
IDL Version 6.1
July, 2004 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Building IDL
Applications

0704IDL61BLD

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures, functions,
and documentation described herein are sold under license agreement. Their use, duplication, and disclosure
are subject to the restrictions stated in the license agreement. Research Systems, Inc., reserves the right to
make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not expressly set forth
in the license agreement, including without limitation the condition of the software, merchantability, or fitness
for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered by the Lic-
ensee or any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, nontransferable license
to reproduce this particular document provided such copies are for your use only and are not sold or distrib-
uted to third parties. All such copies must contain the title page and this notice page in their entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
Overview .. 15
What is an IDL Application? ... 16
About Building Applications in IDL ... 17

Part I: Components of the IDL Language

Chapter 2:
Expressions and Operators ... 21
Overview ... 22
IDL Operators .. 23
Operator Precedence .. 40
Data Type and Structure of Expressions ... 43

Chapter 3:
Constants and Variables .. 47
Data Types ... 48
Building IDL Applications 3

4

Constants .. 51
Type Conversion Functions ... 58
Variables .. 61
System Variables ... 64
Common Blocks ... 65

Chapter 4:
Procedures and Functions .. 69
Overview .. 70
Defining a Procedure ... 71
Calling a Procedure .. 72
Defining a Function ... 73
Parameters .. 76
Using Keyword Parameters ... 79
Keyword Inheritance .. 81
Entering Procedure Definitions .. 89
How IDL Resolves Routines ... 91
Parameter Passing Mechanism .. 92
Calling Mechanism .. 94
Setting Compilation Options .. 96

Chapter 5:
Library Authoring ... 99
Overview of Library Authoring ... 100
Recognizing Potential Naming Conflicts ... 101
Advice for Library Authors ... 103
Converting Existing Libraries .. 104

Chapter 6:
Strings ... 107
Overview .. 108
String Operations ... 109
Non-string and Non-scalar Arguments .. 110
String Concatenation .. 111
Using STRING to Format Data ... 112
Byte Arguments and Strings .. 113
Case Folding .. 115
Contents Building IDL Applications

5

Whitespace .. 116
Finding the Length of a String .. 118
Substrings .. 119
Splitting and Joining Strings ... 122
Comparing Strings ... 123
Non-Printing Characters .. 127
Learning About Regular Expressions .. 128

Chapter 7:
Arrays ... 133
Overview ... 134
Array Subscripting .. 137
Subscript Ranges ... 142
Dimensionality of Subarrays ... 144
Using Arrays as Subscripts .. 146
Combining Subscripts ... 148
Storing Elements with Array Subscripts ... 150
Columns, Rows, and Array Majority .. 151

Chapter 8:
Pointers .. 155
Overview ... 156
Heap Variables .. 157
Creating Heap Variables ... 159
Saving and Restoring Heap Variables ... 160
Pointer Heap Variables .. 161
IDL Pointers .. 162
Operations on Pointers .. 165
Dangling References ... 169
Heap Variable Leakage ... 170
Pointer Validity ... 172
Freeing Pointers ... 173
Pointer Examples ... 174

Chapter 9:
Structures .. 181
Overview ... 182
Building IDL Applications Contents

6

Creating and Defining Structures ... 183
Structure References .. 186
Using HELP with Structures .. 188
Parameter Passing with Structures ... 189
Arrays of Structures ... 191
Structure Input/Output ... 193
Advanced Structure Usage ... 196
Automatic Structure Definition .. 198
Relaxed Structure Assignment ... 200

Part II: Basics of IDL Programming

Chapter 10:
Introduction to IDL Programming ... 205
What is an IDL Program? .. 206
Creating a Simple Program .. 209
Compiling and Running Your Program ... 210
Commenting Your IDL Code .. 214
Saving Compiled IDL Programs and Data .. 215
Restoring Compiled IDL Programs and Data .. 223

Chapter 11:
Files and Input/Output ... 231
Overview .. 232
File I/O in IDL ... 233
Unformatted Input/Output ... 238
Formatted Input/Output ... 239
Opening Files ... 241
Closing Files .. 242
Logical Unit Numbers (LUNs) .. 243
Reading and Writing Very Large Files .. 246
Using Free Format Input/Output .. 248
Using Explicitly Formatted Input/Output .. 253
Format Codes ... 258
Using Unformatted Input/Output ... 294
Portable Unformatted Input/Output ... 301
Associated Input/Output .. 306
Contents Building IDL Applications

7

File Manipulation Operations .. 312
UNIX-Specific Information .. 325
Windows-Specific Information ... 328
Scientific Data Formats ... 329
Support for Standard Image File Formats ... 330

Chapter 12:
Assignment .. 333
Overview of the Assignment Statement .. 334
Assigning a Value to a Variable .. 336
Assigning Scalars to Array Elements .. 337
Assigning Arrays to Array Elements ... 338
Avoid Using Range Subscripts .. 340
Compound Assignment Operators .. 342
Using Associated File Variables ... 344

Chapter 13:
Program Control .. 345
Overview ... 346
Compound Statements ... 347
Conditional Statements .. 350
Loop Statements .. 357
Jump Statements .. 365
Definition of True and False ... 368

Chapter 14:
Writing Efficient IDL Programs .. 369
Overview ... 370
Expression Evaluation Order ... 371
Avoid IF Statements .. 372
Use Vector and Array Operations ... 373
Use System Functions and Procedures .. 375
Use Constants of the Correct Type .. 376
Eliminate Invariant Expressions .. 377
Virtual Memory ... 378
IDL Implementation .. 383
The IDL Code Profiler .. 384
Building IDL Applications Contents

8

Chapter 15:
Multithreading in IDL .. 391
The IDL Thread Pool ... 392
Controlling the IDL Thread Pool ... 395
Routines that Use the Thread Pool ... 401

Chapter 16:
Solutions to Common IDL Tasks ... 405
Determining Variable Scope .. 406
Determining if a Keyword is Set ... 407
Determining the Number of Array Elements in an Expression or Variable 408
Determining if a Variable is Defined ... 409
Supplying Values for Missing Keywords .. 410
Supplying Values for Missing Arguments ... 411
Determining the Size/Type of an Array ... 412
Determining if a Variable Contains a Scalar or Array Value .. 415
Calling Functions/Procedures Indirectly .. 416
Executing Dynamically-Created IDL Code ... 417

Chapter 17:
Building Cross-Platform Applications .. 419
Overview .. 420
Which Operating System is Running? ... 421
File and Path Specifications ... 422
Environment Variables .. 424
Files and I/O ... 425
Math Exceptions .. 428
Operating System Access .. 429
Display Characteristics and Palettes .. 430
Fonts ... 431
Printing ... 432
SAVE and RESTORE .. 433
Widgets .. 434
Using External Code .. 437
IDL DataMiner Issues .. 438
Contents Building IDL Applications

9

Chapter 18:
Debugging an IDL Program .. 439
Overview ... 440
Debugging Commands .. 441
The Variable Watch Window .. 447

Chapter 19:
Controlling Errors ... 451
Overview ... 452
Default Error-Handling Mechanism .. 453
Disappearing Variables ... 454
Controlling Errors Using CATCH .. 455
Controlling Errors Using ON_ERROR ... 459
Controlling Input/Output Errors .. 460
Error Signaling .. 462
Obtaining Traceback Information ... 464
Error Handling ... 465
Math Errors .. 467

Chapter 20:
Providing Online Help For Your Application 473
Overview ... 474
Providing Help Within the User Interface ... 475
Displaying Text Files .. 478
Using an External Viewer ... 479
About IDL’s Online Help System ... 480
Using IDL’s Online Help Viewers .. 484

Part III: Creating Applications in IDL

Chapter 21:
Creating IDL Projects .. 493
Overview ... 494
Where to Store the Files for a Project ... 498
Creating a Project .. 500
Opening, Closing, and Saving Projects ... 502
Modifying Project Groups ... 503
Adding, Moving, and Removing Files .. 505
Building IDL Applications Contents

10
Working with Files in a Project ... 509
Setting the Options for a Project .. 514
Selecting the Build Order ... 517
Compiling an Application from a Project .. 519
Building a Project .. 520
Running an Application from a Project ... 522
Exporting a Project .. 523

Chapter 22:
Distributing IDL Applications .. 529
What is a Stand-Alone IDL Application? .. 530
Building a Native IDL Application .. 533
Licensing Options for IDL Applications ... 535
The IDL Virtual Machine .. 537
Embedded Licensing .. 543
Runtime Licensing ... 550
Building Your Application .. 559
Preparing a Windows Distribution ... 568
Preparing a UNIX Distribution .. 574
Distributing Your Application on a CD ... 578
Installing Your Application ... 584
Incorporating the IDL Data Miner ... 585

Part IV: Using IDL Objects

Chapter 23:
Object Basics .. 589
Object-Oriented Programming ... 590
IDL Object Overview .. 591
Class Structures .. 593
Inheritance .. 595
Object Heap Variables ... 597
Null Objects ... 600
The Object Lifecycle .. 601
Operations on Objects .. 604
Obtaining Information about Objects .. 606
Method Routines .. 608
Contents Building IDL Applications

11
Method Overriding .. 612
Object Examples .. 615

Chapter 24:
Using Language Catalogs .. 617
What Is a Language Catalog? .. 618
Creating a Language Catalog File ... 619
Using the IDLffLangCat Class .. 621
Widget Example .. 624

Chapter 25:
Using the XML Parser Object Class .. 627
About XML ... 628
Using the XML Parser ... 630
Example: Reading Data Into an Array .. 635
Example: Reading Data Into Structures .. 642
Building Complex Data Structures .. 649

Chapter 26:
Using the XML DOM Object Classes ... 651
About the Document Object Model .. 652
About the XML DOM Object Classes .. 655
Using the XML DOM Object Classes ... 661
Tree-Walking Example ... 667

Part V: Creating Graphical User Interfaces in IDL

Chapter 27:
Using the IDL GUIBuilder ... 671
Overview ... 672
Starting the IDL GUIBuilder ... 674
Creating an Example Application ... 676
IDL GUIBuilder Tools .. 687
Widget Operations ... 702
Generating Files .. 705
IDL GUIBuilder Examples ... 707
Widget Properties .. 721
Common Widget Properties .. 722
Building IDL Applications Contents

12
Base Widget Properties .. 728
Button Widget Properties ... 741
Text Widget Properties .. 747
Label Widget Properties .. 753
Slider Widget Properties .. 755
Droplist Widget Properties .. 758
Listbox Widget Properties ... 761
Draw Widget Properties ... 765
Table Widget Properties .. 772
Tab Widget Properties ... 781
Tree Widget Properties .. 784

Chapter 28:
Widgets .. 789
Overview .. 790
Widget Primitives .. 794
Compound Widgets ... 807
Dialogs ... 816
Utilities ... 818

Chapter 29:
Creating Widget Applications ... 823
About Widget Applications ... 824
Widget Programming Concepts ... 825
Example 1: A Simple Widget Application .. 828
Widget Application Lifecycle .. 830
Manipulating Widgets .. 833
Working With Widget IDs ... 838
Widget User Values ... 840
Widget Event Processing ... 841
Example 2: Event Processing and User Values ... 847
Managing Application State .. 849
Compound Widgets ... 853
Example 3: Compound Widget .. 856
Debugging Widget Applications .. 865
Contents Building IDL Applications

13
Chapter 30:
Widget Application Techniques ... 867
Working with Widget Events .. 868
Using Multiple Widget Hierarchies .. 873
Creating Menus ... 876
Widget Sizing .. 890
Tips on Creating Widget Applications .. 896
Using Button Widgets ... 898
Using Draw Widgets ... 903
Using Property Sheet Widgets .. 916
Using Table Widgets ... 941
Using Tab Widgets .. 952
Using Tree Widgets ... 961
Enhancing Widget Application Usability .. 967

Index ... 985
Building IDL Applications Contents

14
Contents Building IDL Applications

Chapter 1:

Overview
This chapter includes information about the following topics:
What is an IDL Application? 16 About Building Applications in IDL 17
Building IDL Applications 15

16 Chapter 1: Overview
What is an IDL Application?

We use the term “IDL Application” very broadly; any program written in the IDL
language is, in our view, an IDL application. IDL Applications range from the very
simple (a MAIN program entered at the IDL command prompt, for example) to the
very complex (large programs with full-blown graphical user interfaces, such as
ENVI). Whether you are writing a small program to analyze a single data set or a
large-scale application for commercial distribution, it is useful to understand the
programming concepts used by the IDL language.

Can I Distribute My Application?

You can freely distribute IDL source code for your IDL applications to colleagues
and others who use IDL. (If you intend to distribute your applications, it is a good
idea to avoid any code that depends on the qualities of a specific platform. See
“!VERSION” in the IDL Reference Guide manual and “Tips on Creating Widget
Applications” on page 896 for some hints on writing platform-independent code.) Of
course, IDL applications can only be run from within the IDL environment, so
anyone who wishes to run your IDL application must have access to an IDL license.

If you would like to distribute your IDL application to people who do not have access
to an IDL license, you have several options. Many IDL applications will run in the
freely-available IDL Virtual Machine. If your application uses features not available
in the virtual machine, you may wish to consider a runtime IDL licensing agreement.
Runtime IDL licenses allow you to distribute a special version of IDL along with
your application. See Chapter 22, “Distributing IDL Applications” for a complete
discussion of the different ways you can distribute an application written in IDL.
What is an IDL Application? Building IDL Applications

Chapter 1: Overview 17
About Building Applications in IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programming in
IDL is a time-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages can be
accomplished in hours. You can explore data interactively using IDL commands and
then create complete applications by writing IDL programs.

Advantages of IDL include:

• IDL is a complete, structured language that can be used both interactively and
to create sophisticated functions, procedures, and applications.

• Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

• Immediate compilation and execution of IDL commands provides instant
feedback and “hands-on” interaction.

• Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computations
immediately.

• Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

• IDL’s flexible input/output facilities allow you to read any type of custom data
format. Support is also provided for common image standards (including BMP,
JPEG, and XWD) and scientific data formats (CDF, HDF, and NetCDF).

• IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

• IDL programs run the same across all supported platforms (Microsoft
Windows and a wide variety of Unix systems) with little or no modification.
This application portability allows you to easily support a variety of
computers.

• Existing FORTRAN and C routines can be dynamically-linked into IDL to add
specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display “engine”.
Building IDL Applications About Building Applications in IDL

18 Chapter 1: Overview
About Building Applications in IDL Building IDL Applications

Part I: Components
of the IDL Language

Chapter 2:

Expressions and
Operators
The following topics are covered in this chapter:
Overview . 22
IDL Operators . 23

Operator Precedence 40
Data Type and Structure of Expressions . . 43
Building IDL Applications 21

22 Chapter 2: Expressions and Operators
Overview

Variables, constants, and function results are combined into expressions using
operators. The value of an expression depends on the values of the operands and the
operator involved. Expressions can be combined with other expressions, variables,
and constants to yield more complex expressions. In IDL, unlike FORTRAN or C,
expressions can be scalar- or array-valued.

IDL has a large number of different operators. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), and logical arithmetic (&&, ||, ~, AND, OR, NOT, and XOR) — other operators
exist to find minima, maxima, select scalars and subarrays from arrays (subscripting),
and to concatenate scalars and arrays to form new arrays.

Functions, which are operators in themselves, perform operations that are usually of a
more complex nature than those denoted by simple operators. Functions exist in IDL
for data smoothing, shifting, transforming, evaluation of transcendental functions,
and other operations.

Expressions can be arguments to functions or procedures. For example, the
expression SIN(A*!PI) evaluates the variable A multiplied by the value of π, then
applies the trigonometric sine function. This result can be used as an operand to form
a more complex expression or as an argument to yet another function (e.g.,
EXP(SIN(A*!PI)) evaluates esin(πa)).
Overview Building IDL Applications

Chapter 2: Expressions and Operators 23
IDL Operators

As described in the previous section, operators are used to combine terms and
expressions. IDL supports the following types of operators:

• Parentheses

• Square Brackets

• Mathematical Operators

• Minimum and Maximum Operators

• Matrix Multiplication

• Array Concatenation

• Logical Operators

• Bitwise Operators

• Relational Operators

Parentheses

Parentheses are used to group expressions and to enclose function parameter lists.
Parentheses can be used to override the order of operator evaluation described above.
Examples:

;Parentheses enclose function argument lists.
SIN(ANG * PI/180.)

;Parentheses specify order of operator evaluation.
(A + 5)/B

The right parenthesis must always close the list begun by the left parenthesis.

Square Brackets

Square brackets are used to create arrays and to enclose array subscripts.

;Use brackets when assigning elements to an array.
ARRAY = [1, 2, 3, 4, 5]

;Brackets enclose subscripts.
ARRAY[X, Y]
Building IDL Applications IDL Operators

24 Chapter 2: Expressions and Operators
Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work as in previous version of IDL, we strongly suggest that you use brackets in all
new code. See “Array Subscript Syntax: [] vs. ()” on page 140 for additional
details.

Mathematical Operators

There are seven basic IDL mathematical operators, described below.

Assignment

The equal sign (=) is the assignment operator. The value of the expression on the right
hand side of the equal sign is stored in the variable, subscript element, or range on the
left side. For example, the following assigns the value 32 to A.

A = 32

See Chapter 12, “Assignment” for more information.

Compound Assignment Operators

In addition to the standard assignment operator, there are numerous compound
operators (+=, -=, etc.) that combine assignment with another operator. Compound
assignment operators provide succinct syntax for expressions in which the same
variable would otherwise be present on both sides of the equal sign. For example, the
following statements both add 100 to the current value of the variable A:

A = A + 100
A += 100

See “Compound Assignment Operators” in Chapter 12 for more information and a
list of compound assignment operators.

Addition

The positive sign (+) is the addition operator. When applied to strings, the addition
operator concatenates the strings. For example:

;Store the sum of 3 and 6 in B.
B = 3 + 6

;Store the string value of "John Doe" in B.
B = 'John' + ' ' + 'Doe'
IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 25
Subtraction and Negation

The negative sign (–) is the subtraction operator. Also, the minus sign is used as the
unary negation operator. For example:

;Store the value of 5 subtracted from 9 in C.
C = 9 - 5

;Change the sign of C.
C = -C

Multiplication

The asterisk (*) is the multiplication operator. For example:

; Store the product of 2 and 5 in variable C:
C = 2 * 5

Division

The forward slash (/) is the division operator. For example:

; Store the result of 10.0 divided by 3.2 in variable D:
D = 10.0/3.2

Exponentiation

The caret (^) is the exponentiation operator. A^B is equal to A raised to the B power.

For real numbers, A^B is evaluated as follows:

• If A is a real number and B is of integer type, repeated multiplication is
applied.

• If both A and B are real (non-integer), the formula AB = eBlnA is evaluated.

• A0 is defined as 1.

For complex numbers, A^B is evalutated as follows. The complex number A can be
represented as A = a + ib, where a is the real part, and ib is the imaginary part. In
polar form, we can represent the complex number as A = reiθ = r cosθ + ir sinθ,
where r cosθ is the real part, and ir sinθ is the imaginary part:

• If A is complex and B is real, the formula AB = (reiθ)B = rB (cosBθ + isinBθ) is
evaluated.

• If A is real and B is complex, the formula AB = eBlnA is evaluated.

• If both A and B are complex, the formula AB = eBlnA is evaluated, and the
natural logarithm is computed to be ln(A) = ln(reiθ) = ln(r) + iθ.
Building IDL Applications IDL Operators

26 Chapter 2: Expressions and Operators
Modulo

The keyword MOD is the modulo operator. I MOD J is equal to the remainder when I
is divided by J. The magnitude of the result is less than that of J, and its sign agrees
with that of I. For example:

;Assign the value of 9 modulo 5 (4) to A.
A = 9 MOD 5

;Compute angle modulo 2p.
A =(ANGLE + B) MOD (2 * !PI)

Increment/Decrement

The increment (++) and decrement (--) operators can be applied to variables
(including array subscripts or structure tags) of any numeric type. The ++ operator
increments the target variable by one. The -- operator decrements the target by one.
When written in front of the target variable (that is, using prefix notation), the
operations are known as preincrement and predecrement, respectively. When written
following the target variable (using postfix notation), they are called postincrement
and postdecrement.

Note
The increment and decrement operators can only be applied to variable expressions
to which a value can be assigned. Hence, the following is not allowed:

A = 23++

because it attempts to apply the increment operator to a constant. Another way of
stating this rule is to say that it must be possible for the expression being
incremented or decremented to appear on the left-hand side of the equal sign.

The increment and decrement operators can be used either as standalone statements
or within a larger enclosing expression. Although the two forms are very similar, the
expression form has some efficiency and side-effect issues (described below) that do
not apply to the statement form.

Increment/Decrement Statements

Increment and decrement operators can be used, along with a variable, as standalone
statements:

• A++ or ++A

• A-- or --A
IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 27
The increment or decrement operator may be placed either before or after the target
variable. The same operation is carried out in either case. These operators are very
efficient, since the variable is incremented in place and no temporary copies of the
data are made.

Increment/Decrement Expressions

Increment and decrement operators can be used within expressions. When the
operator follows the target expression, it is applied after the value of the target is
evaluated for use in the surrounding expression. When the operator precedes the
target expression, it is applied before the value of the target is evaluated for use in the
surrounding expression. For example, after executing the following statements, the
value of the variable A is 27, while B is 28:

B = 27
A = B++

In contrast, after executing the following statements, both A and B have a value of 26:

B = 27
A = --B

Efficiency of Prefix vs. Postfix Operations — When used as part of an expression,
the prefix form of the increment and decrement operators has an efficiency advantage
over the postfix form. The reason for this is that the postfix form requires IDL to
make a copy of the data, while the prefix form does not. The operations carried out by
IDL to execute a prefix increment or decrement operation are:

1. Fetch the target variable.

2. Increment or decrement the target variable in place (no copies are made).

3. Use the variable when evaluating the surrounding expression.

This is very efficient. In contrast, the postfix form requires IDL to make a copy of the
variable in order to use its old value in the surrounding expression following the
increment/decrement. The operations carried out by IDL to execute a postfix
increment or decrement operation are:

1. Fetch the target variable.

2. Make a temporary copy of the variable.

3. Increment or decrement the original variable.

4. Use the temporary copy when evaluating the surrounding expression.
Building IDL Applications IDL Operators

28 Chapter 2: Expressions and Operators
If your computation requires the postfix form, then these operations are necessary
and reasonable. If not, the prefix form will use fewer resources and is the better
choice. The larger the data involved, the more important this becomes. It is not a
concern for small variables.

Order Of Side Effects — The way that the increment and decrement operators
change the value of a variable in addition to using its value in a surrounding
expression is called a side effect. In most cases, the side effects are desired, and cause
no problems. Side effects can cause problems, however, if the increment or
decrement operator is applied to a variable that appears more than once within a
single statement or expression. Consider the following statement (taken from The C
Programming Language by Brian W. Kernighan and Dennis M. Ritchie):

A[i] = i++

Which value of i is used to index A? Is it the original value of i, or the incremented
value? The answer depends on the order in which the various parts of the statement
are evaluated. Either answer might be considered correct, and IDL does not require
one or the other. Similarly, in the statements

B = 23
A = B++ + B

the value of A could be either 47 or 46, depending on which part of the expression is
evaluated first.

Note that this situation falls outside the rules of operator precedence — it is the order
in which the variables themselves are evalutated that affects the result. Let’s examine
the situation closely:

• Here the “old” value of B (23) is always used for the first occurrence of B in
the statement.

• If the sub-statement B++ is evaluated first, the value of the second occurrence
of B in the statement uses the “new” value of B (24), giving A the value 47.

• If the sub-statement that contains only the variable B is evaluated first, the
“old” value of B will be used for both occurrences, and A will get the value 46.

As with most languages that implement increment and decrement operators, IDL
does not require any particular ordering of evaluation within an expression in which
such side effects occur. Different versions or implementations of IDL may evaluate
the same expression differently. As a result, you should avoid writing code that
depends on a particular ordering of the side effects.
IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 29
Minimum and Maximum Operators

The IDL minimum and maximum operators return the smaller or larger of their
operands, as described below. Note that negated values must be enclosed in
parentheses in order for IDL to interpret them correctly.

The Minimum Operator

The “less than” sign (<) is the IDL minimum operator. The value of “A < B” is equal
to the smaller of A or B. For example:

;Set A equal to 3.
A = 5 < 3

;Set A equal to -6.
A = 5 < (-6)

;Syntax Error. IDL attempts to perform a subtraction operation if
;the "-6" is not enclosed in parentheses.
A = 5 < -6

;Set all points in array ARR that are larger than 100 to 100.
ARR = ARR < 100

;Set X to the smallest of the three operands.
X = X0 < X1 < X2

For complex numbers the absolute value (or modulus) is used to determine which
value is smaller. If both values have the same magnitude then the first value is
returned.

For example:

; Set A equal to 1+2i, since ABS(1+2i) is less than ABS(2-4i)
A = COMPLEX(1,2) < COMPLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+i)
A = COMPLEX(1,-2) < COMPLEX(-2,1)

The Maximum Operator

The “greater than” sign (>) is the IDL maximum operator. “A > B” is equal to the
larger of A or B. For example:

;'>' is used to avoid taking the log of zero or negative numbers.
C = ALOG(D > 1E - 6)

;Plot positive points only. Negative points are plotted as zero.
Building IDL Applications IDL Operators

30 Chapter 2: Expressions and Operators
PLOT, ARR > 0

For complex numbers the absolute value (or modulus) is used to determine which
value is larger. If both values have the same magnitude then the first value is returned.
For example:

; Set A equal to 2-4i, since ABS(2-4i) is greater than ABS(1+2i)
A = COMPLEX(1,2) > COMPLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+i)
A = COMPLEX(1,-2) > COMPLEX(-2,1)

Matrix Multiplication

IDL has two operators used to multiply arrays and matrices.

The # Operator

The # operator computes array elements by multiplying the columns of the first array
by the rows of the second array. The second array must have the same number of
columns as the first array has rows. The resulting array has the same number of
columns as the first array and the same number of rows as the second array.

Tip
If one or both of the arrays are also transposed as part of a matrix multiplication,
such as TRANSPOSE(A) # B, it is more efficient to use the MATRIX_MULTIPLY
function, which does the transpose simultaneously with the multiplication.

The ## Operator

The ## operator does what is commonly referred to as matrix multiplication. It
computes array elements by multiplying the rows of the first array by the columns of
the second array. The second array must have the same number of rows as the first
array has columns. The resulting array has the same number of rows as the first array
and the same number of columns as the second array.

For an example illustrating the difference between the two, see “Multiplying Arrays”
in Chapter 22 of the Using IDL manual.
IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 31
Array Concatenation

The square brackets are used as array concatenation operators. Operands enclosed in
square brackets and separated by commas are concatenated to form larger arrays. The
expression [A,B] is an array formed by concatenating A and B, which can be scalars
or arrays, along the first dimension.

Similarly, [A,B,C] concatenates A, B, and C. The second and third dimensions can be
concatenated by nesting the bracket levels; [[1,2],[3,4]] is a 2-element by 2-element
array with the first row containing 1 and 2 and the second row containing 3 and 4.
Operands must have compatible dimensions; all dimensions must be equal except the
dimension that is to be concatenated, e.g., [2,INTARR(2,2)] are incompatible.
Examples:

;Define C as three-point vector.
C = [-1, 1, -1]

;Add 12 to the end of C.
C = [C, 12]

;Insert 12 at the beginning of C.
C = [12, C]

;Plot ARR2 appended to ARR1.
PLOT, [ARR1, ARR2]

;Define a 3x3 matrix.
KER = [[1,2,1], [2,4,2], [1,2,1]]

Note
Array concatenation is a relatively inefficient operation, and should only be
performed once for a given set of data if possible.

Logical Operators

There are three logical operators in IDL: &&, ||, and ~.

&&

The logical && operator performs the logical short-circuiting “and” operation on two
scalars or one-element arrays, returning 1 if both operands are true and 0 if either
operand is false.
Building IDL Applications IDL Operators

32 Chapter 2: Expressions and Operators
||

The logical || operator performs the logical short-circuiting “or” operation on two
scalars or one-element arrays, returning 1 if either of the operands is true and 0 if both
are false.

