow incorrect usage to go undetected under some
circumstances. For example, consider the following two routines:

PRO PRINT_HELLO_WORLD, UPCASE = upcase
PRINT, KEYWORD_SET(upcase) ? 'Hello World!" : 'Hello World"
END

PRO HELLO_WORLD, number, _[EXTRA = extra
FOR | = 1, number DO PRINT_HELLO_WORLD, _EXTRA = extra
END

This generally works as desired, but will not report an error for any inherited
keywords that are not understood by the PRINT_HELLO_WORLD procedure. For
example, if you called the HELLO_WORLD procedure using a non-existent
keyword (LOWCASE), the routine would quietly ignore the incorrect usage:

HELLO_WORLD, 2, /LOWCASE
You would receive the results:
Hello World!

What's New in IDL 5.5 Language Enhancements

34

Chapter 1: Overview of New Features in IDL 5.5

Also, if you called the HELLO_WORLD procedure with the following (notice that
the UPCASE keyword is misspelled):

HELLO_WORLD, 2, /UCASE

You would receive the same results as the previous exampl e since the incorrect
keyword would be quietly ignored.

Thenew _STRICT_EXTRA keyword restricts the use of keywords not accepted by
the routine you are calling. You can use this keyword to provide error checking. For
example, if you changed the _EXTRA keyword to the _STRICT_EXTRA keyword
inthe HELLO_WORLD procedure:

FOR | = 1, number DO PRINT_HELLO_WORLD, _STRICT_EXTRA = extra
and run the example again:
HELLO_WORLD, 2, /UCASE
You would receive the following error message:
% Keyword UCASE not allowed in call to: PRINT_HELLO_WORLD

Enhancements to IDL Path Expansion

The following enhancements have been made to the expansion of the IDL_PATH,
IDL_DLM_PATH, and IDL_HELP_PATH environment variables. IDL expandsthese
variables when they are translated at startup time.

« Using<IDL_BIN_DIRNAM E>— When IDL gets the value of the
IDL_PATH, IDL_DLM_PATH, and IDL_HELP_PATH environment variables,
it replaces any instances of the string <IDL_BIN_DIRNAME> with the name
of the subdirectory within the installed IDL distribution where binaries for the
current system are kept. This feature is useful for distributing packages of
Dynamically Loadable Modules (DLMs) with support for multiple operating
system and hardware combinations.

For example, on UNIX, assume that you have your DLMsinstaled in
{ust/local/mydim , with support for each platform in a subdirectory using
the same naming convention that IDL uses for the platform dependant
subdirectories underneath the bin directory of the IDL distribution. The
following line, which might be located in afile executed by your shell when
you login (your .cshrc or .login file) will add the location of the proper
DLM for your current system to IDL's!DLM_PATH at startup:

% setenv IDL_DLM_PATH "/usr/local/mydim/<IDL_BIN_DIRNAME>
:<IDL_DEFAULT>"

Language Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 35

On Windows, you would set the appropriate environment variable, and then
exit and restart IDL to update the path.

Using <IDL_VERSION_DIRNAME> — When IDL gets the value of the
IDL_PATH, IDL_DLM_PATH, and IDL_HELP_PATH environment variables,
it replaces any instances of the string <IDL_VERSION_DIRNAME> with a
unique name for the IDL version that is currently running. This feature can be
combined with <IDL_BIN_DIRNAME> to easily distribute packages of
DLMswith support for multiple IDL versions, operating systems, and
hardware platforms.

For example, on UNIX, assume that you have your DLMsinstaled in
{ust/local/mydim . Within the mydim subdirectory would be adirectory for
each supported version of IDL. Within each of those subdirectorieswould be a
subdirectory for each operating system and hardware combination supported
by that version of IDL. The following line, which might be located in afile
executed by your shell whenyou login (your .cshrc or .login file) will add
the location of the proper DLM for your current systemto IDL's'DLM_PATH
at startup:

% setenv IDL_DLM_PATH
"/usr/local/mydim/<IDL_VERSION_DIRNAME>/
<IDL_BIN_DIRNAME>:<IDL_DEFAULT>"

On Windows, you would set the appropriate environment variable, and then
exit and restart IDL to update the path.