~

The logical ~ operator performs the logical “not” operation on a scalar or array
operand. If the operand is a scalar, it returns scalar 1 if the operand is false or scalar 0
if the operand is true. If the operand is an array, it returns an array containing a 1 for
each element of the operand array that is false, and a 0 for each element that is true.

Note
Programmers familiar with the C programming language, and the many languages
that share its syntax, may expect ~ to perform bitwise negation (1’s complement),
and for ! to be used for logical negation. This is not the case in IDL: ! is used to
reference system variables, the NOT operator performs bitwise negation, and ~
performs logical negation.

When is an Operand True?

When evaluated by a logical operator, an expression is considered to be “true” under
the following conditions:

• For numerical operands, if the value is non-zero.

• For string operands, if the value is non-null.

• For heap variables (pointers and object references), if the value is non-null.

Short-circuiting

The && and || logical operators are short-circuiting operators. This means that IDL
does not evaluate the second operand unless it is necessary in order to determine the
proper overall answer. Short-circuiting behavior can be powerful, since it allows you
to base the decision to compute the value of the second operand on the value of the
first operand. For instance, in the expression:

Result = Op1 && Op2
IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 33
IDL does not evaluate Op2 if Op1 is false, because it already knows that the result of
the entire operation will be false. Similarly in the expression:

Result = Op1 || Op2

IDL does not evaluate Op2 if Op1 is true, because it already knows that the result of
the entire operation will be true.

If you want to ensure that both operands are evaluated (perhaps because the operand
is an expression that changes value when evaluated), use the LOGICAL_AND and
LOGICAL_OR functions or the bitwise AND and OR operators.

Logical Operator Examples

Results of relational expressions can be combined into more complex expressions
using the logical operators. Some examples of relational and logical expressions are
as follows:

;True if A is between 25 and 50. If A is an array, then the result
;is an array of zeros and ones.
(A LE 50) && (A GE 25)

;True if A is less than 25 or greater than 50. This is the inverse
;of the first.
(A GT 50) || (A LT 25)

Bitwise Operators

There are four bitwise operators in IDL: AND, NOT, OR, and XOR. For integer
operands (byte, signed- and unsigned-integer, longword, and 64-bit longword data
types), bitwise operators operate on each bit of the operand or operands
independently.

AND

The bitwise AND operator performs the logical “and” operation on two scalar or
array operands. If the operands are scalars, it returns a scalar value. If either operand
is an array, it returns an array containing one value for each element of the shortest
array operand. The returned values are as follows:

• For integer operands, AND performs a bitwise “and” operation and returns the
result. For example, the statement

5 AND 6 = 4

is represented in binary as follows:

0101 AND 0110 = 0100
Building IDL Applications IDL Operators

34 Chapter 2: Expressions and Operators
• For floating-point and complex operands, AND returns the second operand if
the first operand is not equal to zero; otherwise, the returned value is zero.

• For string operands, AND returns the second operand if the first operand is
non-null; otherwise, the returned value is the null string.

• The bitwise AND operator is not valid for heap variable operands.

NOT

The bitwise NOT operator returns the bitwise inverse of its scalar or array operand. If
the operand is a scalar, it returns a scalar value. If the operand is an array, it returns an
array containing one value for each element of the operand array. The returned values
are as follows:

• For integer operands, NOT returns the complement of each bit of the operand.
For example, the statement

NOT 4 = -5

is represented in binary as follows:

NOT 0100 = 1011

• For floating-point operands, NOT returns 1.0 if the operand is zero; otherwise,
it returns zero.

• The bitwise NOT operator is not valid for string, complex, or heap variable
operands.

Warning
Use caution when using the return value from the bitwise NOT operator as an
operand for the logical operators && and ||. See “Note on the NOT Operator” on
page 36 for additional discussion.

Note
Modern computers use the “2s complement” representation for negative signed
integers. This means that to arrive at the decimal representation of a negative binary
number (a string of binary digits with a one as the most significant bit), you must
take the complement of each bit, add one, convert to decimal, and prepend a
negative sign. For example, NOT 0 equals -1, NOT 1 equals -2, etc.
IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 35
OR

The bitwise OR operator performs the logical “inclusive or” operation on two scalar
or array operands. If the operands are scalars, it returns a scalar value. If either
operand is an array, it returns an array containing one value for each element of the
shortest array operand. The returned values are as follows:

• For integer operands, OR performs a bitwise inclusive “or” operation and
returns the result. For example, the statement

3 OR 5 equals 7

is represented in binary as follows:

0011 OR 0101 = 0111

• For floating-point and complex operands, OR returns the first operand if it is
non-zero, or the second operand otherwise.

• For string operands, OR returns the first operand if it is non-null, or the second
operand otherwise.

• The bitwise NOT operator is not valid for heap variable operands.

XOR

The bitwise XOR operator performs the logical “exclusive or” operation on two
scalar or array operands. If the operands are scalars, it returns a scalar value. If either
operand is an array, it returns an array containing one value for each element of the
shortest operand array. The returned values are as follows:

• For integer operands, XOR sets a bit in the result to 1 if the corresponding bits
in the operands are different or to 0 if they are equal. The statement:

3 XOR 5 = 6

is represented in binary as follows:

0011 XOR 0101 = 0110

• The bitwise XOR operator is not valid for other types.

Bitwise Operator Examples

Some examples of bitwise expressions are as follows:

; Displays the “negative” of an image contained in the array IMG.
TV, NOT IMG

; Adds the hexadecimal constant FF (255 in decimal) to the array
; ARR. This masks the lower 8-bits and zeros the upper bits.
ARR AND 'FF'X
Building IDL Applications IDL Operators

36 Chapter 2: Expressions and Operators
Note on the NOT Operator

Due to the bitwise nature of the NOT operator, logical negation operations should
always use ~ in preference to NOT, reserving NOT exclusively for bitwise
computations. Consider a statement such as:

IF ((NOT EOF(lun)) && device_ready) THEN statement

which wants to execute statement if the file specified by the variable lun has data
remaining, and the variable device_ready is non-zero. When EOF returns the
value 1, the expression NOT EOF(lun) yields -2, due to the bitwise nature of the
NOT operator. The && operator interprets the value -2 as true, and will therefore
attempt to execute statement incorrectly in many cases. The proper way to write the
above statement is:

IF ((~ EOF(lun)) && device_ready) THEN statement

Relational Operators

The IDL relational operators can be used to test the relationship between two
arguments. The six relational operators are described in the following table:

Relational operators apply a relation to two operands and return a logical value of
true or false. The resulting logical value can be used as the predicate in IF, WHILE or
REPEAT statements can be combined using Boolean operators with other logical
values to make more complex expressions. For example: “1 EQ 1” is true, and
“1 GT 3” is false.

Operator Description

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

Table 2-1: Relational Operators
IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 37
The rules for evaluating relational expressions with operands of mixed modes are the
same as those given above for arithmetic expressions. For example, in the relational
expression “2 EQ 2.0”, the integer 2 is converted to floating point and compared to
the floating point 2.0. The result of this expression is true, as represented by a byte 1.

In IDL, the value “true” is represented by the following:

• Any odd, nonzero value for byte, integer, and longword data types

• Any nonzero value for single, double-precision, and the real part of a complex
number (the imaginary part is ignored)

• Any non-null string

Conversely, false is represented as anything that is not true—zero or even-valued
integers; zero-valued, floating-point quantities; and the null string.

The relational operators return a value of 1 for true and 0 for false. The type of the
result is always byte.

EQ

EQ is the relational “equal to” operator. This operator returns true if its operands are
equal; otherwise, it returns false. This operator always returns a byte value of 1 for
true and a byte value of 0 for false.

For complex numbers both the real and imaginary parts must be equal. For example:

print, COMPLEX(1,2) EQ COMPLEX(1,2) ; returns true

print, COMPLEX(1,2) EQ COMPLEX(1,-2) ; returns false

NE

NE is the “not-equal-to” relational operator. This operator returns true whenever the
operands are different. For example "sun" NE "fun" returns true.

For complex numbers both the real and imaginary parts must be equal to return a
false value. For example:

print, COMPLEX(1,2) NE COMPLEX(1,2) ; returns false

print, COMPLEX(1,2) NE COMPLEX(1,-2) ; returns true
Building IDL Applications IDL Operators

38 Chapter 2: Expressions and Operators
GE

GE is the “greater than or equal to” relational operator. The GE operator returns true
if the operand on the left is greater than or equal to the one on the right. One use of
relational operators is to mask arrays as shown in the following statement:

A = ARRAY * (ARRAY GE 100)

This command sets A equal to ARRAY whenever the corresponding element of
ARRAY is greater than or equal to 100. If the element is less than 100, the
corresponding element of A is set to zero.

Strings are compared using the ASCII collating sequence: " " is less than "0" is less
than "9" is less than "A" is less than "Z" is less than "a" which is less than "z".

For complex numbers the absolute value (or modulus) is used for the comparison.

GT

GT is the “greater than” relational operator. This operator returns true if the operand
on the left is greater than the operand on the right. For example, “6 GT 5” returns
true.

For complex numbers the absolute value (or modulus) is used for the comparison.

LE

LE is the “less-than or equal-to” relational operator. This operator returns true if the
operand on the left is less than or equal to the operand on the right. For example, “4
LE 4” returns true.

For complex numbers the absolute value (or modulus) is used for the comparison.

LT

LT is the “less-than” relational operator. This operator returns true if the operand on
the left is less than the operand on the right. For example, “3 LT 4” returns true.

For complex numbers the absolute value (or modulus) is used for the comparison.
IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 39
Using Relational Operators with Arrays

Relational operators can be applied to arrays, and the resulting array of ones and
zeroes can be used as an operand. For example, the expression, ARR * (ARR LE 100)
is an array equal to ARR except that all points greater than 100 have been reduced to
zero. The expression (ARR LE 100) is an array that contains a 1 where the
corresponding element of ARR is less than or equal to 100, and zero otherwise. For
example, to print the number of positive elements in the array ARR:

PRINT,TOTAL(ARR GT 0)

Using Relational Operators with Infinity and NaN Values

On Windows and Solaris x86 platforms, using relational operators with the values
infinity or NaN (Not a Number) causes an “illegal operand” error. The FINITE
function’s INFINITY and NAN keywords can be used to perform comparisons
involving infinity and NaN values. For more information, see “FINITE” in the IDL
Reference Guide manual and “Special Floating-Point Values” on page 468.

Conditional Expression

The conditional expression—written with the ternary operator ?:—has the lowest
precedence of all the operators. It provides a way to write simple constructions of the
IF...THEN...ELSE statement in expression form. In the following example, Z receives
the larger of the values contained by A and B:

IF (A GT B) THEN Z = A ELSE Z = B

This statement can be written more concisely using a conditional expression:

Z = (A GT B) ? A : B

The general form of a conditional expression is:

expr1 ? expr2 : expr3

The expression expr1 is evaluated first. If expr1 is true, then the expression expr2 is
evaluated and set as the value of the conditional expression. If expr1 is false, expr3 is
evaluated and set as the value of the conditional expression. Only one of expr2 or
expr3 is evaluated, based on the result of expr1. (See “Definition of True and False”
on page 368 for details on how the “truth” of an expression is determined.)

Note
Since ?: has very low precedence—just above assignment—parentheses are not
necessary around expr1. However, parentheses are often used in this situation, as
they enhance the readability of the expression.
Building IDL Applications IDL Operators

40 Chapter 2: Expressions and Operators
Operator Precedence

IDL operators are divided into the levels of algebraic precedence found in common
arithmetic. Operators with higher precedence are evaluated before those with lesser
precedence, and operators of equal precedence are evaluated from left to right.
Operators are grouped into eight classes of precedence as shown in the following
table.

Priority Operator

First (highest) () (parentheses, to group expressions)

[] (brackets, to concatenate arrays)

Second . (structure field dereference)

[] (brackets, to subscript an array)

() (parentheses, used in a function call)

Third * (pointer dereference)

^ (exponentiation)

++ (increment)

-- (decrement)

Fourth * (multiplication)

and ## (matrix multiplication)

/(division)

MOD (modulus)

Fifth + (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (Bitwise negation)

Table 2-2: Operator Precedence
Operator Precedence Building IDL Applications

Chapter 2: Expressions and Operators 41
The effect of a given operator is based on both position and the rules of operator
precedence. This concept is shown by the following examples.

A = 4 + 5 * 2

A is equal to 14 since the multiplication operator has a higher precedence than the
addition operator. Parentheses can be used to override the default evaluation.

A = (4 + 5) * 2

In this case, A equals 18 because the parentheses have higher operator precedence
than the multiplication operator; the expression inside the parentheses is evaluated
first, and the result is multiplied by two.

Position within the expression is used to determine the order of evaluation when two
or more operators share the same operator precedence. Consider the following:

A = 6 / 2 * 3

Sixth EQ (equality)

NE (not equal)

LE (less than or equal)

LT (less than)

GE (greater than or equal)

GT (greater than)

Seventh AND (Bitwise AND)

OR (Bitwise OR)

XOR (Bitwise exclusive OR)

Eighth && (Logical AND)

|| (Logical OR)

~ (Logical negation)

Ninth ?: (conditional expression)

Priority Operator

Table 2-2: Operator Precedence (Continued)
Building IDL Applications Operator Precedence

42 Chapter 2: Expressions and Operators
In this case, A equals 9, since the division operator is to the left of the multiplication
operator. The subexpression 6 / 2 is evaluated before the multiplication is done,
even though the multiplication and division operators have the same precedence.
Again, parentheses can be used to override the default evaluation order:

A = 6 / (2 * 3)

In this case, A equals 1, because the expression inside parentheses is evaluated first.

A useful rule of thumb is, “when in doubt, parenthesize”. Some examples of
expressions are provided in the following table.

Expression Value

A + 1 The sum of A and 1.

A < 2 + 1 The smaller of A or two, plus one.

A < 2 * 3 The smaller of A and six, since * has
higher precedence than <.

2 * SQRT(A) Twice the square root of A.

A + 'Thursday' The concatenation of the strings A
and “Thursday.” An error results if A
is not a string

Table 2-3: Examples of Expressions
Operator Precedence Building IDL Applications

Chapter 2: Expressions and Operators 43
Data Type and Structure of Expressions

Every entity in IDL has an associated data type and structure. The twelve atomic data
types in decreasing order of precedence are as follows:

• Double-precision complex floating-point

• Complex floating-point

• Double-precision floating-point

• Floating-point

• Signed and unsigned 64-bit integer

• Signed and unsigned longword (32-bit) integer

• Signed and unsigned (16-bit) integer

• Byte

• String

The structure of an expression determines whether the expression can represent a
single value or multiple values. IDL expressions can be either scalars (with exactly
one value) or arrays (with one or more values). The data type and structure of an
expression depend on the data type and structure of its operands. Unlike many other
languages, the data type and structure of most expressions in IDL cannot be
determined until the expression is evaluated. Because of this, care must be taken
when writing programs. For example, a variable can be a scalar byte variable at one
point in a program while at a later point the same variable can hold a complex array.

Expression Type

IDL attempts to evaluate expressions containing operands of different data types in
the most accurate manner possible. The result of an operation becomes the same data
type as the operand with the greatest precedence or potential precision. For example,
when adding a byte variable to a floating-point variable, the byte variable is first
converted to floating-point, then added to the floating-point variable, yielding a
floating-point result. When adding a double-precision variable to a complex variable,
the result is double-precision complex, because the double-precision complex type
has a higher position in the hierarchy of data types.
Building IDL Applications Data Type and Structure of Expressions

44 Chapter 2: Expressions and Operators
Note
Signed and unsigned integers of a given width have the same precedence. In an
expression involving a combination of such types, the result is given the type of the
leftmost operand.

When writing expressions with mixed data types, care must be taken to obtain the
desired results. For example, assume the variable A is an integer variable with a value
of 5. The following expressions yield the indicated results:

;Integer division is performed. The remainder is discarded.
A / 2 = 2

;The value of A is first converted to floating.
A / 2. = 2.5

;Integer division is done first because of operator precedence.
;Result is floating point.
A / 2 + 1. = 3.

;Division is done in floating, then the 1 is converted to floating
;and added.
A / 2. + 1 = 3.5

;Signed and unsigned integer operands have the same precedence, so
;the left-most operand determines the type of the result as signed
;integer.
A + 5U = 10

;As above, the left-most operand determines the result type
;between types with the same precedence
5U + A = 10U

Note
When other data types are converted to complex type, the real part of the result is
obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric data type, the string is
converted to the type of the numeric term. For example: '123' + 123.0 is 246.0, while
'123.333' + 33 gives the result 156 because 123.333 is first converted to integer type.
In the same manner, 'ABC' + 123 also causes a conversion error.
Data Type and Structure of Expressions Building IDL Applications

Chapter 2: Expressions and Operators 45
Expression Structure

IDL expressions can contain operands that are either scalars or arrays, just as they can
contain operands with different types. Conversion of variables between the scalar and
array forms is independent of data type conversion. An expression will yield an array
result if any of its operands is an array, as shown in the following table:

Functions exist to create arrays of the data types IDL supports: BYTARR, INTARR,
UINTARR, LONARR, ULONARR, LON64ARR, ULON64ARR, FLTARR,
DCOMPLEXARR, DBLARR, COMPLEXARR, OBJARR, PTRARR, and
STRARR. The dimensions of the desired array are the parameters to these functions.
The result of FLTARR(5) is a floating-point array with one dimension, a vector, with
five elements initialized to zero. FLTARR(50,100) is a two-dimensional array, a
matrix, with 50 columns and 100 rows.

The size of an array-valued expression is equal to the smaller of its array operands.
For example, adding a 50-point array to a 100-point array gives a 50-point array; the
last 50 points of the larger array are ignored. Array operations are performed point-
by-point, without regard to individual dimensions. An operation involving a scalar
and an array always yields an array of identical dimensions. When two arrays of
equal size (number of elements) but different dimensionality are operands, the result
is of the same dimensionality as the first operand. For example:

;Yields fltarr(4).
FLTARR(4) + FLTARR(1, 4)

In the above example, a row vector is added to a column vector and a row vector is
obtained because the operands are the same size. This causes the result to take the
dimensionality of the first operand. Here are some examples of expressions involving
arrays:

;An array in which each element is equal to the same element in ARR
;plus one. The result has the same dimensions as ARR. If ARR is
;byte or integer, the result is of integer type; otherwise, the

Operands Result

Scalar : Scalar Scalar

Array : Array Array

Scalar : Array Array

Array : Scalar Array

Table 2-4: Structure of Expressions
Building IDL Applications Data Type and Structure of Expressions

46 Chapter 2: Expressions and Operators
;result is the same type as ARR.
ARR + 1

;An array obtained by summing two arrays.
ARR1 + ARR2

;An array in which each element is set to twice the smaller of
;either the corresponding element of ARR or 100.
(ARR < 100) * 2

;An array in which each element is equal to the exponential of the
;same element of ARR divided by 10.
EXP(ARR/10.)

;An inefficient way of coding ARR * (3./MAX(ARR))
ARR * 3./MAX(ARR)

In the last example, each point in ARR is multiplied by three, then divided by the
largest element of ARR. The MAX function returns the largest element of its array
argument. This way of writing the statement requires that each element of ARR be
operated on twice. If (3./MAX(ARR)) is evaluated with one division and the result
then multiplied by each point in ARR, the process requires approximately half the
time.
Data Type and Structure of Expressions Building IDL Applications

Chapter 3:

Constants and
Variables
The following topics are covered in this chapter:
Data Types . 48
Constants . 51
Type Conversion Functions 58

Variables . 61
System Variables . 64
Common Blocks . 65
Building IDL Applications 47

48 Chapter 3: Constants and Variables
Data Types

The IDL language is dynamically typed. This means that an operation on a variable
can change that variable’s type. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision.

For example, if an integer variable is added to a floating-point variable, the result will
be a floating-point variable.

Basic Data Types

In IDL there are twelve basic, atomic data types, each with its own form of constant.
The data type assigned to a variable is determined either by the syntax used when
creating the variable, or as a result of some operation that changes the type of the
variable.

IDL’s basic data types are discussed in more detail beginning with “Constants” on
page 51.

• Byte: An 8-bit unsigned integer ranging in value from 0 to 255. Pixels in
images are commonly represented as byte data.

• Integer: A 16-bit signed integer ranging from −32,768 to +32,767.

• Unsigned Integer: A 16-bit unsigned integer ranging from 0 to 65535.

• Long: A 32-bit signed integer ranging in value from approximately minus two
billion to plus two billion.

• Unsigned Long: A 32-bit unsigned integer ranging in value from 0 to
approximately four billion.

• 64-bit Long: A 64-bit signed integer ranging in value from –
9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

• 64-bit Unsigned Long: A 64-bit unsigned integer ranging in value from 0 to
18,446,744,073,709,551,615.

• Floating-point: A 32-bit, single-precision, floating-point number in the range
of ±1038, with approximately six or seven decimal places of significance.

• Double-precision: A 64-bit, double-precision, floating-point number in the
range of ±10308 with approximately 14 decimal places of significance.
Data Types Building IDL Applications

Chapter 3: Constants and Variables 49
• Complex: A real-imaginary pair of single-precision, floating-point numbers.
Complex numbers are useful for signal processing and frequency domain
filtering.

• Double-precision complex: A real-imaginary pair of double-precision,
floating-point numbers.

Note
In previous versions of IDL prior to version 4, the combination of a double-
precision number and a complex number in an expression resulted in a single-
precision complex number because those versions of IDL lacked the DCOMPLEX
double-precision complex data type. Starting with IDL version 4, this combination
results in a DCOMPLEX number.

• String: A sequence of characters, from 0 to 2147483647 (2.1 GB) characters in
length, which is interpreted as text.

Precision of Floating-Point Numbers

The precision of IDL’s floating-point numbers depends somewhat on the platform
involved and the compiler and specific compiler switches used to compile the IDL
executable. The values shown here are minimum values; in some cases, IDL may
deliver slightly more precision than we have indicated. If your application uses
numbers that are sensitive to floating-point truncation or round-off errors, or values
that cannot be represented exactly as floating-point numbers, this is something you
should consider.

For more information on floating-point mathematics, see Chapter 22, “Mathematics”
in the Using IDL manual. For information on your machine’s precision, see
“MACHAR” in the IDL Reference Guide manual.

Complex Data Types

• Structures: Aggregations of data of various types. Structures are discussed in
Chapter 9, “Structures”.

• Pointers: A reference to a dynamically-allocated heap variable. Pointers are
discussed in Chapter 8, “Pointers”.

• Object References: A reference to a special heap variable that contains an IDL
object structure. Object references are discussed in Chapter 23, “Object
Basics”.
Building IDL Applications Data Types

50 Chapter 3: Constants and Variables
Determining the Data Type of a Variable or Array

The SIZE function can be used to determine the data type of a variable. See
“Determining the Size/Type of an Array” on page 412 for an example.
Data Types Building IDL Applications

Chapter 3: Constants and Variables 51
Constants

Integer Constants

Numeric constants of different types can be represented by a variety of forms. The
syntax used when creating integer constants is shown in the following table, where n
represents one or more digits.

Radix Type Form Examples

Decimal Byte nB 12B, 34B

Integer n or nS 12,12S,425,425S

Unsigned Integer nU or nUS 12U,12US

Long nL 12L, 94L

Unsigned Long nUL 12UL, 94UL

64-bit Long nLL 12LL, 94LL

Unsigned 64-bit
Long

nULL 12ULL, 94ULL

Hexadecimal Byte 'n'XB '2E'XB

Integer 'n'X '0F'X

Unsigned Integer 'n'XU ’0F’XU

Long ’n'XL 'FF'XL

Unsigned Long 'n'XUL ’FF’XUL

64-bit Integer 'n'XLL ’FF’XLL

Unsigned 64-bit
Integer

'n'XULL 'FF'XULL

Table 3-1: Integer Constants
Building IDL Applications Constants

52 Chapter 3: Constants and Variables
Digits in hexadecimal constants include the letters A through F for the decimal
numbers 10 through 15. Octal constant use the same style as hexadecimal constants,
substituting an O for the X. Absolute values of integer constants are given in the
following table.

Octal Byte "nB "12B

Integer "n "12

'n'O '377'O

Unsigned Integer "nU "12U

'n'OU '377'OU

Long "nL "12L

'n'OL '777777'OL

Unsigned Long "nUL "12UL

'n'OUL '777777'OUL

64-bit Long "nLL "12LL

'n'OLL '777777'OLL

Unsigned 64-bit "nULL "12ULL

Long 'n'OULL '777777'OULL

Type Absolute Value Range

Byte 0 – 255

Integer 0 – 32767

Unsigned Integer 0 – 65535

Long 0 – 231 - 1

Unsigned Long 0 – 232 - 1

Table 3-2: Absolute Value Range Of Integer Constants

Radix Type Form Examples

Table 3-1: Integer Constants (Continued)
Constants Building IDL Applications

Chapter 3: Constants and Variables 53
Integers specified without one of the B, S, L, or LL specifiers are automatically
promoted to an integer type capable of holding them. For example, 40000 is
promoted to longword because it is too large to fit in an integer. Any numeric
constant can be preceded by a plus (+) or minus (-) sign. The following table
illustrates examples of both valid and invalid IDL constants.

64-bit Long 0 – 263 - 1

Unsigned 64-bit Long 0 – 264 - 1

Unacceptable Reason Acceptable

256B Too large, limit is 255 255B

'123L Missing apostrophe '123'L

'03G'x Invalid character "129

'27'L No radix '27'OL

650XL No apostrophes '650'XL

"129 9 is an invalid octal digit "124

Table 3-3: Examples of Integer Constants

Type Absolute Value Range

Table 3-2: Absolute Value Range Of Integer Constants (Continued)
Building IDL Applications Constants

54 Chapter 3: Constants and Variables
Floating-Point and Double-Precision Constants

Floating-point and double-precision constants can be expressed in either conventional
or scientific notation. Any numeric constant that includes a decimal point is a
floating-point or double-precision constant.

The syntax of floating-point and double-precision constants is shown in the following
table. The notation “sx” represents the sign and magnitude of the exponent, for
example, E-2.

Double-precision constants are entered in the same manner, replacing the E with a D.
For example, 1.0D0, 1D, and 1.D each represent a double-precision numeral 1.

Note
The nE and nD forms are shorthand for nE0 and nD0, and are usually used to
indicate the type of the number, either single or double precision. When using these
forms in expressions, be sure to leave a space after the E or D if the next term has a
+ or - sign.

For example, the expression 1D+45 is evaluated as 1x1045 in double precision,
while 1D + 45 (note the spaces) evaluates to the number 46 in double precision.
Similarly, the expression 1D+x gives an error, because there was no space after the
D. The correct way to write this expression is 1D + x (note the spaces).

Form Example

n. 102.

.n .102

n.n 10.2

nE 10E

nEsx 10E5

n.Esx 10.E-3

.nEsx .1E+12

n.nEsx 2.3E12

Table 3-4: Syntax of Floating-Point Constants
Constants Building IDL Applications

Chapter 3: Constants and Variables 55
Complex Constants

Complex constants contain a real and an imaginary part, both of which are single- or
double-precision floating-point numbers. The imaginary part can be omitted, in
which case it is assumed to be zero. The form of a complex constant is as follows:

COMPLEX(REAL_PART, IMAGINARY_PART)

or

COMPLEX(REAL_PART)

For example, COMPLEX(1,2) is a complex constant with a real part of one, and an
imaginary part of two. COMPLEX(1) is a complex constant with a real part of one
and a zero imaginary component. To extract the real part of a complex expression, use
the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes (') or
quotes ("). The value of the constant is simply the characters appearing between the
leading delimiter ('or "") and the next occurrence of the same delimiter. A double
apostrophe ('') or quote ("") is considered to be the null string; a string containing
no characters. An apostrophe or quote can be represented within a string by two
apostrophes or quotes; e.g., 'Don''t' returns Don't. This syntax often can be
avoided by using a different delimiter; e.g., "Don't" instead of 'Don''t'. The
following table illustrates valid string constants.

Expression Resulting String

'Hi there' Hi there

"Hi there" Hi there

' ' Null String

"I'm happy" I’m happy

'I"m happy' I”m happy

'counter' counter

'129' 129

Table 3-5: Examples of Valid String Constants
Building IDL Applications Constants

56 Chapter 3: Constants and Variables
The following table illustrates invalid string constants. In the last entry of the table,
"129" is interpreted as an illegal octal constant. This is because a quote character
followed by a digit from 0 to 7 represents an octal numeric constant, not a string, and
the character 9 is an illegal octal digit.

Note
While an IDL string variable can hold up to 64 Kbytes of information, the buffer
than handles input at the IDL command prompt is limited to 255 characters. If for
some reason you need to create a string variable longer than 255 characters at the
IDL command prompt, split the variable into multiple sub-variables and combine
them with the “+” operator:

var = var1+var2+var3

This limit only affects string constants created at the IDL command prompt.

String Value Unacceptable Reason

Hi there 'Hi there" Mismatched delimiters

Null String ' Missing delimiter

I’m happy 'I'm happy' Apostrophe in string

counter ''counter'' Double apostrophe is null string

129 "129" Illegal octal constant

Table 3-6: Examples of Invalid String Constants
Constants Building IDL Applications

Chapter 3: Constants and Variables 57
Representing Non-Printable Characters

The ASCII characters with value less than 32 or greater than 126 do not have
printable representations. Such characters can be included in string constants by
specifying their ASCII value as a byte argument to the STRING function.

Note that ASCII characters may have different effects (or no effect) on platforms that
do not support ASCII terminal commands.

Specified String Actual Contents Comment

STRING(27B)+'[;H'
+STRING(27B)+[2J’

'<Esc>[;H<Esc>[2J' Erase ANSI terminal

STRING(7B) Bell Ring the bell

STRING(8B) Backspace Move cursor left

Table 3-7: Specifying Non-Printable Characters
Building IDL Applications Constants

58 Chapter 3: Constants and Variables
Type Conversion Functions

IDL allows you to convert data from one data type to another using a set of
conversion functions. These functions are useful when you need to force the
evaluation of an expression to a certain type, output data in a mode compatible with
other programs, etc. The conversion functions are in the following table:

Conversion functions operate on data of any structure: scalars, vectors, or arrays, and
variables can be of any type.

Function Description

STRING Convert to string

BYTE Convert to byte

FIX Convert to 16-bit integer, or optionally other type

UINT Convert to 16-bit unsigned integer

LONG Convert to 32-bit integer

ULONG Convert to 32-bit unsigned integer

LONG64 Convert to 64-bit integer

ULONG64 Convert to 64-bit unsigned integer

FLOAT Convert to floating-point

DOUBLE Convert to double-precision floating-point

COMPLEX Convert to complex value

DCOMPLEX Convert to double-precision complex value

Table 3-8: Type Conversion Functions
Type Conversion Functions Building IDL Applications

Chapter 3: Constants and Variables 59
Take Care When Converting Types

If the variable you are converting lies outside the range of the type to which you are
converting, IDL will truncate the binary representation of the value without
informing you. For example:

; Define A. Note that the value of A is outside the range
; of integers, and is automatically created as a longword
; integer by IDL.
A = 33000
;B is silently truncated.
B = FIX(A)
PRINT, B

IDL prints:

-32536

Applying FIX creates a short (16-bit) integer. If the value of the variable passed to
FIX lies outside the range of 16-bit integers, IDL will silently truncate the binary
value, returning only the 16 least-significant bits, with no indication that an error has
occurred.

With most floating-point operations, error conditions can be monitored using the
FINITE and CHECK_MATH functions. See Chapter 19, “Controlling Errors”, for
more information.

Converting Strings

When converting from a string argument, it is possible that the string does not contain
a valid number and no conversion is possible. The default action in such cases is to
print a warning message and return zero. The ON_IOERROR procedure can be used
to establish a statement to be jumped to in case of such errors.

Conversion between strings and byte arrays (or vice versa) is something of a special
case. The result of the BYTE function applied to a string or string array is a byte array
containing the ASCII codes of the characters of the string. Converting a byte array
with the STRING function yields a string array or scalar with one less dimension than
the byte array.
Building IDL Applications Type Conversion Functions

60 Chapter 3: Constants and Variables
Dynamic Type Conversion

The TYPE keyword to the FIX function allows type conversion to an arbitrary type at
runtime without the use of CASE or IF statements on each type. The following
example demonstrates the use of the TYPE keyword:

PRO EXAMPLE_FIXTYPE
; Define a variable as a double:
A = 3D

; Store the type of A in a variable:
typeA = SIZE(A, /TYPE)
PRINT, 'A is type code', typeA

; Prompt the user for a numeric value:
READ, UserVal, PROMPT='Enter any Numeric Value: '
; Convert the user value to the type stored in typeA:
ConvUserVal = FIX(UserVal, TYPE=typeA)

PRINT, ConvUserVal
END

Examples of Type Conversion

See the following table for examples of type conversions and their results.

Operation Results

FLOAT(1) 1.0

FIX(1.3 + 1.7) 3

FIX(1.3) + FIX(1.7) 2

FIX(1.3, TYPE=5) 1.3000000

BYTE(1.2) 1

BYTE(-1) 255b (Bytes are modulo 256)

BYTE(’01ABC’) [48b, 49b, 65b, 66b, 67b]

STRING([65B, 66B, 67B]) ’ABC’

FLOAT(COMPLEX(1, 2)) 1.0

COMPLEX([1, 2], [4, 5]) [COMPLEX(1,4),COMPLEX(2,5)]

Table 3-9: Uses of Type Conversion Functions
Type Conversion Functions Building IDL Applications

Chapter 3: Constants and Variables 61
Variables

Variables are named repositories where information is stored. A variable can have
virtually any size and can contain any of the IDL data types. Variables can be used to
store images, spectra, single quantities, names, tables, etc.

Attributes of Variables

Every variable has a number of attributes that can change during the execution of a
program or terminal session. Variables have both a structure and a type.

Structure

A variable can contain a single value (a scalar) or a number of values of the same type
(an array) or data entities of potentially differing type and size (a structure). Strings
are considered as single values, and a string array contains a number of variable-
length strings.

In addition, a variable can associate an array structure with a file; these variables are
called associated variables. Referencing an associated variable causes data to be read
from, or written to, the file. Associated variables are described in “ASSOC” in the
IDL Reference Guide manual.

Type

A variable can have one and only one of the following types: undefined, byte, integer,
unsigned integer, 32-bit longword, unsigned 32-bit longword, 64-bit integer,
unsigned 64-bit integer, floating-point, double-precision floating-point, complex
floating-point, double-precision complex floating-point, string, structure, pointer, or
object reference.

When a variable appears on the left-hand side of an assignment statement, its
attributes are copied from those of the expression on the right-hand side. For
example, the statement

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed. Initially, every
variable has the single attribute of undefined. Attempts to use the value of an
undefined variables result in an error.
Building IDL Applications Variables

62 Chapter 3: Constants and Variables
Variable Names

IDL variables are named by identifiers. Each identifier must begin with a letter and
can contain from 1 to 128 characters. The second and subsequent characters can be
letters, digits, the underscore character, or the dollar sign. A variable name cannot
contain embedded spaces, because spaces are considered to be delimiters. Characters
after the first 128 are ignored. Names are case insensitive. Lowercase letters are
converted to uppercase; so the variable name abc is equivalent to the name ABC. The
following table illustrates some acceptable and unacceptable variable names.

Warning
A variable cannot have the same name as a function (either built-in or user-defined)
or a reserved word (see the following list). Giving a variable such a name results in
a syntax error or in “hiding” the variable.

The following table lists all of the reserved words in IDL.

Unacceptable Reason Acceptable

EOF Conflicts with function name A

6A Does not start with letter A6

_INIT Does not start with letter INIT_STATE

AB@ Illegal character ABC$DEF

ab cd Embedded space My_variable

Table 3-10: Unacceptable and Acceptable IDL Variable Names

AND BEGIN BREAK

CASE COMMON COMPILE_OPT

CONTINUE DO ELSE

END ENDCASE ENDELSE

ENDFOR ENDIF ENDREP

ENDSWITCH ENDWHILE EQ

FOR FORWARD_FUNCTION FUNCTION

Table 3-11: IDL Reserved Words
Variables Building IDL Applications

Chapter 3: Constants and Variables 63
GE GOTO GT

IF INHERITS LE

LT MOD NE

NOT OF ON_IOERROR

OR PRO REPEAT

SWITCH THEN UNTIL

WHILE XOR

Table 3-11: IDL Reserved Words (Continued)
Building IDL Applications Variables

64 Chapter 3: Constants and Variables
System Variables

System variables are a special class of predefined variables available to all program
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set various internal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSYSV
procedure.

System variables are discussed in Appendix D, “System Variables” in the IDL
Reference Guide manual.
System Variables Building IDL Applications

Chapter 3: Constants and Variables 65
Common Blocks

Common blocks are useful when there are variables that need to be accessed by
several IDL procedures or when the value of a variable within a procedure must be
preserved across calls. Once a common block has been defined, any program unit
referencing that common block can access variables in the block as though they were
local variables. Variables in a common statement have a global scope within
procedures defining the same common block. Unlike local variables, variables in
common blocks are not destroyed when a procedure is exited.

There are two types of common block statements: definition statements and reference
statements.

Common Block Definition Statements

The common block definition statement creates a common block with the designated
name and places the variables whose names follow into that block. Variables defined
in a common block can be referenced by any program unit that declares that common
block. The general form of the COMMON block definition statement is as follows:

COMMON Block_Name, Variable1, Variable2, ..., Variablen

The number of variables appearing in the common block cannot change after the
common block has been defined. The first program unit (main program, function, or
procedure) to define the common block sets the number of included variables; other
program units can reference the common block with any number of variables up to
the number originally specified. Different program units can give the variables
different names, as shown in the example below.

Common blocks share the same space for all procedures. In IDL, common block
variables are matched variable to variable, unlike FORTRAN, where storage
locations are matched. The third variable in a given IDL common block will always
be the same as the third variable in all declarations of the common block regardless of
the size, type, or structure of the preceding variables.

Note that common blocks must appear before any of the variables they define are
referenced in the procedure.

Variables in common blocks can be of any type and can be used in the same manner
as normal variables. Variables appearing as parameters cannot be used in common
blocks. There are no restrictions on the number of common blocks used, although
each common block uses dynamic memory.
Building IDL Applications Common Blocks

66 Chapter 3: Constants and Variables
Example

The two procedures in the following example show how variables defined in common
blocks are shared.

PRO ADD, A
COMMON SHARE1, X, Y, Z, Q, R
A = X + Y + Z + Q + R
PRINT, X, Y, Z, Q, R, A
RETURN

END

PRO SUB, T
COMMON SHARE1, A, B, C, D
T = A - B - C - D
PRINT, A, B, C, D, T
RETURN

END

The variables X, Y, Z, and Q in the procedure ADD are the same as the variables A,
B, C, and D, respectively, in procedure SUB. The variable R in ADD is not used in
SUB. If the procedure SUB were to be compiled before the procedure ADD, an error
would occur when the COMMON definition in ADD was compiled. This is because
SUB has already declared the size of the COMMON block, SHARE1, which cannot
be extended.

Common Block Reference Statements

The common block reference statement duplicates the COMMON block and variable
names from a previous definition. The COMMON block need only be defined in the
first routine to be compiled that references the block.

Example

The two procedures in the following example share the COMMON block SHARE2
and all its variables.

PRO MULT, M
COMMON SHARE2, E, F, G
M = E * F * G
PRINT, M, E, F, G
RETURN

END

PRO DIV, D
COMMON SHARE2
D = E / F
Common Blocks Building IDL Applications

Chapter 3: Constants and Variables 67
PRINT, D, E, F, G
RETURN

END

The MULT procedure uses a common block definition statement to define the block
SHARE2. The DIV procedure then uses a COMMON block reference statement to
gain access to all the variables defined in SHARE2. (Note that MULT must be
defined before DIV in order for the COMMON block reference to succeed.)

Note on Common Block Variable Names

Variables in IDL COMMON blocks do not actually have names. Rather, IDL
represents COMMON blocks internally as an array of variables, and these variables
are referenced by their positional index. Hence, the first variable is at position 0, the
second at position 1, and so forth. When you specify a COMMON block declaration
in an IDL routine, you specify names to be used for these variables within the scope
of that routine.

The first routine in which a COMMON block is defined is remembered by IDL as
part of the state of that block. When another routine defines the same COMMON
block, it is allowed to omit the variable names. In this case, IDL uses the same names
used in the original defining routine. Since good programming practice dictates that
the same names be used everywhere, this result usually causes no confusion.
However, different routines are allowed to use entirely different names to refer to a
given variable. For example, the DIV routine above could have been written like this:

PRO DIV2, D
COMMON SHARE2, X, Y, Z
D = X / Y
PRINT, D, X, Y, Z
RETURN

END

In this scenario, the variable referred to by the name E in the MULT routine is
referred to by the name X in the DIV2 routine. Similarly, the variable name F is
replaced by Y, and the name G is replaced by Z. Note that only the names by which
the variables are called has changed — the underlying variables are the same. While
this type of COMMON block reference is legal, it can quickly become confusing, and
most programmers use the same names in every case.
Building IDL Applications Common Blocks

68 Chapter 3: Constants and Variables
Common Blocks Building IDL Applications

Chapter 4:

Procedures and
Functions
The following topics are covered in this chapter:
Overview . 70
Defining a Procedure 71
Defining a Function 73
Parameters . 76
Using Keyword Parameters 79
Keyword Inheritance 81

Entering Procedure Definitions 89
How IDL Resolves Routines 91
Parameter Passing Mechanism 92
Calling Mechanism 94
Setting Compilation Options 96
Building IDL Applications 69

70 Chapter 4: Procedures and Functions
Overview

Procedures and functions are self-contained modules that break large tasks into
smaller, more manageable ones. Modular programs simplify debugging and
maintenance and, because they are reusable, minimize the amount of new code
required for each application.

New procedures and functions can be written in IDL and called in the same manner
as the system-defined procedures or functions from the keyboard or from other
programs. When a procedure or function is finished, it executes a RETURN
statement that returns control to its caller. Functions always return an explicit result.
A procedure is called by a procedure call statement, while a function is called by a
function reference. For example, if ABC is a procedure and XYZ is a function, the
calling syntax is:

;Call procedure ABC with two parameters.
ABC, A, 12

;Call function XYZ with one parameter. The result of XYZ is stored
;in variable A.
A = XYZ(C/D)
Overview Building IDL Applications

Chapter 4: Procedures and Functions 71
Defining a Procedure

A sequence of one or more IDL statements can be given a name, compiled, and saved
for future use with the procedure definition statement. Once a procedure has been
successfully compiled, it can be executed using a procedure call statement
interactively from the terminal, from a main program, or from another procedure or
function.

Note
See Chapter 5, “Library Authoring” for information on naming procedures to avoid
conflicts with IDL routine names. It is important to implement and consistently use
a naming scheme from the earliest stages of code development.

The general format for the definition of a procedure is as follows:

PRO Name, Parameter1, ..., Parametern
;Statements defining procedure.
Statement1
Statement2
...

;End of procedure definition.
END

The PRO statement must be the first line in a user-written IDL procedure.

Calling a user-written procedure that is in a directory in the IDL search path (!PATH)
and has the same name as the prefix of the .SAV or .PRO file, causes the procedure to
be read from the disk, compiled, and executed without interrupting program
execution.
Building IDL Applications Defining a Procedure

72 Chapter 4: Procedures and Functions
Calling a Procedure

The syntax of the procedure call statement is as follows:

Procedure_Name, Parameter1, Parameter2, ..., Parametern

The procedure call statement invokes a system, user-written, or externally-defined
procedure. The parameters that follow the procedure’s name are passed to the
procedure. When the called procedure finishes, control resumes at the statement
following the procedure call statement. Procedure names can be up to 128 characters
long.

Procedures can come from the following sources:

• System procedures provided with IDL.

• User-written procedures written in IDL and compiled with the .RUN
command.

• User-written procedures that are compiled automatically because they reside in
directories in the search path. These procedures are compiled the first time
they are used. See “Defining a Function” on page 73.

• Procedures written in IDL, that are included with the IDL distribution, located
in directories that are specified in the search path.

• Under many operating systems, user-written system procedures coded in
FORTRAN, C, or any language that follows the standard calling conventions,
which have been dynamically linked with IDL using the LINKIMAGE or
CALL_EXTERNAL procedures.

Example

Some procedures can be called without any parameters. For example:

ERASE

This is a procedure call to a subroutine to erase the screen. There are no explicit
inputs or outputs. Other procedures have one or more parameters. For example, the
statement:

PLOT, CIRCLE

calls the PLOT procedure with the parameter CIRCLE.
Calling a Procedure Building IDL Applications

Chapter 4: Procedures and Functions 73
Defining a Function

A function is a program unit containing one or more IDL statements that returns a
value. This unit executes independently of its caller. It has its own local variables and
execution environment. Once a function has been defined, references to the function
cause the program unit to be executed. All functions return a function value which is
given as a parameter in the RETURN statement used to exit the function. Function
names can be up to 128 characters long.

Note
See Chapter 5, “Library Authoring” for information on naming routines to avoid
conflicts with IDL routine names. It is important to implement and consistently use
a naming scheme from the earliest stages of code development.

The general format of a function definition is as follows:

FUNCTION Name, Parameter1, ..., Parametern
Statement1
Statement2
...
...
RETURN, Expression

END

Example

To define a function called AVERAGE, which returns the average value of an array,
use the following statements:

FUNCTION AVERAGE, arr
RETURN, TOTAL(arr)/N_ELEMENTS(arr)

END

Once the function AVERAGE has been defined, it is executed by entering the
function name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement,

PRINT, AVERAGE(X^2)

squares the array X, passes this result to the AVERAGE function, and prints the
result. Parameters passed to functions are identified by their position or by a keyword.
See “Using Keyword Parameters” on page 79.
Building IDL Applications Defining a Function

74 Chapter 4: Procedures and Functions
Automatic Execution

IDL automatically compiles and executes a user-written function or procedure when
it is first referenced if:

1. The source code of the function is in the current working directory or in a
directory in the IDL search path defined by the system variable !PATH.

2. The name of the file containing the function is the same as the function name
suffixed by .pro or .sav. Under UNIX, the suffix should be in lowercase letters.

Note
IDL is case-insensitive. However, for some operating systems, IDL only checks for
the lowercase filename based on the name of the procedure or function. We
recommend that all filenames be named with lowercase.

Warning
User-written functions must be defined before they are referenced, unless they meet
the above conditions for automatic compilation or the function name has been
reserved by using the FORWARD_FUNCTION statement described below. This
restriction is necessary in order to distinguish between function calls and
subscripted variable references.

For information on how to access routines, see “Running IDL Programs” in Chapter 9
of the Using IDL manual.

Forward Function Definition

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Because function calls use parentheses as well, the IDL compiler is not able to
distinguish between arrays and functions by examining the statement syntax.

This problem has been addressed beginning with IDL version 5.0 by the use of square
brackets “[]” instead of parentheses to specify array subscripts. See “Array Subscript
Syntax: [] vs. ()” on page 140 for a discussion of the IDL version 5.0 and later
syntax. However, because parentheses are still allowed in array subscripting
statements, the need for a mechanism by which the programmer can “reserve” a name
for a function that has not yet been defined remains. The FORWARD_FUNCTION
statement addresses this need.

As mentioned above, ambiguities can arise between function calls and array
references when a function has not yet been compiled, or there is no file with the
same name as the function found in the IDL path.
Defining a Function Building IDL Applications

Chapter 4: Procedures and Functions 75
For example, attempting to compile the IDL statement:

A = xyz(1, COLOR=1)

will cause an error if the user-written function XYZ has not been compiled and the
filename xyz.pro is not found in the IDL path. IDL reports a syntax error, because xyz
is interpreted as an array variable instead of a function name.

This problem can be eliminated by using the FORWARD_FUNCTION statement.
This statement has the following syntax:

FORWARD_FUNCTION Name1, Name2, ..., NameN

where Name is the name of a function that has not yet been compiled. Any names
declared as forward-defined functions will be interpreted as functions (instead of as
variable names) for the duration of the IDL session.

For example, we can resolve the ambiguity in the previous example by adding a
FORWARD_FUNCTION definition:

;Define XYZ as the name of a function that has not yet been
;compiled.
FORWARD_FUNCTION XYZ

;IDL now understands this statement to be a function call instead
;of a bad variable reference.
a = XYZ(1, COLOR=1)

Note
Declaring a function that will be merged into IDL via the LINKIMAGE command
with the FORWARD_FUNCTION statement will not have the desired effect.
Routines merged via LINKIMAGE are considered by IDL to be built-in routines,
and thus need no compilation or declaration. They must, however, be merged with
IDL before any routines that call them are compiled.
Building IDL Applications Defining a Function

76 Chapter 4: Procedures and Functions
Parameters

The variables and expressions passed to the function or procedure from its caller are
parameters. Actual parameters are those appearing in the procedure call statement or
the function reference. In the examples at the beginning of this section, the actual
parameters in the procedure call are the variable A and the constant 12, while the
actual parameter in the function call is the value of the expression (C/D).

Formal parameters are the variables declared in the procedure or function definition.
The same procedure or function can be called using different actual parameters from
a number of places in other program units.

Correspondence of Formal and Actual Parameters

The correspondence between the actual parameters of the caller and the formal
parameters of the called procedure is established by position or by keyword.

Positional Parameters

A positional parameter, or plain argument, is a parameter without a keyword. Just as
its name implies, the position of a positional parameter establishes the
correspondence—the n-th formal positional parameter is matched with the n-th actual
positional parameter.

Keyword Parameters

A keyword parameter, which can be either actual or formal, is an expression or
variable name preceded by a keyword and an equal sign (“=”) that identifies which
parameter is being passed.

When calling a routine with a keyword parameter, you can abbreviate the keyword to
its shortest, unambiguous abbreviation. Keyword parameters can also be specified by
the caller with the syntax /KEYWORD, which is equivalent to setting the keyword
parameter to 1 (e.g., KEYWORD = 1). The syntax /KEYWORD is often referred to,
in the rest of this documentation, as setting the keyword.

For example, a procedure is defined with a keyword parameter named TEST.

PRO XYZ, A, B, TEST = T

The caller can supply a value for the formal (keyword) parameter T with the
following calls:

;Supply only the value of T. A and B are undefined inside the
;procedure.
Parameters Building IDL Applications

Chapter 4: Procedures and Functions 77
XYZ, TEST = A

;The value of A is copied to formal parameter T (note the
;abbreviation for TEST), Q to A, and R to B.
XYZ, TE = A, Q, R

;Variable Q is copied to formal parameter A. B and T are undefined
;inside the procedure.
XYZ, Q
result = FUNCTION(Arg1, Arg2, KEYWORD = value)

Note
When supplying keyword parameters for a function, the keyword is specified inside
the parentheses:

Copying Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed.

On exit, via a RETURN statement, the formal parameters are copied back to the
actual parameters, providing they were not expressions or constants. Parameters can
be inputs to the program unit; they can be outputs in which the values are set or
changed by the program unit; or they can be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of the call. In
functions, the parameter of the RETURN statement is the result of the function.

Number of Parameters

A procedure or a function can be called with fewer arguments than were defined in
the procedure or function. For example, if a procedure is defined with 10 parameters,
the user or another procedure can call the procedure with 0 to 10 parameters.

Parameters that are not used in the actual argument list are set to be undefined upon
entering the procedure or function. If values are stored by the called procedure into
parameters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parameters in the calling list can be found
by using the system function N_PARAMS. Use the N_ELEMENTS function to
determine if a variable is defined.
Building IDL Applications Parameters

78 Chapter 4: Procedures and Functions
Example

An example of an IDL function to compute the digital gradient of an image is shown
in the example below. The digital gradient approximates the two-dimensional
gradient of an image and emphasizes the edges.

This simple function consists of three lines corresponding to the three required
components of IDL procedures and functions: the procedure or function declaration,
the body of the procedure or function, and the terminating end statement.

FUNCTION GRAD, image
;Define a function called GRAD. Result is ABS(dz/dx) + ABS(dz/dy).

;Evaluate and return the result.
RETURN, ABS(image - SHIFT(image, 1, 0)) + $
ABS(image-SHIFT(image, 0, 1))

;End of function.
END

The function has one parameter called IMAGE. There are no local variables. Local
variables are variables active only within a module (i.e., they are not parameters and
are not contained in common blocks).

The result of the function is the value of the expression used as an argument to the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Two examples are shown below.

;Store gradient of B in A.
A = GRAD(B)

;Display gradient of IMAGE sum.
TVSCL, GRAD(abc + def)
Parameters Building IDL Applications

Chapter 4: Procedures and Functions 79
Using Keyword Parameters

A short example of a function that exchanges two columns of a 4 × 4 homogeneous,
coordinate-transformation matrix is shown below. The function has one positional
parameter, the coordinate-transformation matrix T. The caller can specify one of the
keywords XYEXCH, XZEXCH, or YZEXCH to interchange the xy, xz, or yz axes of
the matrix. The result of the function is the new coordinate transformation matrix
defined below.

;Function to swap columns of T. XYEXCH swaps columns 0 and 1,
;XZEXCH swaps 0 and 2, and YZEXCH swaps 1 and 2.
FUNCTION SWAP, T, XYEXCH = xy, XZEXCH = xz, YZEXCH = yz

;Swap columns 0 and 1 if keyword XYEXCH is set.
IF KEYWORD_SET(XY) THEN S=[0,1] $

;Check to see if xz is set.
ELSE IF KEYWORD_SET(XZ) THEN S=[0,2] $

;Check to see if yz is set.
ELSE IF KEYWORD_SET(YZ) THEN S=[1,2] $

;If nothing is set, return.
ELSE RETURN, T

;Copy matrix for result.
R = T

;Exchange two columns using matrix insertion operators and
;subscript ranges.

R[S[1], 0] = T[S[0], *]
R[S[0], 0] = T[S[1], *]

;Return result.
RETURN, R

END

Typical calls to SWAP are as follows:

Q = SWAP(!P.T, /XYEXCH)
Q = SWAP(Q, /XYEX)
Q = SWAP(INVERT(Z), YZ = 1)
Q = SWAP(Z, XYE = I EQ 0, XZE = I EQ 1, YZE = I EQ 2)

Note that keyword names can abbreviated to the shortest unambiguous string. The
last example sets one of the three keywords according to the value of the variable I.
Building IDL Applications Using Keyword Parameters

80 Chapter 4: Procedures and Functions
This function example uses the system function KEYWORD_SET to determine if a
keyword parameter has been passed and if it is nonzero. This is similar to using the
condition:

IF N_ELEMENTS(P) NE 0 THEN IF P THEN

to test if keywords that have a true/false value are both present and true.
Using Keyword Parameters Building IDL Applications

Chapter 4: Procedures and Functions 81
Keyword Inheritance

Keyword inheritance allows IDL routines to accept keyword parameters not defined
in their function or procedure declaration and pass them on to the routines that they
call. Routines are able to accept keywords on behalf of the routines they call without
explicitly processing each individual keyword. The resulting code is simple, and
requires significantly less maintenance. Keyword inheritance is of particular value
when writing:

• Wrapper routines, which are variations of a system or user-provided routine.
Such wrappers usually augment the behavior of another routine in a small way,
largely passing arguments and keywords through without interpretation.
Keyword inheritance allows such wrappers to be very simple, and benefit from
not having to specify all the details of the underlying routine’s interface.
Maintenance of the wrapper is also greatly simplified, because the wrapper
does not require modification every time the underlying routine changes.

• Methods for an object. In an object hierarchy, each subclass has the option of
overriding the methods provided by its superclasses. Often, the subclass
method calls the superclass version. Keyword inheritance makes it simple to
pass on keywords without having to be explicitly aware of them, and without
having to be concerned with filtering out those keywords that are not accepted
by the superclass method. In addition to enhancing maintainability, this allows
subclassing from a base class without having detailed knowledge of its internal
implementation, an important consideration for object oriented programming.