New Support for REFORM-Style Dimension Array

The REFORM functionin IDL allowsyou to specify the resulting dimensions (the D;
argument) of an array as separate arguments, or as a single array argument containing
the dimensions. For example, if avariable, a, isdefined asa20 x 10 x 5 array:

a = FINDGEN(20, 10, 5)

Then,

b
b

the following statements are equivalent:

REFORM(a, 200, 5)
REFORM(a, [200, 5])

What's New in IDL 5.5 Language Enhancements

36 Chapter 1: Overview of New Features in IDL 5.5

This syntax, which was unique to REFORM, allows code to easily handle data of
arbitrary dimensionality. IDL 5.5 extends this notation to the following routines that
accept dimension arguments:

Note

BINDGEN FLTARR REFORM
BYTARR INDGEN REPLICATE
BYTE INTARR SHIFT
CINDGEN L64INDGEN SINDGEN
COMPLEX LINDGEN STRARR
COMPLEXARR LONG64ARR UINDGEN
DBLARR LONARR UINT
DCINDGEN LONG UINTARR
DCOMPLEX LONG64 ULG4INDGEN
DCOMPLEXARR MAKE_ARRAY ULINDGEN
DINDGEN OBJARR ULONG4ARR
DOUBLE PTRARR ULONARR
FINDGEN RANDOMN ULONG

FIX RANDOMU ULONG64
FLOAT REBIN

The SHIFT function accepts shift parameters (S; arguments), and not dimensions
(D; argument), but the syntax is identical.

New DOUBLE Keyword for COMPLEX

A new DOUBLE keyword has been added to the COMPLEX functionin IDL 5.5.
You can set this keyword to return a double-precision complex result. Thisis
equivalent to using the DCOMPLEX function. This keyword is provided as a
programming convenience.

Language Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 37

New CENTER Keyword for CONGRID

A new CENTER keyword has been added to the CONGRID functionin IDL 5.5. If
you set thiskeyword, the interpolation is shifted so that pointsin the input and output
arrays are assumed to lie at the midpoint of their coordinates rather than at their
lower-left corner.

New SIGN Keyword for FINITE

A new SIGN keyword has been added to the FINITE function in IDL 5.5. You can
use this keyword with the INFINITY and NAN keywords to determineis an infinite
or NaN valueis positive or negative. By default (SIGN = 0), the FINITE function
ignores the sign of infinite and NaN values.

Improvements to Files Created with SAVE

With IDL 5.4, Research Systems released a version of IDL that was 64-bit capable.
Theoriginal IDL SAVE/RESTORE format used 32-bit offsets. In order to support 64-
bit memory access, the IDL SAVE/RESTORE file format was modified to allow the
use of 64-bit offsetswithin the file, while retaining the ability to read old filesthat use
the 32-bit offsets.

The SAVE command always begins reading any .sav file using 32-bit offsets. If the
64-bit offset command is detected, 64-bit offsets are then used for any subsequent
commands.

* InIDL versions capable of writing large files
('VERSION.FILE_OFFSET_BITS EQ 64), SAVE writes a special command
at the beginning of the file that switches the format from 32 to 64-bit.

» SAVE always starts reading any .sav file using 32-bit offsets. If it sees the 64-
bit offset command, it switches to 64-bit offsets for any commands following
that one.

This configuration is fully backward compatible, in that any IDL program can read
any .sav fileit has created, or by any earlier IDL version. Note however that files
produced in IDL 5.4 using 64-bit offsets are not readable by older versions of IDL.

It has come to our attention that IDL users commonly transfer SAVE/RESTORE data
fileswritten by newer IDL versionsto sites where they are restored by older versions
of IDL (that is new files being input by old programs). It is not generally reasonable
to expect this sort of forward compatibility, and it does not fit the usual definition of
backwards compatibility. Research Systems has always strived to maintain this
compatibility. However, in IDL 5.4 this was not the case. The following steps have

What's New in IDL 5.5 Language Enhancements

38 Chapter 1: Overview of New Features in IDL 5.5

been taken in IDL 5.5 to minimize the problemsthat have been caused by the IDL 5.4
save format:

* 64-bit offsets encoding has been improved. The .sav files written within IDL
5.5 and subsequently should be readable by any previousversion of IDL, if the
file datadoes not exceed 2.1 GB in length.