There are two steps required to use keyword inheritance in an IDL routine:

1. The routine must declare that it accepts inherited keywords. This is done by
specifying either the _EXTRA or _REF_EXTRA keyword in the formal
parameter list of the routine (note the leading underscore in these names). IDL
will use one of its two available keyword inheritance mechanisms depending
on which of these keyword parameters is used. The first inheritance
mechanism (_EXTRA) passes keywords by value, while the other
(_REF_EXTRA) passes them by reference. The difference between these
methods is explained in “Keyword Inheritance Mechanisms” on page 83.
Advice on how to choose the best one for your needs can be found in
“Choosing a Keyword Inheritance Mechanism” on page 85. Only one of these
two keywords can be specified for a given routine.
Building IDL Applications Keyword Inheritance

82 Chapter 4: Procedures and Functions
2. The routine passes the inherited keywords to a called routine, by including
either the _EXTRA or _STRICT_EXTRA keyword in the call to that routine.
_EXTRA and _STRICT_EXTRA differ only in how IDL behaves when an
inherited keyword is not accepted by the called routine. _EXTRA causes such
keywords to be quietly ignored, while _STRICT_EXTRA causes IDL to issue
an error and stop execution. _EXTRA is the usual choice, while
_STRICT_EXTRA is used primarily for wrapper routines.

When using keyword inheritance, the following points should be kept in mind:

• The mechanism used by a routine for inherited keywords is solely determined
by which keyword (_EXTRA or _REF_EXTRA) is used in the formal
parameter list for that routine. Hence, _REF_EXTRA is only used in the
formal parameter list of a routine, and never in a call to that routine. This also
means that you can change an existing routine from using one mechanism to
the other by simply changing the name of the keyword. There is no need to
change any of the calls to the routine, just the formal parameter list of the
routine itself.

• Attempting to use both the _EXTRA and _REF_EXTRA keywords together in
the formal parameter list of a function or procedure will cause an error to be
issued. You can only use one or the other.

• Only the caller of a routine can dictate whether keywords that are not
understood by the called routine should be ignored (_EXTRA) or should
generate an error (_STRICT_EXTRA). For this reason, _STRICT_EXTRA is
only used in a call to a routine, and not in the formal parameter list for the
routine.

• Attempting to use both the _EXTRA and _STRICT_EXTRA keywords
together in a call to a function or procedure will cause an error to be issued.
You can only use one or the other.
Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 83
Keyword Inheritance Mechanisms

As described above, there are two possible mechanisms used by IDL to pass inherited
keywords. The one used by a routine is determined by the formal parameter list of the
routine.

_EXTRA: Passing Keyword Parameters by Value

You can cause inherited keyword parameters to be passed to a routine by value by
adding the keyword parameter _EXTRA to the formal argument list of that routine.
Passing parameters by value means that you are giving the called routine a copy of the
value of the passed parameter, and not the original. As such, any changes made to the
value of such a keyword is not passed back to the caller.

When a routine is defined with the formal keyword parameter _EXTRA, and
keywords that are not recognized by that routine are passed to it in a call, IDL
constructs an anonymous structure to contain the keyword inheritance information.
Each tag in this structure has the name of an inherited keyword, and the value of that
tag is a copy of the value that was passed to that keyword. If no unrecognized
keywords are passed in a call, the value of the _EXTRA keyword will be undefined,
indicating that no inherited keyword parameters were passed.

Modifying Inherited Keyword Values

If extra keyword parameters have been passed by value, their values are stored in an
anonymous structure. The inheriting routine has the opportunity to modify these
values and/or to filter them prior to passing them to another routine. The
CREATE_STRUCT, N_TAGS, and TAG_NAMES functions can all be of use in
performing such operations. For example, here is an example of adding a keyword
named COLOR with value 12 to an _EXTRA structure:

PRO SOMEPROC, _EXTRA = ex
if (N_ELEMENTS(ex) NE 0) $

THEN ex = CREATE_STRUCT(’COLOR’, 12, ex) $
ELSE ex = { COLOR : 12 }

SOME_UNDERLYING_PROC, _EXTRA=ex
END

The use of N_ELEMENTS is necessary because if the caller does not supply any
inherited keyword, the variable EX will have an undefined value, and an attempt to
use that value with CREATE_STRUCT will cause an error to be issued. Hence, we
only use CREATE_STRUCT if we know that inherited keywords are present.
Building IDL Applications Keyword Inheritance

84 Chapter 4: Procedures and Functions
_REF_EXTRA: Passing Keyword Parameters by Reference

You specify that a routine accepts inherited keywords by reference, by adding the
keyword _REF_EXTRA to the formal argument list of the routine. When a routine is
defined with _REF_EXTRA, inherited keywords are passed using IDL’s standard
parameter passing mechanism, as with any other variable. Unlike regular variables
however, the values of these keywords are not available within the routine itself.
Instead, the names of these keywords are passed as a string array to the routine as the
value of the _REF_EXTRA keyword. The presence of a name in the _REF_EXTRA
value indicates that a keyword of that name was passed, and its value is available to
be passed on in a function or procedure call (using either _EXTRA or
_STRICT_EXTRA). If no unrecognized keywords are passed in a call, the value of
the _EXTRA keyword will be undefined, indicating that no inherited keyword
parameters were passed.

If inherited keywords passed by reference are modified by a called routine, those
changes will be passed back to the caller.

The pass by reference keyword inheritance mechanism is especially useful when
writing object methods.

Selective Keyword Redirection

If extra keyword parameters have been passed by reference, you can direct different
inherited keywords to different routines by specifying a string or array of strings
containing keyword names via the _EXTRA keyword. For example, suppose that we
write a procedure named SOMEPROC that passes extra keywords by reference:

PRO SOMEPROC, _REF_EXTRA = ex
ONE, _EXTRA=['MOOSE', 'SQUIRREL']
TWO, _EXTRA='SQUIRREL'

END

If we call the SOMEPROC routine with three keywords:

SOMEPROC, MOOSE=moose, SQUIRREL=3, SPY=PTR_NEW(moose)

• it will pass the keywords MOOSE and SQUIRREL and their values (the IDL
variable moose and the integer 3, respectively) to procedure ONE,

• it will pass the keyword SQUIRREL and its value to procedure TWO,

• it will do nothing with the keyword SPY, or any other keyword that might be
passed to it.
Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 85
Choosing a Keyword Inheritance Mechanism

The two available keyword inheritance mechanisms have different strengths and
weaknesses. The one to choose depends on the requirements of your routine:

• If your routine needs to see the values of the inherited keywords, and you do
not need to pass modified values back to the caller, use _EXTRA (pass by
value).

• If your routine does not need to see the values of the inherited keywords, and it
is OK to pass back modified keyword values, use _REF_EXTRA (pass by
reference).

• If your routine is an object method, _REF_EXTRA is most likely the correct
choice for your application.

• If either mechanism will serve your needs, as is often the case, then RSI
recommends _REF_EXTRA, which has a minor efficiency advantage over
_EXTRA, due to the fact that it does not have to construct an anonymous
structure and copy the original values into it.

Example: Writing a Wrapper Routine

One of the most common uses for the keyword inheritance mechanism is to create
wrapper routines that extend the functionality of existing routines. This example
shows how to write such a wrapper, using both available inheritance mechanisms.

By Value

In most wrapper routines, there is no need to return modified keyword values back to
the calling routine — the aim is simply to provide the complete set of keywords
available to the existing routine from the wrapper routine. Hence, the by value form
(_EXTRA) of keyword inheritance can be used.

For example, suppose that procedure TEST is a wrapper to the PLOT procedure. The
text of such a procedure is shown below:

PRO TEST, a, b, _EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _EXTRA = e

END
Building IDL Applications Keyword Inheritance

86 Chapter 4: Procedures and Functions
This wrapper passes all keywords it does not accept directly to PLOT using keyword
inheritance. If such a keyword is not accepted by the PLOT procedure, it is quietly
ignored. If you wish to catch such errors, you would re-write TEST to use the
_STRICT_EXTRA keyword in the call to PLOT:

PRO TEST, a, b, _EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _STRICT_EXTRA = e

END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be placed into an anonymous structure assigned to the variable
e. If there are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the following command:

TEST, x, y, COLOR=3, LINESTYLE = 4, THICK=5

variable e, within TEST, contains an anonymous structure with the value:

{ LINESTYLE: 4, THICK: 5 }

These keyword/value pairs are then passed from TEST to the PLOT routine using the
_EXTRA keyword:

PLOT, a, b, COLOR = color, _EXTRA = e

Note that keywords passed into a routine via _EXTRA override previous settings of
that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR: 12}

specifies a color index of 12 to PLOT.

By Reference

It is extremely simple to modify the by value (_EXTRA) version of the TEST
procedure from the previous section to use by reference keyword inheritance. It
suffices to change the _EXTRA keyword to _REF_EXTRA in the formal parameter
list:

PRO TEST, a, b, _REF_EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _STRICT_EXTRA = e

END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be passed to TEST using the normal IDL parameter passing
mechanism. However, their values are not visible within TEST itself. Instead, a string
array containing the inherited keyword names is assigned to the variable e. If there
are no unrecognized keywords, e will be undefined.
Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 87
For example, when procedure TEST is called with the following command:

TEST, x, y, COLOR=3, LINESTYLE = 4, THICK=5

variable e, within TEST, contains an anonymous structure with the value:

[‘LINESTYLE‘, ‘THICK‘]

These inherited keywords are then passed from TEST to the PLOT routine using the
_EXTRA keyword. Note that keywords passed into a routine via _EXTRA override
previous settings of that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR: 12}

specifies a color index of 12 to PLOT. Also note that we are passing a structure (the
by value format used by _EXTRA) as the value of the extra keyword to a routine that
uses the by reference keyword inheritance mechanism (_REF_EXTRA). There is no
problem in doing this, because each routine establishes its own inheritance
mechanism independent of any other routines that may be calling it. However, any
keyword values that are changed within PLOT will fail to be returned to the caller due
to the use of the by-value mechanism.

Example: By Value Versus By Reference

The pass by reference keyword inheritance mechanism allows you to change the
value of a variable in the calling routine’s context from within the routine, whereas
the pass by value mechanism does not. To demonstrate this difference between
_EXTRA and _REF_EXTRA, consider the following simple example procedures:

PRO HELP_BYVAL, _EXTRA = ex
HELP, _EXTRA = ex

END

PRO HELP_BYREF, _REF_EXTRA = ex
HELP, _EXTRA = ex

END

Both HELP_BYVAL and HELP_BYREF are simple wrappers to the HELP
procedure. The HELP procedure accepts a keyword named OUTPUT that passes
back a value to the caller. Observe the result when we call each wrapper, specifying
OUTPUT as an inherited keyword parameter:

HELP_BYVAL, OUTPUT = out & HELP, out
Building IDL Applications Keyword Inheritance

88 Chapter 4: Procedures and Functions
IDL prints:

% At HELP_BYVAL 2 /dev/tty
% $MAIN$
EX UNDEFINED = <Undefined>
Compiled Procedures:
 $MAIN$ HELP_BYVAL

Compiled Functions:

OUT UNDEFINED = <Undefined>

This occurs because the HELP call within HELP_BYVAL is passed a variable that
cannot be used to return a value, due to the use of by value keyword inheritance. It
therefore reverts to the default of writing to the user’s screen, and no value is returned
to the caller for the OUTPUT keyword.

Now run HELP_BYREF:

HELP_BYREF, OUTPUT = out & HELP, out

IDL prints:

OUT STRING = Array[8]

HELP_BYREF returns the value of the HELP OUTPUT keyword as desired.
Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 89
Entering Procedure Definitions

Procedures and functions are compiled using the .RUN or .COMPILE executive
commands. The format of these commands is as follows:

.RUN [File1 , Filen, ...]

.COMPILE [File1 , Filen, ...]

From 1 to 10 files, each containing one or more program units, can be compiled. For
more information, see “.RUN” and “.COMPILE” in the IDL Reference Guide
manual.

To enter program text directly from the keyboard, simply enter .RUN at the
IDL> prompt. IDL will prompt with the “-” character, indicating that it is compiling
a directly entered program. As long as IDL requires more text to complete a program
unit, it prompts with the “-”character. Rather than executing statements immediately
after they are entered, IDL compiles the program unit as a whole.

Procedure and function definition statements cannot be entered in the single-
statement mode, but must be prefaced by either .RUN or .RNEW.

The first non-empty line the IDL compiler reads determines the type of the program
unit: procedure, function, or main program. If the first non-empty line is not a
procedure or function definition statement, the program unit is assumed to be a main
program. The name of the procedure or function is given by the identifier following
the keyword PRO or FUNCTION. If a program unit with the same name is already
compiled, it is replaced by the new program unit.

Note Regarding Functions

User-defined functions, with the exception of those contained in directories specified
by the IDL system variable !PATH, must be compiled before the first reference to the
function is compiled. This is necessary because the IDL compiler is unable to
distinguish between a reference to a variable subscripted with parentheses and a call
to a presently undefined user function with the same name. For example, in the
statement

A = XYZ(5)

it is impossible to tell by context alone if XYZ is an array or a function.
Building IDL Applications Entering Procedure Definitions

90 Chapter 4: Procedures and Functions
Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work as in previous version of IDL, we strongly suggest that you use brackets in all
new code. See “Array Subscript Syntax: [] vs. ()” on page 140 for additional
details.

When IDL encounters references that may be either a function call or a subscripted
variable, it searches the current directory, then the directories specified by !PATH,
for files with names that match the unknown function or variable name. If one or
more files matching the unknown name exist, IDL compiles them before attempting
to evaluate the expression. If no function or variable with the given name exists, IDL
displays an error message.

There are several ways to avoid this problem:

• Compile the lowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures.

• Place the function in a file with the same name as the function, and place that
file in one of the directories specified by !PATH.

• Use the FORWARD_FUNCTION definition statement to inform IDL that a
given name refers to a function rather than a variable. See “Forward Function
Definition” on page 74.

• Manually compile all functions before any reference, or use
RESOLVE_ROUTINE or RESOLVE_ALL to compile functions.
Entering Procedure Definitions Building IDL Applications

Chapter 4: Procedures and Functions 91
How IDL Resolves Routines

When IDL encounters a call to a function or procedure, it must find the routine to
call. To do this, it goes through the following steps. If a given step yields a callable
routine, IDL arranges to call that routine and the search ends at that point:

1. If the routine is known to be a built in intrinsic routine (commonly referred to
as a system routine), then IDL calls that system routine.

2. If a user routine written in the IDL language with the desired name has already
been compiled, IDL calls that routine.

3. If a file with the name of the desired routine (and ending with the filename
suffix .pro) exists in the current working directory, IDL assumes that this file
contains the desired routine. It arranges to call a user routine, but does not
compile the file. The file will be compiled when IDL actually needs it. In other
words, it is compiled at run time when IDL actually attempts to call the
routine, not when the code for the call is compiled.

4. IDL searches the directories given by the !PATH system variable for a file with
the name of the desired routine ending with the filename suffix .pro. If such a
file exists, IDL assumes that this file contains the desired routine. It arranges to
call a user routine, but does not compile the file, as described in the previous
step.

5. If the above steps do not yield a callable routine, IDL either assumes that the
name is an array (due to the ambiguity inherent in allowing parentheses to
indicate either functions or arrays) or that the desired routine does not exist
(See Chapter 7, “Arrays” for a discussion of this ambiguity). In either case, the
result is not a callable routine.
Building IDL Applications How IDL Resolves Routines

92 Chapter 4: Procedures and Functions
Parameter Passing Mechanism

Parameters are passed to IDL system and user-written procedures and functions by
value or by reference. It is important to recognize the distinction between these two
methods.

• Expressions, constants, system variables, and subscripted variable references
are passed by value.

• Variables are passed by reference.

Parameters passed by value can only be inputs to program units. Results cannot be
passed back to the caller by these parameters. Parameters passed by reference can
convey information in either or both directions. For example, consider the following
trivial procedure:

PRO ADD, A, B
A = A + B
RETURN

END

This procedure adds its second parameter to the first, returning the result in the first.
The call

ADD, A, 4

adds 4 to A and stores the result in variable A. The first parameter is passed by
reference and the second parameter, a constant, is passed by value.

The following call does nothing because a value cannot be stored in the constant 4,
which was passed by value.

ADD, 4, A

No error message is issued. Similarly, if ARR is an array, the call

ADD, ARR[5], 4

will not achieve the desired effect (adding 4 to element ARR[5]), because subscripted
variables are passed by value. The correct, though somewhat awkward, method is as
follows:

TEMP = ARR[5]
ADD, TEMP, 4
ARR[5] = TEMP
Parameter Passing Mechanism Building IDL Applications

Chapter 4: Procedures and Functions 93
Note
IDL structures behave in two distinct ways. Entire structures are passed by
reference, but individual structure fields are passed by value. See “Parameter
Passing with Structures” on page 189 for additional details.
Building IDL Applications Parameter Passing Mechanism

94 Chapter 4: Procedures and Functions
Calling Mechanism

When a user-written procedure or function is called, the following actions occur:

1. All of the actual arguments in the user-procedure call list are evaluated and
saved in temporary locations.

2. The actual parameters that were saved are substituted for the formal
parameters given in the definition of the called procedure. All other variables
local to the called procedure are set to undefined.

3. The function or procedure is executed until a RETURN or RETALL statement
is encountered. Procedures also can return on an END statement. The result of
a user-written function is passed back to the caller by specifying it as the value
of a RETURN statement. RETURN statements in procedures cannot specify a
return value.

4. All local variables in the procedure, those variables that are neither parameters
nor common variables, are deleted.

5. The new values of the parameters that were passed by reference are copied
back into the corresponding variables. Actual parameters that were passed by
value are deleted.

6. Control resumes in the calling procedure after the procedure call statement or
function reference.

Recursion

Recursion (i.e., a program calling itself) is supported for both procedures and
functions.
Calling Mechanism Building IDL Applications

Chapter 4: Procedures and Functions 95
Example

Here is an example of an IDL procedure that reads and plots the next vector from a
file. This example illustrates using common variables to store values between calls,
as local parameters are destroyed on exit. It assumes that the file containing the data
is open on logical unit 1 and that the file contains a number of 512-element, floating-
point vectors.

;Read and plot the next record from file 1. If RECNO is specified,
;set the current record to its value and plot it.
PRO NXT, recno

;Save previous record number.
COMMON NXT_COM, lastrec

;Set record number if parameter is present.
IF N_PARAMS(0) GE 1 THEN lastrec = recno

;Define LASTREC if this is first call.
IF N_ELEMENTS(lastrec) LE 0 THEN lastrec = 0

;Define file structure.
AA = ASSOC(1, FLTARR(512))

;Read and plot record.
PLOT, AA[lastrec]

;Increment record for next time.
lastrec = lastrec + 1

END

Once the user has opened the file, typing NXT will read and plot the next record.
Typing NXT, N will read and plot record number N.
Building IDL Applications Calling Mechanism

96 Chapter 4: Procedures and Functions
Setting Compilation Options

The COMPILE_OPT statement allows the author to give the IDL compiler
information that changes some of the default rules for compiling the function or
procedure within which the COMPILE_OPT statement appears. The syntax of
COMPILE_OPT is as follows:

COMPILE_OPT opt1 [,opt2, ..., optn]

where optn is any of the following:

• IDL2 — A shorthand way of saying:

COMPILE_OPT DEFINT32, STRICTARR

• DEFINT32 — IDL should assume that lexical integer constants are the 32-bit
LONG type rather than the default of 16-bit integers. This takes effect from the
point where the COMPILE_OPT statement appears in the routine being
compiled.

• HIDDEN — This routine should not be displayed by HELP, unless the FULL
keyword to HELP is used. This directive can be used to hide helper routines
that regular IDL users are not interested in seeing.

A side effect of making a routine hidden is that IDL will not print a “Compile
module” message for it when it is compiled from the library to satisfy a call to
it. This makes hidden routines appear built in to the user.

• OBSOLETE — If the user has !WARN.OBS_ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages that
this routine is obsolete. This directive can be used to warn people that there
may be better ways to perform the desired task.

• STRICTARR — While compiling this routine, IDL will not allow the use of
parenthesis to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good idea for library functions.

Use of STRICTARR can eliminate many uses of the FORWARD_FUNCTION
definition.
Setting Compilation Options Building IDL Applications

Chapter 4: Procedures and Functions 97
RSI recommends the use of

COMPILE_OPT IDL2

in all new code intended for use in a reusable library. We further recommend the use
of

COMPILE_OPT idl2, HIDDEN

in all such routines that are not intended to be called directly by regular users (e.g.
helper routines that are part of a larger package).
Building IDL Applications Setting Compilation Options

98 Chapter 4: Procedures and Functions
Setting Compilation Options Building IDL Applications

Chapter 5:

Library Authoring
The following topics are covered in this chapter:
Overview of Library Authoring 100
Recognizing Potential Naming Conflicts . 101

Advice for Library Authors 103
Converting Existing Libraries 104
Building IDL Applications 99

100 Chapter 5: Library Authoring
Overview of Library Authoring

Library authors provide an invaluable resource to the IDL community — they
develop domain-specific programs and applications that implement knowledge far
beyond RSI’s level of expertise. User library code is often freely available, supported,
and documented. However, as the number of library authors and routines continues to
grow, it becomes increasingly important for authors to adhere to a routine naming
convention within their libraries that avoids conflicts with core IDL functionality.

Most user libraries start out as small collections of code, and then grow. Initially, the
naming issue is not very important. Over time, the library grows in complexity and
number of users. Because this is often a gradual process, the importance of naming is
not obvious until there is a conflict with IDL system functionality, or a conflict with
another library author’s code.

An understanding of the way IDL resolves routines during program execution reveals
why new IDL system procedures and functions may periodically conflict with pre-
existing routines written by users in the IDL community. (See “How IDL Resolves
Routines” on page 91 for step-by-step routine resolution details.)

The fact that IDL system routines always take precedence over user routines provides
the following benefits:

• The IDL environment remains reliable and consistent — a call to FFT always
returns the IDL version of the FFT function.

• It eliminates a great deal of path searching, which translates into faster
execution speed.

In contrast, if user routines took precedence over system routines, a given installation
could radically alter the meaning of common and basic IDL constructs simply by
creating user routines with the names of IDL system routines. This would result in
conflicts when sharing code, degradation of the common IDL language core, and
ultimately, the reduced usefulness of IDL.

Although the way IDL handles the search for routines is simple, efficient, and
reliable, it is not perfect. The potential for namespace conflicts exists. It is important
to recognize and take steps to avoid these naming conflicts as described in the
following sections:

• “Recognizing Potential Naming Conflicts” on page 101

• “Advice for Library Authors” on page 103

• “Converting Existing Libraries” on page 104
Overview of Library Authoring Building IDL Applications

Chapter 5: Library Authoring 101
Recognizing Potential Naming Conflicts

IDL favors simple names, and it blurs the user level distinction between system
routines and user routines. The reason for this has everything to do with IDL’s
orientation towards ad hoc analysis. The primary goal is transparency. Names should
make sense, be easy to remember, and not require too much typing. Language
transparency also results in very human-readable code. In conjunction with the way
IDL searches for routines, this may cause either user level or system level conflicts.

User Level Conflicts

In the user level case, an IDL user writes a routine that is not part of the base release
of IDL, and places it in a local library. At some later date, a new version of IDL is
installed that contains a new IDL library routine with the same name as the user's
routine. Depending on the order of the directories in the user’s path, one of these two
routines is executed. If the user’s routine is used, IDL library code that calls the
routine will get the wrong version and fail in strange and mysterious ways. If the IDL
routine is used, the IDL library will be satisfied, but the user's library will get the
wrong version, also with bad results.

System Level Conflicts

The system level case is similar, but harder to work around. In this case, the user
creates a local routine, as before. However, the new version of IDL contains a system
routine with the same name. In this case, IDL will always choose to use the system
routine, and the user routine simply vanishes from view never to be called again. The
order of the search path is meaningless in this case because the search path is not even
consulted. A system routine always has precedence over a user routine.

Choosing Routine Names to Avoid Conflicts

Naming conflicts can result in costly and time consuming problems; carefully
considered names make everything easier. On the surface, naming routines seems like
a trivial issue, but names are very important. It is crucial to adopt and consistently
adhere to a routine naming strategy to avoid conflict. The core idea of this convention
(described in detail in “Advice for Library Authors” on page 103) is to prefix all
library routine names with a unique identifier, one indicative of your organization or
project. Research Systems reserves routine names that are generic, and those with an
“IDL” or “RSI” prefix on behalf of the entire IDL community. Prefixing your user
library routines significantly reduces the risk of namespace collisions with IDL
routines.
Building IDL Applications Recognizing Potential Naming Conflicts

102 Chapter 5: Library Authoring
As a library author, your decision to follow a routine prefixing strategy benefits the
entire IDL community. This convention translates into simplicity and reliability,
allowing IDL system routines to always take precedence over user routines. It also
raises the visibility of your routines, readily distinguishing them as part of your
library.

Note
For instructions on how to prefix an existing user library, see “Converting Existing
Libraries” on page 104.
Recognizing Potential Naming Conflicts Building IDL Applications

Chapter 5: Library Authoring 103
Advice for Library Authors

An ordinary IDL programmer needs only to solve his or her own problems to the
desired level of quality, reusability, and robustness. Life is more difficult for an author
of a library of IDL routines. In addition to the challenges facing any programmer,
library authors face additional challenges:

• The structure and organization of the library needs to encourage reuse and
generality.

• Library code must be more robust than the usual program. Stability of
implementation, and especially of interface, are very important.

• Errors must be gracefully handled whenever possible. See Chapter 19,
“Controlling Errors” for more on error control.

• The most useful libraries are written to work correctly on a wide variety of
platforms, without requiring their users to be aware of the details.

• Documentation must be provided, or the library will not find users.

• Libraries must be able to co-exist with other code over which they have no
control. Authors must not alter the global environment in ways that cause
conflicts, and they must also take care to prefix the names of all routines,
common blocks, systems variables, and any other global resources they use.
This prevents a library from conflicting with other libraries on the same
system, and protects the library from changes to IDL that may occur in newer
releases.

Prefixing Routine Names

The use of a proper prefix minimizes the risk of a namespace collision as described in
“Recognizing Potential Naming Conflicts” on page 101. In selecting a prefix for your
library, you should select a name that is short, mnemonic, and unlikely to be chosen
by others. For example, such a name might use the name of your organization or
project in an abbreviated form.

Non-prefixed names and names prefixed by “IDL” or “RSI” are reserved by RSI.
New names of these forms can and will appear without warning in new versions of
IDL, and should be avoided when naming new library routines.
Building IDL Applications Advice for Library Authors

104 Chapter 5: Library Authoring
Converting Existing Libraries

Many libraries that already exist do not follow the naming guidelines provided in
“Advice for Library Authors” on page 103. Such libraries are bound to experience an
occasional conflict with new versions of IDL. The best solution to avoid conflicts is
to perform a systematic one-time conversion to a prefixed naming scheme.

Any existing library is likely to already have users. Assuming that non-prefixed
names were used in such libraries, it is not possible to simply change the names. Such
conversions require time to carry out, and once that has happened, it takes time for
users to adjust and alter their usage. However, the actual conversion can go very
quickly, and with proper planning it is easy to offer a backwards compatibility option
for your users. Use the following steps to convert an existing library:

1. Generate a list of all files containing routines to be renamed.

2. Using this list, build an IDL batch file that uses .COMPILE on each file.

3. Start a fresh IDL session, execute the batch file, and use HELP, /ROUTINES to
get a complete list of all compiled routines. Only IDL user library routines
(those .pro files shipped with the IDL distribution) should not contain a
prefix.

4. As you rename each routine to its prefixed form, write a non-prefixed wrapper
routine with the old name that calls the new version. Such wrappers are easy to
write in IDL, using the _REF_EXTRA keyword to pass keywords through to
the real routine. See “Keyword Inheritance” on page 81 for details.

5. Use the COMPILE_OPT OBSOLETE compilation directive in such wrappers
so that IDL will recognize them as obsolete routines. See “Setting Compilation
Options” on page 96 and COMPILE_OPT in the IDL Reference Guide for
more information on COMPILE_OPT. These compatibility wrappers serve the
following purposes:

• You can use them to migrate your library to fully prefixed form over time,
since the wrapper will be used any place you failed to change to calling the
new name. This enhances the stability of the library and gives you time to
do a careful job.

• Once you are finished, you can provide them to your customers as a
bridge, so that their old code continues to work.

• As you change the names of routines, use grep (or a similar file searching
tool) to locate uses of that name, and convert them to the new form as well.
Converting Existing Libraries Building IDL Applications

Chapter 5: Library Authoring 105
6. Iterate, using the batch file mentioned above to find any remaining non-
prefixed uses of the library names. Since your wrappers specified the
COMPILE_OPT OBSOLETE directive, you can set the !WARN system
variable to help you pinpoint such uses. You are done when your batch file
reveals no more unprefixed names.

Once the conversion is done, you can use the compatibility wrappers to smoothly
transition your users to the new names. You should keep the wrappers in a separate
subdirectory, and even consider making them optional. Doing this raises the end
user’s awareness of the issue and may convince them to convert to using the new
names sooner rather than later.

When you add new routines to your library, ensure that they use the proper prefix. Do
not provide non-prefixed wrapper routines for new routines. There is no backward
compatibility issue in this case, and they are not needed.

Although the one time hit of prefixing an existing library can consume some time and
effort, there are benefits that accrue from doing it. When new versions of IDL are
released, the odds of the library working with the new version without encountering
any name clashes are extremely high. Use of a consistent prefix also raises the profile
of the library to the end user, raising their level of understanding and appreciation for
the work it does.
Building IDL Applications Converting Existing Libraries

106 Chapter 5: Library Authoring
Converting Existing Libraries Building IDL Applications

Chapter 6:

Strings
The following topics are covered in this chapter:
Overview . 108
String Operations . 109
Non-string and Non-scalar Arguments . . . 110
String Concatenation 111
Using STRING to Format Data 112
Byte Arguments and Strings 113
Case Folding . 115

Whitespace . 116
Finding the Length of a String 118
Substrings . 119
Splitting and Joining Strings 122
Comparing Strings 123
Non-Printing Characters 127
Learning About Regular Expressions . . . 128
Building IDL Applications 107

108 Chapter 6: Strings
Overview

An IDL string is a sequence of characters from 0 to 2147483647 (2.1 GB) characters
in length. Strings have dynamic length (they grow or shrink to fit), and there is no
need to declare the maximum length of a string prior to using it. As with any data
type, string arrays can be created to hold more than a single string. In this case, the
length of each individual string in the array depends only on its own length and is not
affected by the lengths of the other string elements.

A Note About the Examples

In some of the examples in this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per element, and
is created using the statement:

trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $
'Pine', 'Walnut']

Executing the statement,

PRINT, '>' + trees + '< '

results in the following output:

>Beech< >Birch< >Mahogany< >Maple< >Oak< >Pine< >Walnut<
Overview Building IDL Applications

Chapter 6: Strings 109
String Operations

IDL supports several basic string operations, as described below.

Concatenation

The Addition operator, “+”, can be used to concatenate strings together.

Formatting Data

The STRING function is used to format data into a string. The READS procedure can
be used to read values from a string into IDL variables.

Case Folding

The STRLOWCASE function returns a copy of its string argument converted to
lowercase. Similarly, the STRUPCASE function converts its argument to uppercase.

White Space Removal

The STRCOMPRESS and STRTRIM functions can be used to eliminate unwanted
white space (blanks or tabs) from their string arguments.

Length

The STRLEN function returns the length of its string argument.

Substrings

The STRPOS, STRPUT, and STRMID routines locate, insert, and extract substrings
from their string arguments.

Splitting and Joining Strings

The STRSPLIT function is used to break strings apart, and the STRJOIN function
can be used to and glue strings together.

Comparing Strings

The STRCMP, STRMATCH, and STREGEX functions perform string comparisons.
Building IDL Applications String Operations

110 Chapter 6: Strings
Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter expect at least one
argument that is the string on which they act.

If the argument is not of type string, IDL converts it to type string using the same
default formatting rules that are used by the PRINT/PRINTF or STRING routines.
The function then operates on the converted result. Thus, the IDL statement,

PRINT, STRLEN(23)

returns the result

8

because the argument “23” is first converted to the string ' 23' that happens to
be a string of length 8.

If the argument is an array instead of a scalar, the function returns an array result with
the same structure as the argument. Each element of the result corresponds to an
element of the argument. For example, the following statements:

;Get an uppercase version of TREES.
A = STRUPCASE(trees)

;Show that the result is also an array.
HELP, A

;Display the original.
PRINT, trees

;Display the result.
PRINT, A

produce the following output:

A STRING = Array(7)
Beech Birch Mahogany Maple Oak Pine Walnut
BEECH BIRCH MAHOGANY MAPLE OAK PINE WALNUT

For more details on how individual routines handle their arguments, see the
individual descriptions in the IDL Reference Guide.
Non-string and Non-scalar Arguments Building IDL Applications

Chapter 6: Strings 111
String Concatenation

The addition operator is used to concatenate strings. For example, the command:

A = 'This is' + ' a concatenation example.'
PRINT, A

results in the following output:

This is a concatenation example.

The following IDL statements build a scalar string containing a comma-separated list
of the names found in the TREES string array:

;Use REPLICATE to make an array with the correct number of commas
;and add it to trees.
names = trees + [REPLICATE(',', N_ELEMENTS(trees)-1), '']

;Show the resulting list.
PRINT, names

Running the above statements results in the following output:

Beech, Birch, Mahogany, Maple, Oak, Pine, Walnut
Building IDL Applications String Concatenation

112 Chapter 6: Strings
Using STRING to Format Data

The STRING function has the following form:

S = STRING(Expression1, ..., Expressionn)

It converts its parameters to characters, returning the result as a string expression. It is
identical in function to the PRINT procedure, except that its output is placed into a
string rather than being output to the terminal. As with PRINT, the FORMAT
keyword can be used to explicitly specify the desired format. See the discussions of
free format and explicitly formatted input/output (“Free Format I/O” on page 239) for
details of data formatting. For more information on the STRING function, see
“STRING” in the IDL Reference Guide manual.

As a simple example, the following IDL statements:

;Produce a string array.
A = STRING(FORMAT='("The values are:", /, (I))', INDGEN(5))

;Show its structure.
HELP, A

;Print the result.
FOR I = 0, (N_ELEMENTS(A)-1) DO PRINT, A[I]

produce the following output:

A STRING = Array(6)
The values are:

0
1
2
3
4

Reading Data from Strings

The READS procedure performs formatted input from a string variable and writes the
results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of a file.

This routine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of the file can be read into a string using
READF. Then the components of that line can be read into variables using READS.

See the description of “READS” in the IDL Reference Guide manual for more details.
Using STRING to Format Data Building IDL Applications

Chapter 6: Strings 113
Byte Arguments and Strings

There is a close association between a string and a byte array—a string is simply an
array of bytes that is treated as a series of ASCII characters. Therefore, it is
convenient to be able to convert between them easily.

When STRING is called with a single argument of byte type and the FORMAT
keyword is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing the
byte values from the original argument. Thus, the result has one less dimension than
the original argument. A two-dimensional byte array becomes a vector of strings, and
a byte vector becomes a scalar string. However, a byte scalar also becomes a string
scalar. For example, the statement

PRINT, STRING([72B, 101B, 108B, 108B, 111B])

produces the output below:

Hello

This output results because the argument to STRING, as produced by the array
concatenation operator, is a byte vector. Its first element is 72B which is the ASCII
code for “H,” the second is 101B which is an ASCII “e,” and so forth. The PRINT
keyword can be used to disable this feature and cause STRING to treat byte data in
the usual way.

As discussed in Chapter 11, “Files and Input/Output”, it is easier to read fixed-length
string data from binary files into byte variables instead of string variables. Therefore,
it is convenient to read the data into a byte array and use this special behavior of
STRING to convert the data into string form.

Another use for this feature is to build strings that contain nonprintable characters in a
way such that the character is not entered directly. This results in programs that are
easier to read and that also avoid file transfer difficulties (some forms of file transfer
have problems transferring nonprintable characters). Due to the way in which strings
are implemented in IDL, applying the STRING function to a byte array containing a
null (zero) value will result in the resulting string being truncated at that position.
Thus, the statement,

PRINT, STRING([65B, 66B, 0B, 67B])

produces the following output:

AB

This output is produced because the null byte in the third position of the byte array
argument terminates the string and hides the last character.
Building IDL Applications Byte Arguments and Strings

114 Chapter 6: Strings
Note
The BYTE function, when called with a single argument of type string, performs
the inverse operation to that described above, resulting in a byte array containing the
same byte values as its string argument. For additional information about the BYTE
function, see “Type Conversion Functions” on page 58.
Byte Arguments and Strings Building IDL Applications

Chapter 6: Strings 115
Case Folding

The and STRUPCASE functions are used to convert arguments to lowercase or
uppercase. They have the form:

S = STRLOWCASE(String)

S = STRUPCASE(String)

where String is the string to be converted to lowercase or uppercase.

The following IDL statements generate a table of the contents of TREES showing
each name in its actual case, lowercase and uppercase:

FOR I=0, 6 DO PRINT, trees[I], STRLOWCASE(trees[I]),$
STRUPCASE(trees[I]), FORMAT = '(A, T15, A, T30, A)'

The resulting output from running this statement is as follows:

A common use for case folding occurs when writing IDL procedures that require
input from the user. By folding the case of the response, it is possible to handle
responses written in uppercase, lowercase, or mixed case. For example, the following
IDL statements can be used to ask “yes or no” style questions:

;Create a string variable to hold the response.
answer = ''

;Ask the question.
READ, 'Answer yes or no: ', answer
IF (STRUPCASE(answer) EQ 'YES') THEN $

;Compare the response to the expected answer.
PRINT,'YES' ELSE PRINT, 'NO'

Beech beech BEECH

Birch birch BIRCH

Mahogany mahogany MAHOGANY

Maple maple MAPLE

Oak oak OAK

Pine pine PINE

Walnut walnut WALNUT
Building IDL Applications Case Folding

116 Chapter 6: Strings
Whitespace

The STRCOMPRESS and STRTRIM functions are used to remove unwanted white
space (tabs and spaces) from a string. This can be useful when reading string data
from arbitrarily formatted strings.

Removing All Whitespace

The function STRCOMPRESS returns a copy of its string argument with all white
space replaced with a single space or completely removed. It has the form:

S = STRCOMPRESS(String)

where String is the string to be compressed.

The default action is to replace each section of white space with a single space.
Setting the REMOVE_ALL keyword causes white space to be completely eliminated.
For example,

;Create a string with undesirable white space. Such a string might
;be the result of reading user input with a READ statement.
A = ' This is a poorly spaced sentence. '

;Print the result of shrinking all white space to a single blank.
PRINT, '>', STRCOMPRESS(A), '<'

;Print the result of removing all white space.
PRINT '>', STRCOMPRESS(A, /REMOVE_ALL), '<'

results in the output:

> This is a poorly spaced sentence. <
>Thisisapoorlyspacedsentence.<
Whitespace Building IDL Applications

Chapter 6: Strings 117
Removing Leading or Trailing Blanks

The function STRTRIM returns a copy of its string argument with leading and/or
trailing white space removed. It has the form:

S = STRTRIM(String[, Flag])

where String is the string to be trimmed and Flag is an integer that indicates the
specific trimming to be done. If Flag is 0 or is not present, trailing white space is
removed. If it is 1, leading white space is removed. Both trailing and leading white
space are removed if Flag is equal to 2. For example:

;Create a string with unwanted leading and trailing blanks.
A = ' This string has leading and trailing white space '

;Remove trailing white space.
PRINT, '>', STRTRIM(A), '<'

;Remove leading white space.
PRINT, '>', STRTRIM(A,1), '<'

;Remove both.
PRINT, '>', STRTRIM(A,2), '<'

Executing these statements produces the output below.

> This string has leading and trailing white space<
>This string has leading and trailing white space <
>This string has leading and trailing white space<

Removing All Types of Whitespace

When processing string data, STRCOMPRESS and STRTRIM can be combined to
remove leading and trailing white space and shrink any white space in the middle
down to single spaces.

;Create a string with undesirable white space.
A = 'Yet another poorly spaced sentence. '

;Eliminate unwanted white space.
PRINT, '>' STRCOMPRESS(STRTRIM(A,2)), '<'

Executing these statements gives the result below:

>Yet another poorly spaced sentence.<
Building IDL Applications Whitespace

118 Chapter 6: Strings
Finding the Length of a String

The STRLEN function is used to obtain the length of a string. It has the form:

L = STRLEN(String)

where String is the string for which the length is required. For example, the following
statement

PRINT, STRLEN('This sentence has 31 characters')

results in the output

31

while the following IDL statement prints the lengths of all the names contained in the
array TREES.

PRINT, STRLEN(trees)

The resulting output is as follows:

 5 5 8 5 3 4 6
Finding the Length of a String Building IDL Applications

Chapter 6: Strings 119
Substrings

IDL provides the STRPOS, STRPUT, and STRMID routines to locate, insert, and
extract substrings from their string arguments.

Searching for a Substring

The STRPOS function is used to search for the first occurrence of a substring. It has
the form

S = STRPOS(Object, Search_string[, Position])

where Object is the string to be searched, Search_string is the substring to search for,
and Position is the character position (starting with position 0) at which the search is
begun. If the optional argument Position is omitted, the search is started at the first
character (character position 0). The following IDL procedure counts the number of
times that the word “dog” appears in the string “dog cat duck rabbit dog cat dog”:

PRO Animals

;The search string, "dog", appears three times.
animals = 'dog cat duck rabbit dog cat dog'

;Start searching in character position 0.
I = 0

;Number of occurrences found.
cnt = 0

;Search for an occurrence.
WHILE (I NE -1) DO BEGIN

I = STRPOS(animals, 'dog', I)

IF (I NE -1) THEN BEGIN
;Update counter.
cnt = cnt + 1

;Increment I so as not to count the same instance of 'dog'
;twice.
I = I + 1

ENDIF
ENDWHILE

;Print the result.
PRINT, 'Found ', cnt, " occurrences of 'dog'"
END
Building IDL Applications Substrings

120 Chapter 6: Strings
Running the above program produces the result below.

Found 3 occurrences of 'dog'

Searching For the Last Occurrence of a Substring

The REVERSE_SEARCH keyword to the STRPOS function makes it easy to find
the last occurrence of a substring within a string. In the following example, we search
for the last occurrence of the letter “I” (or “i”) in a sentence:

sentence = 'IDL is fun.'
sentence = STRUPCASE(sentence)
lasti = STRPOS(sentence, 'I', /REVERSE_SEARCH)
PRINT, lasti

This results in:

4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from the
end of the string, the STRPOS function still returns the position of the search string
starting from the beginning of the string (where 0 is the position of the first
character).

Inserting the Contents of One String into Another

The STRPUT procedure is used to insert the contents of one string into another. It has
the form,

STRPUT, Destination, Source[, Position]

where Destination is the string to be overwritten, Source is the string to be inserted,
and Position is the first character position within Destination at which Source will be
inserted. If the optional argument Position is omitted, the overwrite is started at the
first character (character position 0). The following IDL statements use STRPOS and
STRPUT to replace every occurrence of the word “dog” with the word “CAT” in the
string “dog cat duck rabbit dog cat dog”:

animals = 'dog cat duck rabbit dog cat dog'
;The string to search, "dog", appears three times.

;While any occurrence of "dog" exists, replace it.
WHILE (((I = STRPOS(animals, 'dog'))) NE -1) DO $
STRPUT, animals, 'CAT', I

;Show the resulting string.
PRINT, animals
Substrings Building IDL Applications

Chapter 6: Strings 121
Running the above statements produces the result below.

CAT cat duck rabbit CAT cat CAT

Extracting Substrings

The STRMID function is used for extracting substrings from a larger string. It has the
form:

STRMID(Expression, First_Character [, Length])

where Expression is the string from which the substring will be extracted,
First_Character is the starting position within Expression of the substring (the first
position is position 0), and Length is the length of the substring to extract. If there are
not Length characters following the position First_Character, the substring will be
truncated. If the Length argument is not supplied, STRMID extracts all characters
from the specified starting position to the end of the string. The following IDL
statements use STRMID to print a table matching the number of each month with its
three-letter abbreviation:

;String containing all the month names.
months = 'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'

;Extract each name in turn. The equation (I-1)*3 calculates the
;position within MONTH for each abbreviation
FOR I = 1, 12 DO PRINT, I, ' ', $
STRMID(months, (I - 1) * 3, 3)

The result of executing these statements is as follows:

1 JAN
2 FEB
3 MAR
4 APR
5 MAY
6 JUN
7 JUL
8 AUG
9 SEP
10 OCT
11 NOV
12 DEC
Building IDL Applications Substrings

122 Chapter 6: Strings
Splitting and Joining Strings

The STRSPLIT function is used to break apart a string, and the STRJOIN function is
used to glue together separate strings into a single string.

The STRSPLIT function uses the following syntax:

Result = STRSPLIT(String [, Pattern])

where String is the string to be split, and Pattern is either a string of character codes
used to specify the delimiter, or a regular expression, as implemented by the
STREGEX function.

The STRJOIN function uses the following syntax:

Result = STRJOIN(String [, Delimiter])

where String is the string or string array to be joined, and Delimiter is the separator
string to use between the joined strings.

The following example uses STRSPLIT to extract words from a sentence into an
array, modifies the array, and uses STRJOIN to rejoin the individual array elements
into a new sentence:

str1 = 'Hello Cruel World'
words = STRSPLIT(str1, ' ', /EXTRACT)
newwords=[words[0],words[2]]
PRINT, STRJOIN(newwords, ' ')

This code results in the following output:

Hello World

In this example, the EXTRACT keyword caused STRSPLIT to return the substrings
as array elements, rather than the default action of returning an array of character
offsets indicating the position of each substring.

The STRJOIN function allows us to specify the delimiter used to join the strings.
Instead of using a space as in the above example, we could use a different delimiter as
follows:

str1 = 'Hello Cruel World'
words = STRSPLIT(str1, ' ', /EXTRACT)
newwords=[words[0],words[2]]
PRINT, STRJOIN(newwords, ' Kind ')

This code results in the following output:

Hello Kind World
Splitting and Joining Strings Building IDL Applications

Chapter 6: Strings 123
Comparing Strings

IDL provides several different mechanisms for performing string comparisons. In
addition to the EQ operator, the STRCMP, STRMATCH, and STREGEX functions
can all be used for string comparisons.

Case-Insensitive Comparisons of the First N
Characters

The STRCMP function simplifies case-insensitive comparisons, and comparisons of
only the first N characters of two strings. The STRCMP function uses the following
syntax:

Result = STRCMP(String1, String2 [, N])

where String1 and String2 are the strings to be compared, and N is the number of
characters from the beginning of the string to compare.

Using the EQ operator to compare the first 3 characters of the strings “Moose” and
“mOO” requires the following steps:

A = 'Moose'
B = 'mOO'

C=STRMID(A,0,3)

IF (STRLOWCASE(C) EQ STRLOWCASE(B)) THEN PRINT, "It's a match!"

Using the EQ operator for this case-insensitive comparison of the first 3 characters
requires the STRMID function to extract the first 3 characters, and the
STRLOWCASE (or STRUPCASE) function to change the case.

The STRCMP function could be used to simplify this comparison:

A='Moose'
B='mOO'

IF (STRCMP(A,B,3, /FOLD_CASE) EQ 1) THEN PRINT, "It's a match!"

The optional N argument of the STRCMP function allows us to easily specify how
many characters to compare (from the beginning of the input strings), and the
FOLD_CASE keyword specifies a case-insensitive search. If N is omitted, the full
strings are compared.
Building IDL Applications Comparing Strings

124 Chapter 6: Strings
String Comparisons Using Wildcards

The STRMATCH function can be used to compare a search string containing
wildcard characters to another string. It is similar in function to the way the standard
UNIX command shell processes file wildcard characters.

The STRMATCH function uses the following syntax:

Result = STRMATCH(String, SearchString)

where String is the string in which to search for SearchString.

SearchString can contain the following wildcard characters:

The following examples demonstrate various uses of wildcard matching:

Example 1: Find all 4-letter words in a string array that begin with “f” or “F” and end
with “t” or “T”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f??t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST fort

Example 2: Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

Wildcard
Character

Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by "-" matches any character lexically
between the pair, inclusive. If the first character following the
opening [is a !, any character not enclosed is matched. To
prevent one of these characters from acting as a wildcard, it
can be quoted by preceding it with a backslash character (e.g.
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a" is the same as "a").

Table 6-1: Wildcard Characters used by STRMATCH
Comparing Strings Building IDL Applications

Chapter 6: Strings 125
PRINT, str[WHERE(STRMATCH(str, 'f*t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST ferret fort

Example 3: Find 4-letter words beginning with “f” and ending with “t”, with any
combination of “o” and “e” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[eo][eo]t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet

Example 4: Find all words beginning with “f” and ending with “t” whose second
character is not the letter “o”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]

This results in:

Feet FAST ferret

Complex Comparisons Using Regular Expressions

A more difficult search than the one above would be to find words of any length
beginning with “f” and ending with “t” without the letter “o” in between. This would
be difficult to accomplish with STRMATCH, but could be easily accomplished using
the STREGEX function:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, STREGEX(str, '^f[^o]*t$', /EXTRACT, /FOLD_CASE)

This statement results in:

Feet FAST ferret

Note the following about this example:

• Unlike the * wildcard character used by STRMATCH, the * meta character
used by STREGEX applies to the item directly on its left, which in this case is
[^o], meaning “any character except the letter ‘o’ ”. Therefore, [^o]* means
“zero or more characters that are not ‘o’ ”, whereas the following statement
would find only words whose second character is not “o”:

PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]
Building IDL Applications Comparing Strings

126 Chapter 6: Strings
• The anchors (^ and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the $ anchor, STREGEX would also return
“fat”, which is a substring of “fate”.

Regular expressions are somewhat more difficult to use than simple wildcard
matching (which is why the UNIX shell does matching) but in exchange offers
unparalleled expressive power.

For more on the STREGEX function, see “STREGEX” in the IDL Reference Guide
manual, and for an introduction to regular expressions, see “Learning About Regular
Expressions” on page 128.
Comparing Strings Building IDL Applications

Chapter 6: Strings 127
Non-Printing Characters

ASCII characters with value less than 32 or greater than 126 do not have printable
representations. Such characters can be included in string constants by specifying
their ASCII value as a byte argument to the STRING function.

For example, to represent the TAB character, use the expression

STRING(9B)

This syntax can be used when comparing strings or performing regular expression
matching. For example, to find the position of the first TAB character in a string:

pos = STREGEX(input_string, STRING(9b))

where input_string is a variable containing the string to be searched.

The following table lists the some ASCII characters you might commonly want to
represent as IDL strings.

For a complete list, consult a standard ASCII table.

ASCII Character Byte Value

Bell 7B

Backspace 8B

Horizontal Tab 9B

Linefeed 10B

Vertical Tab 11B

Formfeed 12B

Carriage Return 13B

Escape 27B

Table 6-2: Selected ASCII Characters
and Their Byte Values
Building IDL Applications Non-Printing Characters

128 Chapter 6: Strings
Learning About Regular Expressions

Regular expressions are a very powerful way to match arbitrary text. Stemming from
neurophysiological research conducted in the early 1940’s, their mathematical
foundation was established during the 1950’s and 1960’s. Their use has a long history
in computer science, and they are an integral part of many UNIX tools, including
awk, egrep, lex, perl, and sed, as well as many text editors. Regular expressions are
slower than simple pattern matching algorithms, and they can be cryptic and difficult
to write correctly. Small mistakes in specification can yield surprising results. They
are, however, vastly more succinct and powerful than simple pattern matching, and
can easily handle tasks that would be difficult or impossible otherwise.

The topic of regular expressions is a very large one, complicated by the arbitrary
differences in the implementations found in various tools. Anything beyond an
extremely simplistic sketch is well beyond the scope of this manual. To understand
them better, we recommend a good text on the subject, such as “Mastering Regular
Expressions”, by Jeffrey E.F. Friedl (O'Reilly & Associates, Inc, ISBN 1-56592-257-
3). The following is an abbreviated, simplified, and incomplete explanation of regular
expressions, sufficient to gain a cursory understanding of them.

The regular expression engine attempts to match the regular expression against the
input string. Such matching starts at the beginning of the string and moves from left
to right. The matching is considered to be “greedy”, because at any given point, it will
always match the longest possible substring. For example, if a regular expression
could match the substring ‘aa’ or ‘aaa’, it will always take the longer option.

Meta Characters

A regular expression “ordinary character” is a character that matches itself. Most
characters are ordinary. The exceptions, sometimes called “meta characters”, have
special meanings. To convert a meta character into an ordinary one, you “escape” it
by preceding it with a backslash character (e.g. '*'). The meta characters are
described in the following table:

Character Description

. The period matches any character.

Table 6-3: Meta characters
Learning About Regular Expressions Building IDL Applications

Chapter 6: Strings 129
[] The open bracket character indicates a “bracket expression”,
which is discussed below. The close bracket character
terminates such an expression.

\ The backslash suppresses the special meaning of the character
it precedes, and turns it into an ordinary character. To insert a
backslash into your regular expression pattern, use a double
backslash ('\\').

() The open parenthesis indicates a “subexpression”, discussed
below. The close parenthesis character terminates such a
subexpression.

Repetition
Characters

These characters are used to specify repetition. The repetition
is applied to the character or expression directly to the left of
the repetition operator.

* Zero or more of the character or expression to the left. Hence,
'a*' means “zero or more instances of 'a' ”.

+ One or more of the character or expression to the left. Hence,
'a+' means “one or more instances of 'a'”.

? Zero or one of the character or expression to the left. Hence,
'a?' will match 'a' or the empty string ''.

{} An interval qualifier allows you to specify exactly how many
instances of the character or expression to the left to match. If
it encloses a single unsigned integer length, it means to match
exactly that number of instances. Hence, 'a{3}' will match
'aaa'. If it encloses 2 such integers separated by a comma, it
specifies a range of possible repetitions. For example, 'a{2,4}'
will match 'aa', 'aaa', or 'aaaa'. Note that '{0,1}' is equivalent to
'?'.

| Alternation. This operator is used to indicate that one of
several possible choices can match. For example, '(a|b|c)z' will
match any of 'az', 'bz', or 'cz'.

Character Description

Table 6-3: Meta characters (Continued)
Building IDL Applications Learning About Regular Expressions

130 Chapter 6: Strings
Subexpressions

Subexpressions are those parts of a regular expression enclosed in parentheses. There
are two reasons to use subexpressions:

• To apply a repetition operator to more than one character. For example,
'(fun){3}' matches 'funfunfun', while 'fun{3}' matches 'funnn'.

• To allow location of the subexpression using the SUBEXPR keyword to
STREGEX.

Bracket Expressions

Bracket expressions (expressions enclosed in square brackets) are used to specify a
set of characters that can satisfy a match. Many of the meta characters described
above (.*[\) lose their special meaning within a bracket expression. The right bracket
loses its special meaning if it occurs as the first character in the expression (after an
initial '^', if any).

There are several different forms of bracket expressions, including:

• Matching List — A matching list expression specifies a list that matches any
one of the characters in the list. For example, '[abc]' matches any of the
characters 'a', 'b', or 'c'.

• Non-Matching List — A non-matching list expression begins with a '^', and
specifies a list that matches any character not in the list. For example, '[^abc]'
matches any characters except 'a', 'b', or 'c'. The '^' only has this special
meaning when it occurs first in the list immediately after the opening '['.

• Range Expression — A range expression consists of 2 characters separated by
a hyphen, and matches any characters lexically within the range indicated. For

^ $ Anchors. A '^' matches the beginning of a string, and '$'
matches the end. As we have seen above, regular expressions
usually match any possible substring. Anchors can be used to
change this and require a match to occur at the beginning or
end of the string. For example, '^abc' will only match strings
that start with the string 'abc'. '^abc$' will only match a string
containing only 'abc'.