* |IDL 5.5 and subsequent versions will retain the ability to read the 64-bit offset
files produced by IDL 5.4.x, thus ensuring backwards compatibility.

» The.sav fileswritten within IDL 5.5 or subseguent versions, which contain file
data exceeding 2.1GB in length are not readable by older versions of IDL, but
will be readable by IDL 5.5 and subseguent versions of IDL that have
IVERSION.MEMORY_BITS equal to 64.

* The CONVERT_SR54 procedure, apart of the IDL 5.5 user library, can be
used to convert .sav fileswritten within IDL 5.4 into the newer IDL 5.5 format.
This alows existing data files to become readable by previous IDL versions.
The CONVERT_SR54 procedure islocated in the
RSI-Directory/lib/obsolete

Improvements to UNIX Filename Expansion

IDL for UNIX expands wildcard characters within file namesin executive commands
(such as .compile and .run) and in routines that accept file names as arguments (such
as OPEN, FILE_TEST, FILE_INFO, and so on). Previousto IDL 5.5, this expansion
was done by a child process running the C-shell (/bin/csh). Now, this expansion is
done by IDL's internal file searching engine, which is also the heart of the new
FILE_SEARCH function. The wildcard characters accepted remain the same (~, *, ?,
[1,{}, and environment variables), and any change should be negligible. However,
expansion of C-shell variables such as $path or $shell are no longer expanded.
Instead, they are treated as environment variables, and since most environments do
not contain lower-case names, they expand to null replacement text. In this case, the
desired effect can usually be obtained by instead using the equivalent environment
variables (for example $SHELL, or $PATH).

Pre-IDL 4.0 C Internals Compatibility Library Removed

The sharable library libobsolete.so (known as libobsolete.a under AlX, and
libobsolete.d under HP-UX) has been removed from IDL. This library, which first
appeared within IDL 4.0, supplied implementations of the older non-IDL _ prefixed
IDL internal API (application programming interface) written in terms of the API
documented in the IDL External Development Guide.

Language Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 39

Historical Note: IDL 4.0 (released in 1995) offered Callable IDL, which allows IDL
to be called from other compiled programs. From that time, the names of al
externally visible functions and data structures have had astandard IDL_ prefix. This
prevented internal IDL names from conflicting with namesin the calling user
program. In order to ease the transition for UNIX and VMS customers with existing
code, asharable library (libobsolete.so for UNIX, and OBSOLETE.EXE for VMS)
was included in the bin subdirectory that contained an implementation of the old non-
prefixed APl written in terms of the new. This code consists largely of functionswith
the old names each making a single call to the corresponding function in the IDL
sharable library. It has always been recommended that user code be revised to utilize
the newer supported API instead of the older API. For atime however, the option of
linking against libobsol ete has been available during the transition. The amount of
code which relied on thislibrary has never been large, and after six years, any code
that relied on this library should have had ample time to be converted to the new
prefixed API. Therefore, the obsolete library is no longer included in the IDL
distribution. If you have existing code that relies on thislibrary, it is recommended
that it be converted to the supported version of the API, as documented in the
External Development Guide.

What's New in IDL 5.5 Language Enhancements

40 Chapter 1: Overview of New Features in IDL 5.5

User Interface Toolkit Enhancements

The following enhancements have been made in the area of the User Interface Toolkit
inthe IDL 5.5 release:

* New COM and ActiveX Functionality for IDL

« New Shortcut Menu Widget

e Emulating System Colorsin Application Widgets

* New Functionality to Specify Slider Incrementsin IDL Widgets

New COM and ActiveX Functionality for IDL

IDL for Windows now supports the use of COM objects. COM (Component Object
Model) objects, regardless of type or method of creation, are treated as IDL objects.
There are two main uses for COM functionality in IDL:

e Using the IDLcomlDispatch object to instantiate a desired COM object by
using a provided class or program ID. This method isideal for COM objects
that do not utilize a graphical-user interface.