Character Description

Table 6-3: Meta characters (Continued)
Learning About Regular Expressions Building IDL Applications

Chapter 6: Strings 131
example, '[A-Za-z]' will match any alphabetic character, upper or lower case.
Another way to get this effect is to specify '[a-z]' and use the FOLD_CASE
keyword to STREGEX.

Special Characters in Regular Expressions

Special (non-printing) characters are often represented in regular expressions using
backslash escape codes, such as \t to represent a TAB character or \n to represent a
newline character. IDL does not support these backslash codes in regular expressions.
See “Non-Printing Characters” on page 127 for information on how to represent
these special characters in regular expressions.
Building IDL Applications Learning About Regular Expressions

132 Chapter 6: Strings
Learning About Regular Expressions Building IDL Applications

Chapter 7:

Arrays
The following topics are covered in this chapter:
Overview . 134
Array Subscripting 137
Subscript Ranges . 142
Dimensionality of Subarrays 144

Using Arrays as Subscripts 146
Combining Subscripts 148
Storing Elements with Array Subscripts . 150
Columns, Rows, and Array Majority 151
Building IDL Applications 133

134 Chapter 7: Arrays
Overview

Arrays are multidimensional data sets which are manipulated according to
mathematical rules. An array can be of any IDL data type; saying that an array is of a
particular type means that all elements of the array are of that data type. Array
subscripts provide a means of selecting one or more elements of an array for retrieval
or modification.

One-dimensional arrays are often called vectors. The following IDL statement creates
a vector with five single-precision floating-point elements:

array = [1.0, 2.0, 3.0, 4.0, 5.0]

Two-dimensional arrays are often used in image processing and in mathematical
operations (where they are often called matrices). The following IDL statement
creates a three-column by two-row array:

array = [[1, 2, 3], [4, 5, 6]]

Use the PRINT procedure to display the contents of the array:

PRINT, array

IDL prints:

 1 2 3
 4 5 6

Arrays can have up to eight dimensions in IDL. The following IDL statement creates
a three-column by four-row by five-layer deep three-dimensional array. In this case,
we use the IDL FINDGEN function to create an array whose elements are set equal to
the floating-point values of their one-dimensional subscripts:

array = FINDGEN(3, 4, 5)

IDL is an array-oriented language. This means that any operation on an array is
performed on all elements of the array, without the need for the user to write an
explicit loop. The resulting code is easier to read and understand, and executes more
efficiently. For example, suppose you have a three-dimensional array and wish to
divide each element by two. A language that does not support array operations would
require you to write a loop to perform the division for each element; IDL can
accomplish the division in a single line of code:

array = array/2
Overview Building IDL Applications

Chapter 7: Arrays 135
Array Subscripts

Subscripts are used to select individual elements of an array for retrieval or
modification. The subscript of an array element denotes the address of the element
within the array. In the simple case of a one-dimensional array (that is, an n-element
vector), elements are numbered starting at 0 with the first element, 1 for the second
element, and running to n − 1, the subscript of the last element.

The syntax of a subscript reference is:

Variable_Name [Subscript_ List]

or

(Array_Expression)[Subscript_List]

The Subscript_List is simply a list of expressions, constants, or subscript ranges
containing the values of one or more subscripts. Subscript expressions are separated
by commas if there is more than one subscript. In addition, multiple elements are
selected with subscript expressions that contain either a contiguous range of
subscripts or an array of subscripts.

When a subscripted variable reference appears in an expression, the values of the
selected array elements are extracted. For example, the following statements extract
the first two values from array by subscripting with a second array (indices) and
store the values in the variable new_array:

array = [1.0, 2.0, 3.0, 4.0, 5.0]
indices = [0, 1]
new_array = array[indices]
PRINT, new_array

IDL prints:

1.0 2.0

When a subscript reference appears on the left side of an assignment statement, new
values are stored in selected array elements, without altering the remaining elements.
For example, the following statements change the third element of array:

array = [1.0, 2.0, 3.0, 4.0, 5.0]
array[2] = 9.0
PRINT, array

IDL prints:

1.00000 2.00000 9.00000 4.00000 5.00000

Chapter 12, “Assignment” discusses the use of the different types of assignment
statements when storing into arrays.
Building IDL Applications Overview

136 Chapter 7: Arrays
Similarly, arrays with multiple dimensions are addressed by specifying a subscript
expression for each dimension. A two-dimensional array with n columns and m rows,
is addressed with a subscript of the form [i, j], where 0 ≤ i < n and 0 ≤ j < m. The first
subscript, i, is the column index; the second subscript, j, is the row index. For
example, the following statements select and print the element in the first column of
the second row of array:

array = [[1, 2, 3], [4, 5, 6]]
PRINT, array[0,1]

IDL prints:

4

Overview Building IDL Applications

Chapter 7: Arrays 137
Array Subscripting

Subscripts can be used either to retrieve the value of one or more array elements or to
designate array elements to receive new values. The expression arr[12] denotes the
value of the 13th element of arr (because subscripts start at 0), while the statement
arr[12] = 5 stores the number 5 in the 13th element of arr without changing the
other elements.

Elements of multidimensional arrays are specified by using one subscript for each
dimension. IDL’s notational convention is that for generic arrays and images, the first
subscript denotes the column and the second subscript denotes the row. When arrays
are used for mathematical operations (linear algebra, for example), the convention is
reversed: the first subscript denotes the row and the second subscript denotes the
column.

If A is a 2-element by 3-element array (using [column, row] notation), the elements
are stored in memory as follows:

The elements are ordered in memory as: A0,0, A1,0, A0,1, A1,1, A0,2, A1,2. This
ordering is like Fortran. It is the opposite of the order used by C/C++. For more
information on how IDL arranges multidimensional data in memory, see “Columns,
Rows, and Array Majority” on page 151. For a discussion of how the ordering of such
data relates to IDL mathematics routines, see “Arrays and Matrices” in Chapter 22 of
the Using IDL manual.

Stored in Memory

A0,0 A1,0 Lowest memory address

A0,1 A1,1 .
.
.

A0,2 A1,2 Highest memory address

Table 7-1: Storage of IDL Array Elements in Memory
Building IDL Applications Array Subscripting

138 Chapter 7: Arrays
Note
When comparing IDL’s memory layout to other languages, remember that those
languages usually use a mathematical [row, column] notation for array dimensions,
which is the reverse of the array notation used for the example above. See
“Columns, Rows, and Array Majority” on page 151 for more on comparing IDL’s
array layout to that of other languages.

Arrays that contain image data are usually displayed in graphics displays with row
zero at the bottom of the screen, matching the display’s coordinate system (although
this order can be reversed by setting the system variable !ORDER to a nonzero
value). Array data are printed to standard text output (such as the IDL output log or
console window) with the first row on top.

Elements of multidimensional arrays also can be specified using only one subscript,
in which case the array is treated as a vector with the same number of points. In the
above example, A[2] is the same element as A[0, 1], and A[5] is the same element
as A[1, 2].

If an attempt is made to reference a nonexistent element of an array using a scalar
subscript (a subscript that is negative or larger than the size of the dimension minus
1), an error occurs and program execution stops.

Subscripts can be any type of vector or scalar expression. If a subscript expression is
not integer, a longword integer copy is made and used to evaluate the subscript.

Note
When floating-point numbers are converted to longword integers, they are
truncated, not rounded. Thus, specifying A[1.99] is the same as specifying A[1].

Extra Dimensions

When creating arrays, IDL eliminates all size 1, or “degenerate”, trailing dimensions.
Thus, the statements

A = INTARR(10, 1)
HELP, A

print the following:

A INT = Array[10]

This removal of superfluous dimensions is usually convenient, but it can cause
problems when attempting to write fully general procedures and functions. Therefore,
IDL allows you to specify “extra” dimensions for an array as long as the extra
dimensions are all zero.
Array Subscripting Building IDL Applications

Chapter 7: Arrays 139
For example, consider a vector defined as follows:

arr = INDGEN(10)

The following are all valid references to the sixth element of arr:

X = arr[5]
X = arr[5, 0]
X = arr[5, 0, 0, *, 0]

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

The REFORM function can be used to add degenerate trailing dimensions to an array
if desired. For example, the following statements create a 10 element integer vector,
and then alter the dimensions to be [10, 1]:

A = INTARR(10)
A = REFORM(A, 10, 1, /OVERWRITE)

Subscripting Scalars

Scalar quantities in IDL can be thought of as the first element of an array with one
dimension. They can be subscripted with a zero reflecting the first and only position.
Therefore,

;Assign the value of 5 to A.
A = 5

;Print the value of the first element of A.
PRINT, A[0]

IDL prints:

5

If we redefine the first element of A:

;Redefine the first element of A.
A[0] = 6

PRINT, A

IDL prints:

6

Building IDL Applications Array Subscripting

140 Chapter 7: Arrays
Note
You cannot subscript a variable that has not yet been defined. Thus, if the variable B
has not been previously defined, the statement:

B[0] = 9

will fail with the error “variable is undefined.”

Array Subscript Syntax: [] vs. ()

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Function calls use parentheses in a visually identical way to specify argument lists.
As a result, the IDL compiler was not able to distinguish between arrays and
functions by looking at the statement syntax. For example, the IDL statement

value = fish(5)

could either set the variable value equal to the sixth element of an array named fish,
or set value equal to the result of passing the argument 5 to a function called fish.

To determine if it is compiling an array subscript or a function call, IDL checks its
internal table of known functions. If it finds a function name that matches the
unknown element in the command (fish, in the above example), it calls that function
with the argument specified. If IDL does not find a function with the correct name in
its table of known functions, it assumes that the unknown element is an array, and
attempts to return the value of the designated element of that array. This rule
generally gives the desired result, but it can be fooled into the wrong choice under
certain circumstances, much to the surprise of the unwary programmer.

For this reason, versions of IDL beginning with version 5.0 use square brackets rather
than parentheses for array subscripting. An array subscripted in this way is
unambiguously interpreted as an array under all circumstances. In IDL 5.0 and later:

value = fish[5]

sets value to the sixth element of an array named fish.
Array Subscripting Building IDL Applications

Chapter 7: Arrays 141
Due to the large amount of existing IDL code written in the older syntax, as well as
the ingrained habits of thousands of IDL users, IDL continues to allow the old syntax
to be used, subject to the ambiguity mentioned above. That is, while

value = fish[5]

is unambiguous,

value = fish(5)

is still subject to the same ambiguity—and rules—that applied in IDL versions prior
to version 5.0

Since the older syntax has been used widely, you should not be surprised to see it
from time to time. However, square brackets are the preferred form, and should be
used for new code.
Building IDL Applications Array Subscripting

142 Chapter 7: Arrays
Subscript Ranges

Subscript ranges are used to select a subarray from an array by giving the starting and
ending subscripts of the subarray in each dimension. Subscript ranges can be
combined with scalar and array subscripts and with other subscript ranges. Any
rectangular portion of an array can be selected with subscript ranges. There are six
types of subscript ranges:

• A range of subscripts, written [e0:e1], denoting all elements whose subscripts
range from the expression e0 through e1 (e0 must not be greater than e1). For
example, if the variable vec is a 50-element vector, vec[5:9] is a five-
element vector composed of vec[5] through vec[9].

• A range of subscripts, written [e0:e1:e2], denoting every e2th element within
the range of subscripts e0 through e1 (e0 must not be greater than e1). e2 is
referred to as the subscript stride. The stride value must be greater than or
equal to 1. If it is set to the value 1, the resulting subscript expression is
identical in meaning to [e0:e1], as described above. For example, if the variable
vec is a 50-element vector, vec[5:13:2] is a five-element vector composed
of vec[5], vec[7], vec[9], vec[11], and vec[13].

• All elements from a given element to the last element of the dimension, written
as [e0:*]. Using the above example, vec[10:*] is a 40-element vector made
from vec[10] through vec[49].

• Every e2th element from a given element to the last element of the dimension,
written as [e0:*:e2]. e2 is referred to as the subscript stride. The stride value
must be greater than or equal to 1. If it is set to the value 1, the resulting
subscript expression is identical in meaning to [e0:*], as described above.
Using the above example, vec[10:*:4] is a 10-element vector made from
every fourth element between vec[10] through vec[49].

• A simple subscript, [n]. When used with multidimensional arrays, simple
subscripts specify only elements with subscripts equal to the given subscript in
that dimension.

• All elements of a dimension, written [*]. This form is used with
multidimensional arrays to select all elements along the dimension. For
example, if arr is a 10-column by 12-row array, arr[*, 11] is the last row
of arr, composed of elements [arr[0,11], arr[1,11], ...,
arr[9,11]], and is a 10-element row vector. Similarly, arr[0, *] is the
first column of arr, [arr[0,0], arr[0,1],..., arr[0,11]], and its
dimensions are 1 column by 12 rows.
Subscript Ranges Building IDL Applications

Chapter 7: Arrays 143
Multidimensional subarrays can be specified using any combination of the above
forms. For example, arr[*, 0:4] is made from all columns of rows 0 to 4 of arr
or a 10-column, 5-row array. The table below summarizes the possible forms of
subscript ranges:

Form Description

e A simple subscript expression

e0:e1 Subscript range from e0 to e1

e0:e1:e2 Subscript range from e0 to e1 with a stride of e2

e0:* All points from element e0 to end

e0:*:e2 All points from element e0 to end with a stride of e2

* All points in the dimension

Table 7-2: Subscript Ranges
Building IDL Applications Subscript Ranges

144 Chapter 7: Arrays
Dimensionality of Subarrays

The dimensions of an extracted subarray are determined by the size in each
dimension of the subscript range expression. In general, the number of dimensions is
equal to the number of subscripts and subscript ranges. The size of the n-th dimension
is equal to one if a simple subscript was used to specify that dimension in the
subscript; otherwise, it is equal to the number of elements selected by the
corresponding range expression.

Degenerate dimensions (trailing dimensions with a size of one) are removed. If arr
is a 10-column by 12-row array, the expression arr[*,11] results in a row vector
with a single dimension. (The result of the expression is a 10-column by 1-row array;
the last dimension is degenerate and is removed.) On the other hand, the expression
arr[0, *] became a column vector with dimensions of [1, 12], showing that the
structure of columns is preserved because the dimension with a size of one does not
appear at the end.

To see this, enter the following statements in IDL:

arr = INDGEN(10,12)
HELP, arr
HELP, arr[*,11]
HELP, arr[0,*]

Examples

In the following examples, vec is a 50-element floating-point vector, and arr is a 10-
column by 12-row integer array. Some typical subscript range expressions are as
follows:

vec = FINDGEN(50)
arr = INDGEN(10,12)

;Elements 5 through 10 of vec, a six-element vector.
vec[5:10]

;A three-element vector.
vec[I - 1:I + 1]

;The same vector.
[vec[I - 1], vec[I], vec[I + 1]]

;Elements from vec[4] to the end, a 46-element (50-4) vector.
vec[4:*]

Values of the elements with even subscripts in vec:
Dimensionality of Subarrays Building IDL Applications

Chapter 7: Arrays 145
vec[0:*:2]

;Values of the elements with odd subscripts in vec:
vec[1:*:2]

;The fourth column of arr, a 1 column by 12 row vector.
arr[3, *]

;The first row of arr, a 10-element row vector. Note, the last
;dimension was removed because it was degenerate.
[arr[3, 0], arr[3, 1], ..., arr[3, 11]]
arr[*, 0]

;The nine-point neighborhood surrounding arr[X,Y], a 3 by 3 array.
arr[X - 1:X + 1, Y - 1:Y + 1]

;Three columns of arr, a 3 by 12 subarray:
arr[3:5,*]

See Chapter 12, “Assignment” for a description of the process of assigning values to
subarrays.
Building IDL Applications Dimensionality of Subarrays

146 Chapter 7: Arrays
Using Arrays as Subscripts

Arrays can be used as subscripts to other arrays. Each element in the subscript array
selects an element in the subscripted array. When subscript arrays are used in
conjunction with subscript ranges (as discussed in “Combining Subscripts” on
page 148), more than one element may be selected for each element of the subscript
array.

If no subscript ranges are present, the length and dimensionality of the result is the
same as that of the subscript expression. The type of the result is the same as that of
the subscripted array. If only one subscript is present, all subscripts are interpreted as
if the subscripted array has one dimension.

In the simple case of a single subscript array, the process can be described as follows:

Here, the vector V has n elements, and the subscript array S has m elements. The
result V[S] has the same dimensionality and number of elements as S.

Clipping

If an element of the subscript array is less than or equal to zero, the first element of
the subscripted array is selected. If an element of the subscript array is greater than or
equal to the last subscript in the subscripted array, the last element is selected. This
clipping of out of bounds elements can be disabled within a routine by using the
STRICTARRSUBS option to the COMPILE_OPT statement. (See the documentation
for “COMPILE_OPT” in the IDL Reference Guide manual for details.) If
STRICTARRSUBS is in force, then array subscripts that refer to out of bounds
elements will instead cause IDL to issue an error and stop execution, just as an out-
of-range scalar subscript does.

V S[]

VSi
if 0 Si n<≤

V0 if Si 0<

Vn 1– if Si n≥








= for 0 i m<≤
Using Arrays as Subscripts Building IDL Applications

Chapter 7: Arrays 147
Example

As an example, consider the commands:

A = [6, 5, 1, 8, 4, 3]
B = [0, 2, 4, 1]
C = A[B]
PRINT, C

This produces the following output:

6 1 4 5

The first element of C is 6 because that is the number in the 0 position of A. The
second is 1 because the value in B of 2 indicates the third position in A, and so on.

As another example, assume the variable A is a 10 by 10 array. Here, the subscripts of
the diagonal elements (A[0,0], A[1,1], ..., A[9, 9]) are equal to 0, 11, 22,
…, 99. The elements of the vector INDGEN(10)*11 also are equal to 0, 11, 22, ...,
99, so the expression A[INDGEN(10) * 11] yields a 10-element vector containing
to the diagonal elements of A.

The WHERE function, which returns a vector of subscripts, can be used to select
elements of an array using expressions similar to A[WHERE(A GT 0)], which results
in a vector composed only of the elements of A that are greater than 0.
Building IDL Applications Using Arrays as Subscripts

148 Chapter 7: Arrays
Combining Subscripts

Subscript arrays can be combined with subscript ranges, simple scalar subscripts, and
other subscript arrays.

When IDL encounters a multidimensional subscript expression that contains one or
more subscript arrays, ranges, or scalars, it builds a subscript array by processing
each element in the subscript expression from left to right. The resulting subscript
array is then applied to the variable to be subscripted. As with other subscript
operations, trailing degenerate dimensions (those with a size of 1) are eliminated.

Subscript Ranges

When combining a subscript array with a subscript range, the result is an array of
subscripts constructed by combining each element of the subscript array with each
member of the subscript range. Combining an n-element array with an m-element
subscript range yields an nm-element subscript. Each dimension of the result is equal
to the number of elements in the corresponding subscript array or range.

For example, the expression A[[1, 3, 5], 7:9] is a nine-element, 3 × 3 array
composed of the following elements:

Each element of the three-element subscript array [1, 3, 5] is combined with each
element of the three-element range (7, 8, 9).

Another example shows the common process of zeroing the edge elements of a two-
dimensional n × m array:

;Zero the first and last rows.
A[*, [0, M-1]] = 0

;Zero the first and last columns.
A[[0, N - 1], *] = 0

A1 7, A3 7, A5 7,

A1 8, A3 8, A5 8,

A1 9, A3 9, A5 9,
Combining Subscripts Building IDL Applications

Chapter 7: Arrays 149
Other Subscript Arrays

When combining two subscript arrays, each element of the first subscript array is
combined with the corresponding element of the second subscript array. The two
subscript arrays must have the same number of elements. The resulting subscript
array has the same number of elements as its constituents. For example, the
expression A[[1, 3], [5, 9]] yields the elements A[1,5] and A[3,9].

Scalars

Combining an n-element subscript range or n-element subscript array with a scalar
yields an n-element result. The value of the scalar is combined with each element of
the range or array. For example, the expression A[[1, 3, 5], 8] yields the three-
element vector composed of the elements A[1,8], A[3,8], and A[5,8]. The
second dimension of the result is 1 and is eliminated because it is degenerate. The
expression A[8, [1, 3, 5]] is the 1 × 3-column vector A[8,1], A[8,3], and
A[8,5], illustrating that leading dimensions are not eliminated.
Building IDL Applications Combining Subscripts

150 Chapter 7: Arrays
Storing Elements with Array Subscripts

One or more values can be stored in selected elements of an array by using an array
expression as a subscript for the array on the left side of an assignment statement.
Values are taken from the expression on the right side of the assignment statement
and stored in the elements whose subscripts are given by the array subscript. The
right-hand expression can be either a scalar or array.

The subscript array is converted to longword type before use if necessary. Regardless
of structure, this subscript array is interpreted as a vector. For details and examples of
storing with vector subscripts, see Chapter 12, “Assignment”.

Examples

The statement:

A[[2, 4, 6]] = 0

zeroes elements A[2], A[4], and A[6], without changing other elements of A. The
statement:

A[[2, 4, 6]] = [4, 16, 36]

stores 4 in A[2], 16 in A[4], and 36 in A[6].

One way to create a square n × n identity matrix is as follows:

A = FLTARR(N, N)
A[INDGEN(N) * (N + 1)] = 1.0

The expression INDGEN(N)*(N + 1) results in a vector containing the subscripts of
the diagonal elements [0, N+1, 2N+2, ..., (N-1)*(N+1)].

Yet another way is to use two array subscripts. The statements:

A = FLTARR(N, N)
A[INDGEN(N), INDGEN(N)] = 1.0

create the array subscripts [[0,0], [1,1], ..., [n-1, n-1]]. The statement:

A[WHERE(A LE 0)] = -1

sets elements of A with values of zero or less to -1.

The following statements create a 10x10 identity matrix:

A = FLTARR(10, 10)
A[INDGEN(10) * 11] = 1
Storing Elements with Array Subscripts Building IDL Applications

Chapter 7: Arrays 151
Columns, Rows, and Array Majority

Computer hardware does not directly support the concept of multidimensional arrays.
Computer memory is unidimensional, providing memory addresses that start at zero
and increase serially to the highest available location. Multidimensional arrays are
therefore a software concept: software (IDL in this case) maps the elements of a
multi-dimensional array into a contiguous linear span of memory addresses. There
are two ways that such an array can be represented in one-dimensional linear
memory. These two options, which are explained below, are commonly called row
major and column major. All programming languages that support multidimensional
arrays must choose one of these two possibilities. This choice is a fundamental
property of the language, and it affects how programs written in different languages
share data with each other.

Before describing the meaning of these terms and IDL’s relationship to them, it is
necessary to understand the conventions used when referring to the dimensions of an
array. For mnemonic reasons, people find it useful to associate higher level meanings
with the dimensions of multi-dimensional data. For example, a 2-D variable
containing measurements of ozone concentration on a uniform grid covering the earth
might associate latitude with the first dimension, and longitude with the second
dimension. Such associations help people understand and reason about their data, but
they are not fundamental properties of the language itself. It is important to realize
that no matter what meaning you attach to the dimensions of an array, IDL is only
aware of the number of dimensions and their size, and does not work directly in terms
of these higher order concepts. Another way of saying this is that arr[d1, d2]
addresses the same element of variable arr no matter what meaning you associate
with the two dimensions.

In the IDL world, there are two such conventions that are widely used:

• In image processing, the first dimension of an image array is the column, and
the second dimension is the row. IDL is widely used for image processing, and
has deep roots in this area. Hence, the dominant convention in IDL
documentation is to refer to the first dimension of an array as the column and
the second dimension as the row.

• In the standard mathematical notation used for linear algebra, the first
dimension of an array (or matrix) is the row, and the second dimension is the
column. Note that this is the exact opposite of the image processing
convention.
Building IDL Applications Columns, Rows, and Array Majority

152 Chapter 7: Arrays
In computer science, the way array elements are mapped to memory is always
defined using the mathematical [row, column] notation. Much of the following
discussion utilizes the m x n array shown in Figure 7-1, with m rows and n columns:

Given such a 2-dimensional matrix, there are two ways that such an array can be
represented in 1-dimensional linear memory — either row by row (row major), or
column by column (column major):

• Contiguous First Dimension (Column Major): In this approach, all elements
of the first dimension (m in this case) are stored contiguously in memory. The
1-D linear address of element Ad1, d2 is therefore given by the formula
(d2*m + d1). As you move linearly through the memory of such an array,
the first (leftmost) dimension changes the fastest, with the second dimension
(n, in this case) incrementing every time you come to the end of the first
dimension:

A0,0, A1,0, …, Am-1,0, A0,1, A1,1, …, Am-1,1, …

Computer languages that map multidimensional arrays in this manner are
called column major, following the mathematical [row, column] notation. IDL
and Fortran are both examples of column-major languages.

• Contiguous Second Dimension (Row Major): In this approach, all elements
of the second dimension (n, in this case) are stored contiguously in memory.
The 1-D linear address of element Ad1, d2 is therefore given by the formula
(d1*n + d2). As you move linearly through the memory of such an array,
the second dimension changes the fastest, with the first dimension (m in this
case) incrementing every time you come to the end of the second dimension:

A0,0, A0,1, …, A0,n-1, A1,0, A1,1, …, A1,n-1, …

Computer languages that map multidimensional arrays in this manner are
known as row major. Examples of row-major languages include C and C++.

Figure 7-1: An m x n array represented in mathematical notation.

A0 0, A0 1, … A0 n 1–,

A1 0, A1 1, … A1 n 1–,

… … … …
Am 1– 0, Am 1– 1, … Am 1– n 1–,
Columns, Rows, and Array Majority Building IDL Applications

Chapter 7: Arrays 153
The terms row major and column major are widely used to categorize programming
languages. It is important to understand that when programming languages are
discussed in this way, the mathematical convention — in which the first dimension
represents the row and the second dimension represents the column — is used. If you
use the image-processing convention — in which the first dimension represents the
column and the second dimension represents the row — you should be careful to
make note of the distinction.

Note
IDL users who are comfortable with the IDL image-processing-oriented array
notation [column, row] frequently follow the reasoning outlined above and
incorrectly conclude that IDL is a row-major language. The often-overlooked cause
of this mistake is that the standard definition of the terms row major and column
major assume the mathematical [row, column] notation. In such cases, it can be
helpful to look beyond the row/column terminology and think in terms of which
dimension is contiguous in memory.

Note that the m x n array discussed above could be represented with equal accuracy
as having m columns and n rows, as shown in Figure 7-2. This corresponds to the
image-processing [column, row] notation. It’s important to note that while the
representation shown is the transpose of the representation in Figure 7-1, the data
stored in the computer memory are identical. Only the two-dimensional
representation, which takes its form from the notational convention used, has
changed.

IDL’s choice of column-major array layout reflects its roots as an image processing
language. The fact that the elements of the first dimension are contiguous means that
the elements of each row of an image array (using [column, row] notation, as shown
in Figure 7-2) are contiguous. This is the order expected by most graphics hardware,
providing an efficiency advantage for languages that naturally store data that way.

Figure 7-2: An m x n array represented in image-processing notation.

A0 0, A1 0, … Am 1– 0,

A0 1, A1 1, … Am 1– 1,

… … … …
A0 n 1–, A1 n 1–, … Am 1– n 1–,
Building IDL Applications Columns, Rows, and Array Majority

154 Chapter 7: Arrays
Also, this ordering minimizes virtual memory overhead, since images are accessed
linearly.

It should be clear that the higher-level meanings associated with array dimensions
(row, column, latitude, longitude, etc.) are nothing more than a human notational
device. In general, you can assign any meaning you wish to the dimensions of an
array, and as long as your use of those dimensions is consistent, you will get the
correct answer, regardless of the order in which IDL chooses to store the actual array
elements in computer memory. Thus, it is usually possible to ignore these issues.
There are times however, when understanding memory layout can be important:

Sharing Data With Other Languages — If binary data written by a row major
language is to be input and used by IDL, transposition of the data is usually required
first. Similarly, if IDL is writing binary data for use by a program written in a row
major language, transposition of the data before writing (or on input by the other
program) is often required.

Calling Code Written In Other Languages — When passing IDL data to code
written in a row major language via dynamic linking (CALL_EXTERNAL,
LINKIMAGE, DLMs), it is often necessary to transpose the data before passing it to
the called code, and to transpose the results.

Matrix Multiplication — Understanding the difference between the IDL # and ##
operators requires an understanding of array layout. For a discussion of how the
ordering of such data relates to IDL mathematics routines, see “Arrays and Matrices”
in Chapter 22 of the Using IDL manual.

1-D Subscripting Of Multidimensional Array — IDL allows you to index
multidimensional arrays using a single 1-D subscript. For example, given a two
dimensional 5x7 array, ARRAY[2,3] and ARRAY[17] refer to the same array
element. Knowing this requires an understanding of the actual array layout in
memory (d2*m + d1, or 3*5+2, which yields 17).

Efficiency — Accessing memory in the wrong order can impose a severe
performance penalty if your data is larger than the physical memory in your
computer. Accessing elements of an array along the contiguous dimension minimizes
the amount of memory paging required by the virtual memory subsystem of your
computer hardware, and will therefore be the most efficient. Accessing memory
across the non-contiguous dimension can cause each such access to occur on a
different page of system memory. This forces the virtual memory subsystem into a
cycle in which it must continually force current pages of memory to disk in order to
make room for new pages, each of which is only momentarily accessed. This
inefficient use of virtual memory is commonly known as thrashing.
Columns, Rows, and Array Majority Building IDL Applications

Chapter 8:

Pointers
The following topics are covered in this chapter:
Overview . 156
Heap Variables . 157
Creating Heap Variables 159
Saving and Restoring Heap Variables 160
Pointer Heap Variables 161
IDL Pointers . 162

Operations on Pointers 165
Dangling References 169
Heap Variable Leakage 170
Pointer Validity . 172
Freeing Pointers . 173
Pointer Examples 174
Building IDL Applications 155

156 Chapter 8: Pointers
Overview

In order to build linked lists, trees, and other dynamic data structures, it must be
possible to access variables via lightweight references that may have more than one
name. Further, these names might have different lifetimes, so the lifetime of the
variable that actually holds the data must be separate from the lifetime of the tokens
that are used to access it.

Beginning with IDL version 5, IDL includes a new pointer data type to facilitate the
construction of dynamic data structures. Although there are similarities between IDL
pointers and machine pointers as implemented in languages such as C, it is important
to understand that they are not the same thing. IDL pointers are a high level IDL
language concept and do not have a direct one-to-one mapping to physical hardware.
Rather than pointing at locations in computer memory, IDL pointers point at heap
variables, which are special dynamically allocated IDL variables. Heap variables are
global in scope, and exist until explicitly destroyed.

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of the files
mentioned are located in the examples/doc subdirectory of the IDL distribution. By
default, this directory is part of IDL’s path; if you have not changed your path, you
will be able to run the examples as described here. See “!PATH” in the IDL Reference
Guide manual for information on IDL’s path.
Overview Building IDL Applications

Chapter 8: Pointers 157
Heap Variables

Heap variables are a special class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. (See Chapter 23, “Object
Basics” for more information on IDL objects.) In IDL documentation of pointers and
objects, heap variables accessible via pointers are called pointer heap variables, and
heap variables accessible via object references are called object heap variables.

Note
Pointers and object references have many similarities, the strongest of which is that
both point at heap variables. It is important to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use both in
a given program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:

• Facilitate object oriented programming.

• Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved as well. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

• Are manipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

• Can be used to construct arbitrary, fully general data structures in conjunction
with pointers.
Building IDL Applications Heap Variables

158 Chapter 8: Pointers
Note
If you have used versions of IDL prior to version 5, you may be familiar with
handles. Because IDL pointers provide a more complete and robust way of building
dynamic data structures, RSI recommends that you use pointers rather than handles
when developing new code. See Appendix I, “Obsolete Features” in the IDL
Reference Guide manual for a discussion of RSI’s policy on language features that
have been superseded in this manner.
Heap Variables Building IDL Applications

Chapter 8: Pointers 159
Creating Heap Variables

Heap variables can be created only by the pointer creation function PTR_NEW or the
object creation function OBJ_NEW. (See Chapter 23, “Object Basics” for a
discussion of object creation.) Copying a pointer or object reference does not create a
new heap variable. This is markedly different from the way IDL handles “regular”
variables. For example, with the statement:

A = 1.0

you create a new IDL floating-point variable with a value of 1.0. The following
statement:

B = A

creates a second variable with the same type and value as A.

In contrast, if you create a new heap variable with the following command:

C = PTR_NEW(2.0d)

the variable C contains not the double-precision floating-point value 2.0, but a pointer
to a heap variable that contains that value. Copying the variable C with the following
statement:

D = C

does not create another heap variable, but rather creates a second pointer to the same
heap variable. In this example, the HELP command would reveal:

% At $MAIN$
A FLOAT = 1.00000
B FLOAT = 1.00000
C POINTER = <PtrHeapVar1>
D POINTER = <PtrHeapVar1>

The variables C and D are both pointers to the same heap variable. (The actual name
assigned to a heap variable is arbitrary.) Changing the value stored in the heap
variable would be reflected when dereferencing either C or D (dereferencing is
discussed in “Dereference” on page 166).

Destroying or redefining either C, D, or both variables would leave the contents of the
heap variable unchanged. When all pointers or references to a given heap variable are
destroyed, the heap variable still exists and holds whatever memory has been
allocated for it. See “Heap Variable Leakage” on page 170 for further discussion. If
the heap variable itself is destroyed, pointers to the heap variable may still exist, but
will be invalid. See “Dangling References” on page 169.
Building IDL Applications Creating Heap Variables

160 Chapter 8: Pointers
Saving and Restoring Heap Variables

The SAVE and RESTORE procedures work for heap variables just as they work for
all other supported types. When IDL saves a pointer or object reference in a save file,
it recursively saves the heap variables that are referenced by that pointer or object
reference. SAVE handles circular data structures correctly. You can build a large,
complicated, self-referential data structure, and then save the entire construct with a
call to SAVE to save the single pointer or object reference that points to the head of
the structure. For example, you can save a pointer to the root of a binary tree and the
entire tree will be saved.

The internal identifier of a given heap variable is dynamically allocated at run time,
and will differ between IDL sessions. As a result, the RESTORE operation maps all
saved pointers and object references to their new values in the current session.
Saving and Restoring Heap Variables Building IDL Applications

Chapter 8: Pointers 161
Pointer Heap Variables

Pointer heap variables are IDL heap variables that are accessible only via pointers.
While there are many similarities between object references and pointers, it is
important to understand that they are not the same type, and cannot be used
interchangeably. Pointer heap variables are created using the PTR_NEW and
PTRARR functions. For more information on objects, see Chapter 23, “Object
Basics”.
Building IDL Applications Pointer Heap Variables

162 Chapter 8: Pointers
IDL Pointers

As illustrated above, you must use a special IDL routine to create a pointer to a heap
variable. Two routines are available: PTR_NEW and PTRARR. Before discussing
these functions, however, it is useful to examine the concept of a null pointer.

Null Pointers

The Null Pointer is a special pointer value that is guaranteed to never point at a valid
heap variable. It is used by IDL to initialize pointer variables when no other
initializing value is present. It is also a convenient value to use at the end nodes in
data structures such as trees and linked lists.

It is important to understand the difference between a null pointer and a pointer to an
undefined or invalid heap variable. The second case is a valid pointer to a heap
variable that does not currently contain a usable value. To make the difference clear,
consider the following IDL statements:

;The variable A contains a null pointer.
A = PTR_NEW()
;The variable B contains a pointer to a heap variable with an
;undefined value.
B = PTR_NEW(/ALLOCATE_HEAP)

HELP, A, B, *B

IDL prints:

A POINTER = <NullPointer>
B POINTER = <PtrHeapVar1>
<PtrHeapVar1> UNDEFINED = <Undefined>

The primary difference is that it is possible to write a useful value into a pointer to an
undefined variable, but this is never possible with a null pointer. For example, attempt
to assign the value 34 to the null pointer:

*A = 34

IDL prints:

% Unable to dereference NULL pointer: A.
% Execution halted at: $MAIN$

Assign the value 34 to a previously-undefined heap variable:

*B = 34
PRINT, *B
IDL Pointers Building IDL Applications

Chapter 8: Pointers 163
IDL prints:

 34

Similarly, the null pointer is not the same thing as the result of PTR_NEW(0).
PTR_NEW(0) returns a pointer to a heap variable that has been initialized with the
integer value 0.

The PTR_NEW Function

Use the PTR_NEW function to create a single pointer to a new heap variable. If you
supply an argument, the newly-created heap variable is set to the value of the
argument. For example, the command:

ptr1 = PTR_NEW(FINDGEN(10))

creates a new heap variable that contains the ten-element floating point array created
by FINDGEN, and places a pointer to this heap variable in ptr1.

Note that the argument to PTR_NEW can be of any IDL data type, and can include
any IDL expression, including calls to PTR_NEW itself. For example, the command:

ptr2 = PTR_NEW({name:'', next:PTR_NEW()})

creates a pointer to a heap variable that contains an anonymous structure with two
fields: the first field is a string, the second is a pointer. We will develop this idea
further in the examples at the end of this chapter.

If you do not supply an argument, the newly-created pointer will be a null pointer. If
you wish to create a new heap variable but do not wish to initialize it, use the
ALLOCATE_HEAP keyword.

See “PTR_NEW” in the IDL Reference Guide manual for further details.

The PTRARR Function

Use the PTRARR function to create an array of pointers of up to eight dimensions.
By default, every element of the array created by PTRARR is set to the null pointer.
For example:

;Create a 2 by 2 array of null pointers.
ptarray = PTRARR(2,2)

;Display the contents of the ptarray variable, and of the first
;array element.
HELP, ptarray, ptarray(0,0)
Building IDL Applications IDL Pointers

164 Chapter 8: Pointers
IDL prints:

PTARR POINTER = Array(2, 2)
<Expression> POINTER = <NullPointer>

If you want each element of the array to point to a new heap variable (as opposed to
being a null pointer), use the ALLOCATE_HEAP keyword. Note that in either case,
you will need to initialize the array with another IDL statement.

See “PTRARR” in the IDL Reference Guide manual for further details.
IDL Pointers Building IDL Applications

Chapter 8: Pointers 165
Operations on Pointers

Pointer variables are not directly usable by many of the operators, functions, or
procedures provided by IDL. You cannot, for example, do arithmetic on them or plot
them. You can, of course, do these things with the heap variables referenced by such
pointers, assuming that they contain appropriate data for the task at hand. Pointers
exist to allow the construction of dynamic data structures that have lifetimes that are
independent of the program scope they are created in.

There are 4 IDL operators that work with pointer variables: assignment, dereference,
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for pointer types and are not defined.

Many non-computational functions and procedures in IDL do work with pointer
variables. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It is worth noting
that the only I/O allowed directly on pointer variables is default formatted output,
where they are printed as a symbolic description of the heap variable they point at.
This is merely a debugging aid for the IDL programmer—input/output of pointers
does not make sense in general and is not allowed. Please note that this does not
imply that I/O on the contents of non-pointer data held in heap variables is not
allowed. Passing the contents of a heap variable that contains non-pointer data to the
PRINT command is a simple example of this type of I/O.

Assignment

Assignment works in the expected manner—assigning a pointer to a variable gives
you another variable with the same pointer. Hence, after executing the statements:

A = PTR_NEW(FINDGEN(10))
B = A
HELP, A, B

A and B both point at the same heap variable and we see the output:

A POINTER = <PtrHeapVar1>
B POINTER = <PtrHeapVar1>
Building IDL Applications Operations on Pointers

166 Chapter 8: Pointers
Dereference

In order to get at the contents of a heap variable referenced by a pointer variable, you
must use the dereference operator, which is * (the asterisk). The dereference operator
precedes the variable dereferenced. For example, if you have entered the above
assignments of the variables A and B:

PRINT, *B

IDL prints:

0.00000 1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

That is, IDL prints the contents of the heap variable pointed at by the pointer variable
B.

Dereferencing Pointer Arrays

Note that the dereference operator requires a scalar pointer operand. This means that
if you are dealing with a pointer array, you must specify which element to
dereference. For example, create a three-element pointer array, allocating a new heap
variable for each element:

ptarr = PTRARR(3, /ALLOCATE_HEAP)

To initialize this array such that the heap variable pointed at by the first pointer
contains the integer zero, the second the integer one, and the third the integer two,
you would use the following statement:

FOR I = 0,2 DO *ptarr[I] = I

Note
The dereference operator is dereferencing only element I of the array for each
iteration. Similarly, if you wanted to print the values of the heap variables pointed
at by the pointers in ptarr, you might be tempted to try the following:

PRINT, *ptarr

IDL prints:

% Expression must be a scalar in this context: PTARR.
% Execution halted at: $MAIN$

To print the contents of the heap variables, use the statement:

FOR I = 0, N_ELEMENTS(ptarr)-1 DO PRINT, *ptarr[I]
Operations on Pointers Building IDL Applications

Chapter 8: Pointers 167
Dereferencing Pointers to Pointers

The dereference operator can be applied as many times as necessary to access data
pointed at indirectly via multiple pointers. For example, the statement:

A = PTR_NEW(PTR_NEW(47))

assigns to A a pointer to a pointer to a heap variable containing the value 47.

To print this value, use the following statement:

PRINT, **A

Dereferencing Pointers within Structures

If you have a structure field that contains a pointer, dereference the pointer by
prepending the dereference operator to the front of the structure name. For example,
if you define the following structure:

struct = {data:'10.0', pointer:ptr_new(20.0)}

you would use the following command to print the value of the heap variable pointed
at by the pointer in the pointer field:

PRINT, *struct.pointer

Defining pointers to structures is another common practice. For example, if you
define the following pointer:

ptstruct = PTR_NEW(struct)

you would use the following command to print the value of the heap variable pointed
at by the pointer field of the struct structure, which is pointed at by ptstruct:

PRINT, *(*pstruct).pointer

Note that you must dereference both the pointer to the structure and the pointer
within the structure.

Dereferencing the Null Pointer

It is an error to dereference the NULL pointer, an invalid pointer, or a non-pointer.
These cases all generate errors that stop IDL execution. For example:

PRINT, *45

IDL prints:

% Pointer type required in this context: <INT(45)>.
% Execution halted at: $MAIN$
Building IDL Applications Operations on Pointers

168 Chapter 8: Pointers
For example:

A = PTR_NEW() & PRINT, *A

IDL prints:

% Unable to dereference NULL pointer: A.
% Execution halted at: $MAIN$

For example:

A = PTR_NEW(23) & PTR_FREE, A & PRINT, *A

IDL prints:

% Invalid pointer: A.

% Execution halted at: $MAIN$

Equality and Inequality

The EQ and NE operators allow you to compare pointers to see if they point at the
same heap variable. For example:

;Make A a pointer to a heap variable containing 23.
A = PTR_NEW(23)

;B points at the same heap variable as A.
B = A

;C contains the null pointer.
C = PTR_NEW()

PRINT, 'A EQ B: ', A EQ B & $
PRINT, 'A NE B: ', A NE B & $
PRINT, 'A EQ C: ', A EQ C & $
PRINT, 'C EQ NULL: ', C EQ PTR_NEW() & $
PRINT, 'C NE NULL:', C NE PTR_NEW()

IDL prints:

A EQ B: 1
A NE B: 0
A EQ C: 0
C EQ NULL: 1
C NE NULL: 0
Operations on Pointers Building IDL Applications

Chapter 8: Pointers 169
Dangling References

If a heap variable is destroyed, any remaining pointer variable or object reference that
still refers to it is said to contain a dangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message. For example:

;Create a new heap variable.
A = PTR_NEW(23)

;Print A and the value of the heap variable A points to.
PRINT, A, *A

IDL prints:

<PtrHeapVar13> 23

For example:

;Destroy the heap variable.
PTR_FREE, A

;Try to print again.
PRINT, A, *A

IDL prints:

% Invalid pointer: A.
% Execution halted at: $MAIN$

There are several possible approaches to avoiding such errors. The best option is to
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (via the
PTR_VALID or OBJ_VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereference.
Building IDL Applications Dangling References

170 Chapter 8: Pointers
Heap Variable Leakage

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.
For example:

;Create a new heap variable.
A = PTR_NEW(23)

;Set the pointer A equal to the integer zero. The pointer to the
;heap variable created with the first command is lost.
A = 0

Use the HEAP_VARIABLES keyword to the HELP procedure to view a list of heap
variables currently in memory:

HELP, /HEAP_VARIABLES

IDL prints:

<PtrHeapVar14> INT = 23

In this case, the heap variable <PtrHeapVar14> exists and has a value of 23, but there
is no way to reference the variable. There are two options: manually create a new
pointer to the existing heap variable using the PTR_VALID function (see
“PTR_VALID” in the IDL Reference Guide manual), or do manual “Garbage
Collection” and use the HEAP_GC command to destroy all inaccessible heap
variables.

Warning
Object reference heap variables are subject to the same problems as pointer heap
variables. See “OBJ_VALID” in the IDL Reference Guide manual for more
information.

The HEAP_GC procedure causes IDL to hunt for all unreferenced heap variables and
destroy them. It is important to understand that this is a potentially computationally
expensive operation, and should not be relied on by programmers as a way to avoid
writing careful code. Rather, the intent is to provide programmers with a debugging
aid when attempting to track down heap variable leakage. In conjunction with the
VERBOSE keyword, HEAP_GC makes it possible to determine when variables have
leaked, and it provides some hint as to their origin.
Heap Variable Leakage Building IDL Applications

Chapter 8: Pointers 171
Warning
HEAP_GC uses a recursive algorithm to search for unreferenced heap variables. If
HEAP_GC is used to manage certain data structures, such as large linked lists, a
potentially large number of operations may be pushed onto the system stack. If so
many operations are pushed that the stack runs out of room, IDL will crash.

General reference counting, the usual solution to such leaking, is too slow to be
provided automatically by IDL, and careful programming can easily avoid this pitfall.
Furthermore, implementing a reference counted data structure on top of IDL pointers
is easy to do in those cases where it is useful, and such reference counting could take
advantage of its domain specific knowledge to do the job much faster than the general
case.

Another approach would be to write allocation and freeing routines—layered on top
of the PTR_NEW and PTR_FREE routines—that keep track of all outstanding
pointer allocations. Such routines might make use of pointers themselves to keep
track of the allocated pointers. Such a facility could offer the ability to allocate
pointers in named groups, and might provide a routine that frees all heap variables in
a given group. Such an operation would be very efficient, and is easier than reference
counting.
Building IDL Applications Heap Variable Leakage

172 Chapter 8: Pointers
Pointer Validity

Use the PTR_VALID function to verify that one or more pointer variables point to
valid and currently existing heap variables, or to create an array of pointers to existing
heap variables. If supplied with a single pointer as its argument, PTR_VALID returns
TRUE (1) if the pointer argument points at a valid heap variable, or FALSE (0)
otherwise. If supplied with an array of pointers, PTR_VALID returns an array of
TRUE and FALSE values corresponding to the input array. If no argument is
specified, PTR_VALID returns an array of pointers to all existing pointer heap
variables. For example:

;Create a new pointer and heap variable.
A = PTR_NEW(10)

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRINT, "A does not point to a valid heap variable."

IDL prints:

A points to a valid heap variable.

For example:

;Destroy the heap variable.
PTR_FREE, A

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRINT, "A does not point to a valid heap variable."

IDL prints:

A does not point to a valid heap variable.

See “PTR_VALID” in the IDL Reference Guide manual for further details.
Pointer Validity Building IDL Applications

Chapter 8: Pointers 173
Freeing Pointers

The PTR_FREE procedure destroys the heap variables pointed at by pointers
supplied as its arguments. Any memory used by the heap variable is released, and the
heap variable ceases to exist. PTR_FREE is the only way to destroy a pointer heap
variable; if PTR_FREE is not called on a heap variable, it continues to exist until the
IDL session ends, even if no pointers remain to reference it.

Note that the pointers themselves are not destroyed. Pointers that point to nonexistent
heap variables are known as dangling references, and are discussed in more detail in
“Dangling References” on page 169.

See “PTR_FREE” in the IDL Reference Guide manual for further details.

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
all array elements and structure fields. When a valid pointer or object reference is
encountered, that heap variable is marked for removal, and then is recursively
examined for additional heap variables to be freed. In this way, all heap variables that
are referenced directly or indirectly by the input argument are located. Once all such
heap variables are identified, HEAP_FREE releases them in a final pass. Pointers are
released as if the PTR_FREE procedure was called. Objects are released as with a
call to OBJ_DESTROY.

HEAP_FREE is recommended when:

• The data structures involved are highly complex, nested, or variable, and
writing cleanup code is difficult and error prone.

• The data structures are opaque, and the code cleaning up does not have
knowledge of the structure.

See “HEAP_FREE” in the IDL Reference Guide manual for further details.
Building IDL Applications Freeing Pointers

174 Chapter 8: Pointers
Pointer Examples

Pointers are useful in building dynamic memory structures, such as linked lists and
trees. The following examples demonstrate how pointers are used to build several
types of dynamic structures. Note that the purpose of these examples is to illustrate
simply and clearly how pointers are used. As such, they may not represent the “best”
or most efficient way to accomplish a given task. Readers interested in learning more
about efficient use of data structures are urged to consult any good text on data
structures.

Creating a Linked List

The following example uses pointers to create and manipulate a linked list. One
procedure reads string input from the keyboard and creates a list of pointers to heap
variables that have the strings as their values. Another procedure prints the strings,
given the pointer to the beginning of the linked list. A third procedure uses a modified
“bubble sort” algorithm to reorder the values so the strings are in alphabetical order.

Creating the List

The following program prompts the user to enter a series of strings from the
keyboard. After reading each string, it creates a new heap variable containing a list
element—an anonymous structure with two fields; one to hold the string data and one
to hold a pointer to the next list element. Any number of strings can be entered. When
the user is finished entering strings, the program can be exited by entering a period by
itself at the “Enter string:” prompt.

The text of the program shown below can be found in the file ptr_read.pro in the
examples/doc subdirectory of the IDL distribution.

;PTR_READ accepts one argument, a named variable in which to return
;the pointer that points at the beginning of the list.
PRO ptr_read, first

;Initialize the input string variable.
newstring = ''

;Create an anonymous structure to contain list elements. Note that
;the next field is initialized to be a null pointer.
llist = {name:'', next:PTR_NEW()}

;Print instructions for this program.
PRINT, 'Enter a list of names.'
PRINT, 'Enter a period (.) to stop list entry.'
Pointer Examples Building IDL Applications

Chapter 8: Pointers 175
;Continue accepting input until a period is entered.
WHILE newstring NE "." DO BEGIN

READ, newstring, PROMPT='Enter string: '
;Read a new string from the keyboard.

;Check to see if a pointer called first exists. If not, this is
;the first element. Create a pointer called first and initialize
;it to be a list element. Create a second pointer to the heap
;variable pointed at by first.

IF newstring NE '.' THEN BEGIN
IF ~(PTR_VALID(first)) THEN BEGIN

first = PTR_NEW(llist)
current = first

ENDIF

;Create a pointer to the next list element.
next = PTR_NEW(llist)

;Set the name field of current to the input string.
(*current).name = newstring

;Set the next field of current to the pointer to the next list
;element.
(*current).next = next

;Store the "current" pointer as the "last" pointer.
last = current

;Make the "next" pointer the "current" pointer.
current = next

ENDIF
ENDWHILE

;Free the dangling 'next' pointer at the end of the list.
IF PTR_VALID(next) THEN PTR_FREE, next

;Set the next field of the last element to the null pointer.
IF PTR_VALID(last) THEN (*last).next = PTR_NEW()

;End of PTR_READ program.
END

Run the PTR_READ program by entering the following command at the IDL
prompt:

ptr_read, first
Building IDL Applications Pointer Examples

176 Chapter 8: Pointers
Type a string, press Return, and the program prompts for another string. You can
enter as many strings as you want. Each time a string is entered, PTR_READ creates
a new list element with that string as its value. For example, you could enter the
following three strings (used in the rest of this example):

Enter a list of names.
Enter a period (.) to stop list entry.
Enter string: wilma
Enter string: biff
Enter string: cosmo
Enter string: .

The following figure shows one way of visualizing the linked list that we’ve created.

Printing the Linked List

The next program in our example accepts the pointer to the first element of the linked
list and prints all the values in the list in order. To illustrate how the list is linked, we
will also print the name of the heap variable that contains each element, and the name
of the heap variable in the next field of that element.

The text of the program shown below can be found in the file ptr_print.pro in the
examples/doc subdirectory of the IDL distribution.

;PTR_PRINT accepts one argument, a pointer to the first element of
;a linked list returned by PTR_READ. Note that the PTR_PRINT
;program does not need to know how many elements are in the list,
;nor does it need to explicitly know of any pointer other than the
;first.
PRO ptr_print, first

;Create a second pointer to the heap variable pointed at by first.
current = first

;PTR_VALID returns 0 if its argument is not a valid pointer. Note
;that the null pointer is not a valid pointer.
WHILE PTR_VALID(current) DO BEGIN

Table 8-1: One way of visualizing the linked list created by the PTR_READ
procedure

name:
wilma

next: name:
biff

next: name:
cosmo

next:
nullfirst:
Pointer Examples Building IDL Applications

Chapter 8: Pointers 177
;Print the list element information.
PRINT, current, ', named ', (*current).name, $
', has a pointer to: ', (*current).next

;Set current equal to the pointer in its own next field.
current = (*current).next

ENDWHILE

;End of PTR_PRINT program.
END

If we run the PTR_PRINT program with the list generated in the previous example:

IDL> ptr_print, first

IDL prints:

<PtrHeapVar1>, named wilma, has a pointer to: <PtrHeapVar2>
<PtrHeapVar2>, named biff, has a pointer to: <PtrHeapVar3>
<PtrHeapVar3>, named cosmo, has a pointer to: <NullPointer>

A Simple Sorting Routine for the Linked List

The next example program takes a list generated by PTR_READ and moves the
values so that they are in alphabetical order. The sorting algorithm used in this
program is a variation on the classic “bubble sort”. However, instead of starting with
the last element in the list and letting lower values “rise” to the top, this example
starts at the top of the list and lets higher (“heavier”) values “sink” to the bottom of
the list. Note that this is not a very efficient sorting algorithm and is shown as an
illustration because of its simplicity. For real sorting applications, use IDL’s SORT
function.

The text of the program shown below can be found in the file ptr_sort.pro in the
examples/doc subdirectory of the IDL distribution.

;PTR_SORT accepts one argument, a pointer to the first element of a
;linked list returned by PTR_READ. Note that the PTR_SORT program
;does not need to know how many elements are in the list, nor does
;it need to explicitly know of any pointer other than the first.
pro ptr_sort, first

;Initialize swap flag.
swap = 1

;Create an anonymous structure to contain list elements. Note that
;the next field is initialized to be a pointer.
llist = {name:'', next:PTR_NEW()}
Building IDL Applications Pointer Examples

178 Chapter 8: Pointers
;Create a pointer to this structure, to be used as "swap space."
junk = ptr_new(llist)

;Continue the sorting until no swaps are made. If no adjacent
;elements need to be swapped, the list is in alphabetical order.
WHILE swap NE 0 DO BEGIN

;Create a second pointer to the heap variable pointed at by
;first.
current = first

;Create another pointer to the heap variable held in the next
;field of current.
next = (*current).next

;Set swap flag.
swap = 0

;Continue the sorting until next is no longer a valid pointer.
;Note that the null pointer is not a valid pointer.
WHILE PTR_VALID(next) DO BEGIN

;Get values to compare.
value1 = (*current).name
value2 = (*next).name

;Compare values and exchange if first is greater than second.
IF (value1 GT value2) THEN BEGIN

;Use the "swap space" pointer to exchange the name fields of
;current and next.
(*junk).name = (*current).name
(*current).name = (*next).name
(*next).name = (*junk).name

;Set current to next to advance through the list.
current = next

;Reset swap flag.
swap = 1

;If value1 is less than value2, set current to next to advance
;through the list.
ENDIF ELSE current = next

;Redefine next pointer.
next = (*current).next

ENDWHILE
ENDWHILE
Pointer Examples Building IDL Applications

Chapter 8: Pointers 179
END

To run the PTR_SORT routine with the list from our previous examples as input,
enter:

ptr_sort, first

We can see the results of the sorting by calling the PTR_PRINT routine again:

ptr_print, first

IDL prints:

<PtrHeapVar1>, named biff, has a pointer to: <PtrHeapVar2>
<PtrHeapVar2>, named cosmo, has a pointer to: <PtrHeapVar3>
<PtrHeapVar3>, named wilma, has a pointer to: <NullPointer>

and we see that now the names are in alphabetical order.