* Usingthe WIDGET_ACTIVEX function to embed an ActiveX control in an
IDL widget hierarchy.

The primary differencesin IDL between using |DLcomlDispatch-based objects and
using an ActiveX control are the methods by which they are created and managed.
These methods of creation and management as well as more in-depth information on
COM objects are detailed in Chapter 3, “Using COM Objectsin IDL".

New Shortcut Menu Widget

InIDL 5.5 for Windows and IDL 5.5 for UNIX, a shortcut menu widget (otherwise
known as a context sensitive or pop-up menu) has been added to enhance the IDL
widget system. These menus are available for:

» Basewidgets
e Text widgets
o Draw widgets
e Listwidgets

User Interface Toolkit Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 41

An example of a shortcut menu widget is shown in the following figure.

Figure 1-2: Shortcut Menu Widget

For more information, see Chapter 4, “Using the Shortcut Menu Widget”.
Emulating System Colors in Application Widgets

A new SY STEM_COL ORS keyword has been added to the WIDGET_INFO routine
for the Windows and UNIX operating systems. This hew keyword enables an
application developer to determine what colors are used in IDL application widgets
so they can design widgets for their application with the same look and feel asthe
supplied IDL widgets.

The WIDGET_SYSTEM_COLORS Structure

When the new SY STEM_COL ORS keywordisusedin aWIDGET_INFO call witha
valid IDL widget identifier, an IDL structure isreturned. The

WIDGET_SY STEM_COLORS structure contains 25 fields holding the 3 element
vector values for the corresponding RGB colors. The vector elements range between
0 and 255 or are assigned a value of —1 if unavailable. The field names and meaning
on the Windows and UNIX operating systems are shown in the following table.

Field Names Windows Platform UNIX Platform
DARK_SHADOW_3D Dark shadow color for | N/A
3D display elements.
FACE_3D Face color for 3D Base background
display elements and color for al widgets.
dialog boxes.

Table 1-3: WIDGET_SYSTEM_COLORS Structure Fields

What's New in IDL 5.5 User Interface Toolkit Enhancements

42

Chapter 1: Overview of New Features in IDL 5.5

Field Names

Windows Platform

UNIX Platform

LIGHT_EDGE_3D

Highlight color for 3D
edges that face the light
source.

Color of top and left
edges of 3D widgets.

LIGHT_3D Light color for 3D Color of highlight
display elements. rectangle around
widgets with the
keyboard focus.
SHADOW_3D Coalor for 3D edgesthat | Color of bottom and
face away fromthelight | right edges of 3D
source. widgets.
ACTIVE_BORDER Activewindow’s border | Push button

color.

background color
when button is armed.

ACTIVE_CAPTION

Active window’s

N/A

caption color.
APP_WORKSPACE Background color of N/A
MDI applications.
DESKTOP Desktop color. N/A

BUTTON_TEXT

Text color on push
buttons.

Widget text color.

CAPTION_TEXT

Coalor of text in caption,
size box, and scroll bar
arrow box.

Widget text color.

GRAY _TEXT Color of disabled text. N/A
HIGHLIGHT Coalor of item(s) Toggle button fill
selected in awidget. color.
HIGHLIGHT _TEXT Coalor of text of item(s) | N/A
selected in awidget.
INACTIVE_BORDER Inactive window’s N/A

border color.

Table 1-3: WIDGET_SYSTEM_COLORS Structure Fields (Continued)

User Interface Toolkit Enhancements

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

43

Field Names

Windows Platform

UNIX Platform

INACTIVE_CAPTION Inactive window’s N/A
caption color.
INACTIVE_CAPTION_TEXT | Inactive window’s N/A
caption text color.
TOOLTIP_BK Background color for N/A
tooltip controls.
TOOLTIP_TEXT Text color for tooltip N/A
controls.
MENU Menu background color. | N/A
MENU_TEXT Menu text color. N/A
SCROLLBAR Coalor of scroll bar Color of scroll bar
13 gray” ar%. 13 grwﬂ area
WINDOW_BK Window background Base background
color. color for al widgets.

WINDOW_FRAME

Window frame color.

Widget border color.

WINDOW_TEXT

Text color in windows.

Widget text color.

Table 1-3: WIDGET_SYSTEM_COLORS Structure Fields (Continued)

Note

Thisfeatureis currently not available on the Macintosh platform.

New Functionality to Specify Slider Increments in IDL
Widgets

The WIDGET_SLIDER and CW_FSLIDER widgetsin IDL for Windows and
Macintosh have right and left arrow buttons that increment the sliders. In IDL 5.5,
you may how specify the amount the slider isincremented when the arrow buttons
are pressed. The SCROLL keyword to WIDGET_SLIDER (increments by integer
values) and CW_FSLIDER (increments by floating point/decimal values) now causes
the dider to be incremented by the correct amount each time the slider arrows are
pressed.

What's New in IDL 5.5 User Interface Toolkit Enhancements

44 Chapter 1: Overview of New Features in IDL 5.5

File Access Enhancements

The following enhancements have been made in the area of File Accessin the IDL
5.5 release:

* New PATH_SEP Function
* Enhanced TIFF Support
* New Support for MrSID

New PATH_SEP Function

The new PATH_SEP function returns the proper segment separator character in the
file path for the current operating system. Thisisthe same character used by the host
operating system for delimiting subdirectory namesin a path specification. This new
function enables code to be more flexible and portable as opposed to hardwiring the
separatorsin the code.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
path_sep.pro inthelib subdirectory of the IDL distribution.

Enhanced TIFF Support

Enhanced Support for 1-bit and 4-bit TIFF Images

IDL 5.5 now supports reading and writing 1-bit (black and white) and 4-bit TIFF
files. The WRITE_TIFF procedure can write TIFF files with one or more channels,
where each channel can contain 1, 4, 8, 16, or 32-bit integer pixels, or floating-point
values. For black and white images, writing out the image as a 1-bit TIFF will take
approximately 1/8 of the disk space compared to an 8-bit grayscale image. For 4-bit
images (pixel values 0 through 15), writing out the image as a 4-bit TIFF will take
approximately 1/2 the disk space compared to an 8-bit grayscale image.

File Access Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 45

New Returned Information for TIFF Queries

The Info argument to QUERY _TIFF returns an anonymous structure containing
information about the image in the file. In IDL 5.5 the following new QUERY _TIFF
fields have been added:

Field IDL data type Description

BITS PER_SAMPLE | Long This new field indicates the number of
bits per sasmple or channel. Possible
valuesare 1, 4, 8, 16, or 32.

ORIENTATION Long This new field indicates image
orientation (by columns and rows):

» 1=Lefttoright, top to bottom
(default)

* 2 =Right to |eft, top to bottom
» 3 =Right to left, bottom to top
» 0or 4 = Léeft to right, bottom to top
» 5=Top to bottom, left to right
* 6 =Top to bottom, right to left
» 7 =Bottom to top, right to left
» 8= Bottom to top, left to right

PLANAR_CONFIG Long This new field indicates how the
components of each pixel are stored.
Possible values are:

» 0= Pixel interleaved RGB image or
atwo-dimensional image (no
interleaving exists). Pixel
components (such as RGB) are
stored contiguously.

* 2 =Image interleaved. Pixel
components are stored in separate
planes.

Table 1-4: QUERY _TIFF Routine Info Structure Fields

What's New in IDL 5.5 File Access Enhancements

46

Chapter 1: Overview of New Features in IDL 5.5

Field

IDL data type

Description

PHOTOMETRIC

Long

Thisnew field indicates the color model
used for the image data. Possible values
are:

e 0=Whiteiszero

e 1=Blackiszero

e 2=RGB color model

» 3 = Palette color model
* 4 = Transparency mask

e 5= Separated (usualy CMYK -
cyan-magenta-yellow-black)

RESOLUTION

Float array

This new field is a two-element vector
[x resolution, y resolution] giving the
number of pixels per resolution unit in
the width and height directions.

UNITS

Long

This new field is used to indicate the
units of measurement for
RESOLUTION:

e 1=Nounits
» 2 =Inches (the default)
e 3= Centimeters

TILE_SIZE

Long array

This new field is used for images stored
in separate tiles. Thisis atwo-element
vector [tilewidth, tile height] giving the
width and height of each tile. For non-
tiledimagesthe TILE_SIZE will contain
[Image width, 1].

Table 1-4: QUERY _TIFF Routine Info Structure Fields (Continued)

Improved TIFF Orientation Functionality

InIDL 5.5, anew ORIENTATION keyword has been added for WRITE_TIFF as
well asfor READ_TIFF. The ORIENTATION keyword is set to indicate the
orientation of the image with respect to the columns and rows of Image. This
ORIENTATION keyword replaces the Order argument to WRITE_TIFF and the

File Access Enhancements

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 a7

ORDER keyword to READ_TIFF which are now both obsolete. Code that uses the
Order argument or ORDER keyword will continue to work as before, but new code
should use the ORIENTATION keyword.

New Unit-setting Functionality for WRITE_TIFF

The new UNITS keyword to WRITE_TIFF can be set to indicate the units of the
XRESOL and YRESOL keywords (which define the horizontal and vertical
resolutions). Possible values are; 1 = No units, 2 = Inches (the default), or

3 = Centimeters.

New Support for MrSID

InIDL 5.5 for Windows, functionality has been added for MrSID. The MrSID
(Multi-Resolution Seamless Image Database) file format is a wavelet compressed,
multi-resol ution raster image format. The multi-resolution nature of the format
allows the image to be opened using sel ective decompression with only the required
portion of an image being opened at once. Using this method, the image may be
viewed at the highest detail while never being fully decompressed. The memory
requirements and time delays associated with opening a full image into memory are
thus avoided, and an image, irrespective of size, may be viewed quickly at any
resolution. IDL 5.5 now provides support for MrSID through use of the IDLffMrSID
object and through the READ_MRSID and QUERY _MRSID methods. The
IDLffMrSID object encapsulates all functionality that is required to access MrSID
files.

For more information on the new IDLffMrSID class, see Chapter 5, “New Objects”.

What's New in IDL 5.5 File Access Enhancements

48 Chapter 1: Overview of New Features in IDL 5.5

Development Environment Enhancements

Improved Project Exporting

IDL 5.5 for Windows features enhanced project exporting capabilities. The export
feature assists users in packaging up their IDL programs for distribution.

Export Files E3 |
=-[# bin = Add
1-[F] bin=86
= D Bemove |
=B Rsl
=[] IDL55 ﬂl
=[] examples
e
[l Ex_Contes
=[] resource
- bitmaps
= colars
[colors1 thl
[readme. bt
=[] fonts
[hershl.chr (I
-0 ps
= O _ O |

.l readme bt hd
4 | k Cancel

Figure 1-3: The New Export Files Dialog

For more information on this feature and how to export and distribute an IDL
application, contact your RSI sales representative.

Development Environment Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 49

Scientific Data Formats Enhancements

Enhancements have been made to the following Scientific Data Formatsin the IDL
5.5 release:

« HDF-EOS Data Output Enhancements
« New HDF Vdata Attribute Routines

HDF-EOS Data Output Enhancements

IDL HDF-EOS routines now consistently handle the array ordering between IDL and
C used by the HDF-EOS library routines. In addition, dimension size vectors and
dimension name lists are also now in IDL order rather than in C order. This was done
so that IDL order is maintained in the reading and writing of data arrays with the
HDF-EOS routines.

Enhanced routines include:

EOS_SW_DEFDATAFIELD EOS_GD_DEFFIELD
EOS_SW_DEFGEOFIELD EOS _GD_DEFTILE
EOS_SW_EXTRACTPERIOD EOS_GD_READFIELD
EOS_SW_EXTRACTREGION EOS_GD_READTILE
EOS_SW_PERIODINFO EOS_GD_REGIONINFO
EOS_SW_READFIELD EOS_GD_TILEINFO
EOS_SW_REGIONINFO EOS_GD_WRITEFIELD
EOS_SW_WRITEDATAMETA EOS_GD_WRITEFIELDMETA
EOS_SW_WRITEFIELD EOS_GD_WRITETILE

EOS_SW_WRITEGEOMETA

Note
For th