Example Files—Using Pointers to Create Binary
Trees

Two more-complicated example programs demonstrate the use of IDL pointers to
create and search a simple tree structure. These files, named idl_tree.pro and
tree_example.pro, can be found in the examples/doc subdirectory of the IDL
distribution.

To run the tree examples, enter the following commands at the IDL prompt:

;Compile the routines in idl_tree. The example routine calls the
;routines defined in this file.
.run idl_tree

;Run the tree_example.
tree_example

The TREE_EXAMPLE and IDL_TREE routines create a binary tree with ten nodes
whose values are structures that contain random values for two fields, “Time” and
“Data”. The TREE_EXAMPLE routine then prints the tree sorted by both time and
data. It then searches for and deletes the nodes containing the fourth and second data
values. The resulting 8-node trees are again printed in both time and data order.

A detailed explication of the TREE_EXAMPLE and IDL_TREE routines is beyond
the scope of this chapter. Interested users should examine the files, starting with
tree_example.pro, to see how the trees are created and searched.
Building IDL Applications Pointer Examples

180 Chapter 8: Pointers
Pointer Examples Building IDL Applications

Chapter 9:

Structures
The following topics are covered in this chapter:
Overview . 182
Creating and Defining Structures 183
Structure References 186
Using HELP with Structures 188
Parameter Passing with Structures 189

Arrays of Structures 191
Structure Input/Output 193
Advanced Structure Usage 196
Automatic Structure Definition 198
Relaxed Structure Assignment 200
Building IDL Applications 181

182 Chapter 9: Structures
Overview

IDL supports structures and arrays of structures. A structure is a collection of scalars,
arrays, or other structures contained in a variable. Structures are useful for
representing data in a natural form, transferring data to and from other programs, and
containing a group of related items of various types. There are two types of structures
and they have similar features.

Named Structures

Each distinct type of named structure is defined by a unique structure name. The first
time a structure name is used, IDL creates and saves a definition of the structure
which cannot be changed. Each structure definition consists of the structure’s name
and a definition of each field that is a member of the structure. Each instance of a
named structure shares the same definition. Named structures are used when their
definitions will not be changed.

Anonymous Structures

If a structure definition contains no name, an anonymous structure is created. A
unique structure definition is created for each anonymous structure. Use anonymous
structures when the structure, type, and/or dimensions of its components change
during program execution.

Each field definition consists of a tag name and a tag definition that contains the type
and structure of the data contained in the field. A field is referred to by its tag name.
The tag definition is simply an expression or variable. The type, structure, and value
of the tag definition serve to define the field’s type, structure, and value. As with
structure definitions, a field definition is fixed and cannot be changed. The contents
of a field can be any type of data representable by IDL. Fields can contain scalars,
arrays of the seven basic data types, and even other structures or arrays of structures.
Overview Building IDL Applications

Chapter 9: Structures 183
Creating and Defining Structures

A named structure is created by executing a structure-definition expression, which is
an expression of the following form:

{Structure_Name, Tag_Name1 : Tag_Definition1, ..., Tag_Namen : Tag_Definitionn}

Anonymous structures are created in the same way, but with the structure’s name
omitted.

{Tag_Name1 : Tag_Definition1 , ..., Tag_Namen : Tag_Definitionn}

Anonymous structures can also be created and combined using the
CREATE_STRUCT function.

Tag names may not be IDL Reserved Words, and must be unique within a given
structure, although the same tag name can be used in more than one structure.
Structure names and tag names follow the rules of IDL identifiers: they must begin
with a letter; following characters can be letters, digits, or the underscore or dollar
sign characters; and case is ignored.

As mentioned above, each tag definition is a constant, variable, or expression whose
structure defines the structure and initial value of the field. The result of the structure
definition expression is an instance of the structure, with each field set equal to its tag
definition.

A named structure that has already been defined can be referred to by simply
enclosing the structure’s name in braces, as shown below:

{Structure_Name }

The result of this expression is a structure of the designated name.

Note
When a new instance of a structure is created from an existing named structure, all
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only a template for that type of data.
Building IDL Applications Creating and Defining Structures

184 Chapter 9: Structures
Also, when making a named structure that has already been defined, the tag names
need not be present:

{Structure_Name, expression1, ..., expressionn}

All of the expressions must agree in structure with the original tag definition.

Once defined, a given named structure type cannot be changed. If a structure
definition with tag names is executed and the structure already exists, each tag name
and the structure of each tag field must agree with the original definition. Anonymous
structures do not have this restriction because each instance has its own definition.

Structure Inheritance

Structures can inherit tag names and definitions from other structures. To cause one
structure to inherit tags from another, use the INHERITS specifier. For example, if
we define a structure one as follows:

A = {one, data1a:0, data1b:0L }

we can define a second structure two that includes the tags from the one structure
with the following definition statement:

B = { two, INHERITS one, data2:0.0 }

This is the same as defining the structure two with the statement:

B = { two, data1a:0, data1b:0L, data2:0.0 }

Note that the fields of the one structure are included in the two structure in the
position that the INHERITS specifier appears in the structure definition.

Remember that tag names must be unique. If you use structure inheritance, be sure
that the tag names in the inherited structure do not conflict with the tag names in the
inheriting structure.

Structures that are inherited must be defined before the inheriting structure can be
defined. If a structure inherits tags from another structure that is not yet defined, IDL
will search for a routine to define the inherited structure as outlined in “Automatic
Structure Definition” on page 198. If the inherited structure cannot be defined,
definition of the new structure fails.

While structure inheritance can be used with any structure, it is most useful when
dealing with object class structures. When the INHERITS specifier is used in a class
structure definition, it has the added effect of defining the inheriting object as a
subclass of the inherited class. For a discussion of object-oriented IDL programming,
see Chapter 23, “Object Basics”.
Creating and Defining Structures Building IDL Applications

Chapter 9: Structures 185
Example of Creating a Structure

Assume that a star catalog is to be processed. Each entry for a star contains the
following information: star name, right ascension, declination, and an intensity
measured each month over the last 12 months. A structure for this information is
defined with the following IDL statement:

A = {star, name:'', ra:0.0, dec:0.0, inten:FLTARR(12)}

This structure definition is the basis for all examples in this chapter. The statement
above defines a structure type named star, which contains four fields. The tag names
are name, ra, dec, and inten. The first field, with the tag name, contains a scalar string
as given by its tag definition. The following two fields each contain floating-point
scalars. The fourth field, inten, contains a 12-element, floating-point array. Note that
the type of the constants, 0.0, is floating point. If the constants had been written as 0,
the fields ra and dec would contain short integers.

 The same structure is created as an anonymous structure by the statement:

A = {name:'', ra:0.0, dec:0.0, inten:FLTARR(12)}

or by using the CREATE_STRUCT function:

A = CREATE_STRUCT('name', '', 'ra', 0.0, 'dec', 0.0, $
'inten', FLTARR(12))
Building IDL Applications Creating and Defining Structures

186 Chapter 9: Structures
Structure References

The basic syntax of a reference to a field within a structure is as follows:

Variable_Name.Tag_Name

Variable_Name must be a variable that contains a structure. Tag_Name is the name of
the field and must exist in the structure. If the field referred to by the tag name is itself
a structure, the Tag_Name can optionally be followed by one or more additional tag
names, as shown by the following example:

var.tag1.tag2

Each tag name, except possibly the last, must refer to a field that contains a structure.

Subscripted Structure References

A subscript specification can be appended to the variable or tag names if the variable
is an array of structures or if the field referred to by the tag contains an array. Scalar
fields within a structure can also be subscripted, provided the subscript is zero.

Variable_Name.Tag_Name[Subscripts]

Variable_Name[Subscripts].Tag_Name...

Variable_Name[Subscripts].Tag_Name[Subscripts]

Each subscript is applied to the variable or tag name it immediately follows. The
syntax and meaning of the subscript specification is similar to simple array
subscripting in that it can contain a simple subscript, an array of subscripts, or a
subscript range. If a variable or field containing an array is referenced without a
subscript specification, all elements of the item are affected. Similarly, when a
variable that contains an array of structures is referenced without a subscript but with
a tag name, the designated field in all array elements is affected. The complete syntax
of references to structures follows. (Optional items are enclosed in braces, {}.)

Structure_reference:= Variable_Name{[Subscripts]}.Tags

Tags:= {Tags.}Tag

Tag:= Tag_Name{[Subscripts]}

For example, all of the following are valid structure references:

A.B
A.B[N, M]
A[12].B
A[3:5].B[*, N]
Structure References Building IDL Applications

Chapter 9: Structures 187
A[12].B.C[X, *]

The semantics of storing into a structure field using subscript ranges is slightly
different than that of simple arrays. This is because the structure of arrays in fields are
fixed. See “Storing Into Array Fields” on page 189 for details.

Examples of Structure References

The name of the star contained in A is referenced as A.NAME. The entire intensity
array is referred to as A.INTEN, while the n-th element of A.INTEN is A.INTEN[N].
The following are valid IDL statements using the STAR structure:

;Store a structure of type STAR into variable A. Define the values
;of all fields.
A = {star, name:'SIRIUS', ra:30., dec:40., inten:INDGEN(12)}

;Set name field. Other fields remain unchanged.
A.name = 'BETELGEUSE'

;Print name, right ascension, and declination.
PRINT, A.name, A.ra, A.dec

;Set Q to the value of the sixth element of A.inten. Q will be a
;floating-point scalar.
Q = A.inten[5]

;Set ra field to 23.21.
A.ra = 23.21

;Zero all 12 elements of intensity field. Because the type and size
;of A.inten are fixed by the structure definition, the semantics of
;assignment statements is different than with normal variables.
A.inten = 0

;Store fourth thru seventh elements of inten field in variable B.
B = A.inten[3:6]

;The integer 12 is converted to string and stored in the name field
;because the field is defined as a string.
A.name = 12

;Copy A to B. The entire structure is copied and B contains a STAR
;structure.
B = A
Building IDL Applications Structure References

188 Chapter 9: Structures
Using HELP with Structures

Use the HELP,/STRUCTURE command to determine the type, structure, and tag
name of each field in a structure. In the example above, a structure was stored into
variable A. The statement,

HELP, /STRUCTURE, A

prints the following information:

** Structure STAR, 4 tags, length=40:
NAME STRING 'SIRIUS'
RA FLOAT 30.0000
DEC FLOAT 40.0000
INTEN INT Array(12)

Using HELP with anonymous structures prints the structure’s name as a unique
number enclosed in angle brackets. Calling HELP with the STRUCTURE keyword
and no parameters prints a list of all defined, named structure types and their tag
names.
Using HELP with Structures Building IDL Applications

Chapter 9: Structures 189
Parameter Passing with Structures

An entire structure is passed by reference by simply using the name of the variable
containing the structure as a parameter. Changes to the parameter within the
procedure are passed back to the calling procedure. Fields within a structure are
passed by value. For example, the following statement prints the value of the structure
field A.name:

PRINT, A.name

Any reference to a structure with a subscript or tag name is evaluated into an
expression, hence A.name is an expression and is passed by value. This works as
expected unless the called procedure returns information in the parameter. For
example, the call

READ, A.name

does not read into A.name but interprets its parameter as a prompt string. The proper
code to read into the field is as follows.

;Copy type and attributes to variable.
B = A.name

;Read into a simple variable.
READ, B

;Store result into field.
A.name = B

Storing Into Array Fields

As mentioned previously, the semantics of storing into structure array fields is
slightly different than storing into simple arrays. The main difference is that with
structures, a subscript range must be used when storing an array into part of an array
field. With normal arrays, when storing an array inside part of another array, use the
subscript of the lower-left corner, not a range specification. Other differences occur
because the size and type of a field are fixed by the original structure definition, and
the normal IDL semantics of dynamic binding are not applicable. The rules for
storing into array fields are as follows:

VAR.ARRAY_TAG = Scalar_Expression

All elements of VAR.tag are set to Scalar_Expression. For example:

;Set all 12 elements of A.inten to 100.
A.inten = 100
Building IDL Applications Parameter Passing with Structures

190 Chapter 9: Structures
VAR.TAG = Array_Expression

Each element of Array_Expression is copied into the array VAR.tag. If
Array_Expression contains more elements than the destination array does, an error
results. If it contains fewer elements than VAR.TAG, the unmatched elements remain
unchanged. For example:

;Set A.inten to the 12 numbers 0, 1, 2,..., 11.
A.inten = FINDGEN(12)

;Set A.inten[0] to 1 and A.inten[1] to 2. The other elements
;remain unchanged.
A.inten = [1, 2]

VAR.TAG[Subscript] = Scalar_Expression

The value of the scalar expression is simply copied into the designated element of the
destination. If Subscript is an array of subscripts, the scalar expression is copied into
the designated elements. For example:

;Set the sixth element of A.inten to 100.
A.inten[5] = 100

;Set elements 2, 4, and 6 to 100.
A.inten[[2, 4, 6]] = 100

VAR.TAG[Subscript] = Array_Expression

Unless VAR.tag is an array of structures, the subscript must be an array. Each element
of Array_Expression is copied into the element given by the corresponding element
subscript. For example:

;Set elements 2, 4, and 6 to the values 5, 7, and 9 respectively.
A.inten[[2, 4, 6]] = [5, 7, 9]

VAR.TAG[Subscript_Range] = Scalar_Expression

The value of the scalar expression is stored into each element specified by the
subscript range. For example:

;Sets elements 8, 9, 10, and 11 to the value 5.
A.inten[8:*] = 5

VAR.TAG[Subscript_Range] = Array_Expression

Each element of the array expression is stored into the element designated by the
subscript range. The number of elements in the array expression must agree with the
size of the subscript range. For example:

;Sets elements 3, 4, 5, and 6 to the numbers 0, 1, 2, and 3,
;respectively.
A.inten[3:6] = FINDGEN(4)
Parameter Passing with Structures Building IDL Applications

Chapter 9: Structures 191
Arrays of Structures

An array of structures is simply an array in which each element is a structure of the
same type. The referencing and subscripting of these arrays (also called structure
arrays) follow the same rules as simple arrays.

Creating an Array of Structures

The easiest way to create an array of structures is to use the REPLICATE function.
The first parameter to REPLICATE is a reference to the structure of each element.
Using the example in “Examples of Structure References” on page 187 and assuming
the STAR structure has been defined, an array containing 100 elements of the
structure is created with the following statement:

cat = REPLICATE({star}, 100)

Alternatively, since the variable A contains an instance of the structure STAR, then

cat = REPLICATE(A, 100)

Or, to define the structure and an array of the structure in one step, use the following
statement:

cat = REPLICATE({star, name:'', ra:0.0, dec:0.0, $
inten:FLTARR(12)}, 100)

The concepts and combinations of subscripts, subscript arrays, subscript ranges,
fields, nested structures, etc., are quite general and lead to many possibilities, only a
small number of which can be explained here. In general, any structures that are
similar to the examples above are allowed.

Examples of Arrays of Structures

This example uses the above definition in which the variable CAT contains a star
catalog of STAR structures.

;Set the name field of all 100 elements to "EMPTY."
cat.name = 'EMPTY'

;Set the i-th element of cat to the contents of the star structure.
cat[I] = {star, 'BETELGEUSE', 12.4, 54.2, FLTARR(12)}

;Store 0.0 into cat[0].ra, 1.0 into cat[1].ra, ..., 99.0 into
;cat[99].ra
cat.ra = INDGEN(100)

;Prints name field of all 100 elements of cat, separated by commas
Building IDL Applications Arrays of Structures

192 Chapter 9: Structures
;(the last field has a trailing comma).
PRINT, cat.name + ','

;Find index of star with name of SIRIUS.
I = WHERE(cat.name EQ 'SIRIUS')

;Extract intensity field from each entry. Q will be a 12 by 100
;floating-point array.
Q = cat.inten

;Plot intensity of sixth star in array cat.
PLOT, cat[5].inten

;Make a contour plot of the (7,46) floating-point array ;taken from
;months (2:8) and stars (5:50).
CONTOUR, cat[5:50].inten[2:8]

;Sort the array into ascending order by names. Store the result
;back into cat.
cat = cat(SORT(cat.name))

;Determine the monthly total intensity of all stars in array.
;monthly is now a 12-element array.
monthly = cat.inten # REPLICATE(1,100)
Arrays of Structures Building IDL Applications

Chapter 9: Structures 193
Structure Input/Output

Structures are read and written using the formatted and unformatted input/output
procedures READ, PRINT, READU, and WRITEU. Structures and arrays of
structures are transferred in much the same way as simple data types, with each
element of the structure transferred in order.

Formatted Input/Output with Structures

Writing a structure with PRINT or PRINTF and the default format outputs the
contents of each element using the default format for the appropriate data type. The
entire structure is enclosed in braces: “{}”. Each array begins a new line. For
example, printing the variable A, as defined in the first example in this chapter,
results in the following output.

{SIRIUS 30.0000 40.0000 0 1 2 3 4 5 6 7 8 9 10 11}

When reading a structure with READ or READF and the default format, white space
should separate each element. Reading string elements causes the remainder of the
input line to be stored in the string element, regardless of spaces, etc. A format
specification can be used with any of these procedures to override the default formats.
The length of string elements is determined by the format specification (i.e, to read
the next 10 characters into a string field, use an (A10) format).

Unformatted Input/Output with Structures

Reading and writing unformatted data contained in structures is a straightforward
process of transferring each element, without interpretation or modification, except in
the case of strings. Each IDL data type, except strings, has a fixed length expressed in
bytes. This length (which is padded when using ASSOC, but not padded when using
READU/WRITEU) is also the number of bytes read or written for each element.

All instances of structures contain an even number of bytes. On machines whose
native C compilers force short integers to begin on an even byte boundary, IDL
begins fields that are not of type byte on an even byte boundary. Thus, a “padding
byte” may appear (when using ASSOC for I/O) after a byte field to cause the
following non-byte-type field to begin on an even byte. A padding byte is never
added before a byte or byte array field.
Building IDL Applications Structure Input/Output

194 Chapter 9: Structures
For example, the structure:

{example, t1:1b, t2:1}

occupies four bytes on a machine where short integers must begin on an even byte
boundary. When using ASSOC, a padding byte is added after field t1 to cause the
integer field t2 to begin on an even-byte boundary.

Strings

Strings are exceptions to the above rules because the length of strings within
structures is not fixed. For example, one instance of the {star} structure can contain a
name field with a five-character name, while another instance of the same structure
can contain a 20-character name. When reading into a structure field that contains a
string, IDL reads the number of bytes given by the length of the string. If the string
field contains a 10-character string, 10 characters are read. If the data read contains a
null byte, the length of the string field is truncated, and the null and following
characters are discarded. When writing fields containing strings with the unformatted
procedure WRITEU, IDL writes each character of the string and does not append a
terminating null byte.

String Length Issues

When reading or writing structures containing strings with READU and WRITEU,
make each string in a given field the same length to be compatible with C and to be
able to read the data back into IDL. You must know how many characters exist to
read into a string element. One way around this problem is using the STRING
function with a format specification that sets the length of all elements to some
maximum number. For example, it is easy to set the length of all name fields in the
cat array to 20 characters by using the following statement.

cat.name = STRING(cat.name, FORMAT = '(A20)')

This statement will truncate names longer than 20 characters and will pad with blanks
those names shorter than 20 characters. The structure or structure array then can be
output in a format suitable to be read by C or FORTRAN programs.
Structure Input/Output Building IDL Applications

Chapter 9: Structures 195
For example, to read into the cat array from a file in which each name field occupies
26 bytes, use the following statements.

;Make a 100-element array of {STAR} structures, storing a
;26-character string in each name field.
cat = REPLICATE({star, STRING(' ', FORMAT = '(A26)'), $

FLTARR(0., 0.12)}, 100)

;Read the structure. As mentioned above, 26 bytes will be read for
;each name field. The presence of a null byte in the file will
;truncate the field to the correct number of bytes.
READU, 1, cat
Building IDL Applications Structure Input/Output

196 Chapter 9: Structures
Advanced Structure Usage

Facilities exist to process structures in a general way using tag numbers rather than
tag names. A tag can be referenced using its index, enclosed in parentheses, as
follows:

Variable_Name.(Tag_Index)...

The Tag_Index ranges from zero to the number of fields minus one.

Note
The Tag_Index is an expression, the result of which is taken to be a tag position. In
order for the IDL parser to understand that this is the case, you must enclose the
Tag_Index in parentheses. This is not an array indexing operation, so the use of
square brackets ([]) is not allowed in this context.

Number of Structure Tags

The function N_TAGS(Structure) returns the number of fields in a structure. To
obtain the size, in bytes, of a structure call N_TAGS with the /LENGTH keyword.

Names of Structure Tags

The function TAG_NAMES(Structure) returns a string array containing the names of
each tag. To return the name of the structure itself, call TAG_NAMES with the
/STRUCTURE_NAME keyword.

Example

Using tag indices and the above-mentioned functions, we specify a procedure that
reads into a structure from the keyboard. The procedure prompts the user with the
type, structure, and tag name of each field within the structure.

;A procedure to read into a structure, S, from the keyboard with
;prompts.
PRO READ_STRUCTURE, S

;Get the names of the tags.
NAMES = TAG_NAMES(S)
;Loop for each field.
FOR I = 0, N_TAGS(S) - 1 DO BEGIN

;Define variable A of same type and structure as the i-th field.
A = S.(I)
Advanced Structure Usage Building IDL Applications

Chapter 9: Structures 197
;Use HELP to print the attributes of the field. Prompt user with
;tag name of this field, and then read into variable A. S.(I) =
;A. Store back into structure from A.
HELP, S.(I)

READ, 'Enter Value For Field ', NAMES[I], ': ', A
S.(I) = A

ENDFOR
END

Note
In the above procedure, the READ procedure reads into the variable A rather than
S.(I) because S.(I) is an expression, not a simple variable reference. Expressions
are passed by value; variables are passed by reference. The READ procedure
prompts the user with parameters passed by value and reads into parameters passed
by reference.
Building IDL Applications Advanced Structure Usage

198 Chapter 9: Structures
Automatic Structure Definition

In versions of IDL prior to version 5, references to an undefined named structure
would cause IDL to halt with an error. This behavior was changed in IDL version 5 to
allow the automatic definition of named structures.

When IDL encounters a reference to an undefined named structure, it will
automatically search the directories specified in !PATH for a procedure named
Name__DEFINE, where Name is the actual name of the structure. If this procedure is
found, IDL will call it, giving it the opportunity to define the structure. If the
procedure does in fact define the named structure, IDL will proceed with the desired
operation.

Note
There are two underscores in the name of the structure definition procedure.

For example, suppose that a structure named mystruct has not been defined, and that
no procedure named mystruct__define.pro exists in the directories specified by
!PATH. A call to the HELP procedure produces the following output:

HELP, { mystruct }, /STRUCTURE

IDL prints:

% Attempt to call undefined procedure/function:'MYSTRUCT__DEFINE'.
% Structure type not defined: MYSTRUCT.
% Execution halted at: $MAIN$

Suppose now that we define a procedure named mystruct__define.pro as follows, and
place it in one of the directories specified by !PATH:

PRO mystruct__define
tmp = { mystruct, a:1.0, b:'string' }

END

With this structure definition routine available, the call to HELP produces the
following output:

HELP, { mystruct }, /STRUCTURE

IDL prints:

% Compiled module: MYSTRUCT__DEFINE.
** Structure MYSTRUCT, 2 tags, length=12:
 A FLOAT 0.00000
 B STRING ''
Automatic Structure Definition Building IDL Applications

Chapter 9: Structures 199
Remember that the fields of a structure created by copying a named structure
definition are filled with zeroes or null strings. Any structure created in this way—
either via automatic structure definition or by explicitly creating a new structure from
an existing structure—must be initialized to contain values after creation.
Building IDL Applications Automatic Structure Definition

200 Chapter 9: Structures
Relaxed Structure Assignment

The IDL “=” operator is unable to assign a structure value to a structure with a
different definition. For example, suppose we have an existing structure definition
SRC, as follows:

source = { SRC, A:FINDGEN(4), B:12 }

and we wish to create a second instance of the same structure, but with slightly
different data and a different field:

dest = { SRC, A:INDGEN(2), C:20 }

Attempting to execute these two statements at the IDL command prompt gives the
following results:

% Conflicting data structures: <INT Array[2]>,SRC.
% Execution halted at: $MAIN$

Versions of IDL beginning with IDL 5.1 include a mechanism to solve this problem.
The STRUCT_ASSIGN procedure performs “relaxed structure assignment,” which is
a field-by-field copy of a structure to another structure. Fields are copied according to
the following rules:

1. Any fields found in the destination structure that are not found in the source
structure are “zeroed” (set to zero, the empty string, or a null pointer or object
reference depending on the type of field).

2. Any fields in the source structure that are not found in the destination structure
are quietly ignored.

3. Any fields that are found in both the source and destination structures are
copied one at a time. If necessary, type conversion is done to make their types
agree. If a field in the source structure has fewer data elements than the
corresponding field in the destination structure, then the “extra” elements in
the field in the destination structure are zeroed. If a field in the source structure
has more elements than the corresponding field in the destination structure, the
extra elements are quietly ignored.

Using STRUCT_ASSIGN, we can make the assignment that failed using the =
operator:

source = { src, a:FINDGEN(4), b:12 }
dest = { dest, a:INDGEN(2), c:20 }
STRUCT_ASSIGN, source, dest, /VERBOSE

IDL prints:

% STRUCT_ASSIGN: SRC tag A is longer than destination.
Relaxed Structure Assignment Building IDL Applications

Chapter 9: Structures 201
The end will be clipped.
% STRUCT_ASSIGN: Destination lacks SRC tag B. Not copied.

If we check the variable dest, we see that it has the definition of the dest structure and
the data from the source structure:

HELP, dest, /STRUCTURE

IDL prints:

** Structure DEST, 2 tags, length=6:
 A INT Array[2]
 C INT 0

Using Relaxed Structure Assignment

Why would you want to use Relaxed Structure Assignment? One case where this type
of structure definition is very useful is in restoring object structures into an
environment where the structure definition may have changed since the restored
objects were saved.

Suppose you have created an application that saves data in structures. Your
application may use the IDL SAVE routine to save the data structures to disk files. If
you later change your application such that the definition of the data structures
changes, you would not be able to restore your saved data into your application’s
framework without relaxed structure assignment. The
RELAXED_STRUCTURE_ASSIGNMENT keyword to the RESTORE procedure
allows you to make relaxed assignments in such cases.

To see how this works, try the following exercise:

1. Start IDL, create a named structure, and use the SAVE procedure to save it to a
file:

mystruct = { STR, A:10, B:20L, C:'a string' }
SAVE, mystruct, FILE='test.dat'

2. Exit and restart IDL.

3. Create a new structure definition with the same name you used previously:

newstruct = { STR, A:20L, B:10.0, C:'a string', D:ptr_new() }
Building IDL Applications Relaxed Structure Assignment

202 Chapter 9: Structures
4. Attempt to restore the variable mystruct from the test.dat file:

RESTORE, 'test.dat'

IDL prints:

% Wrong number of tags defined for structure: STR.
% RESTORE: Structure not restored due to conflict with

existing definition: STR.

5. Now use relaxed structure definition when restoring:

RESTORE, 'test.dat', /RELAXED_STRUCTURE_ASSIGNMENT

6. Check the contents of mystruct:

HELP, mystruct, /STRUCTURE

IDL prints:

** Structure STR, 4 tags, length=20:
 A LONG 10
 B FLOAT 20.0000
 C STRING 'a string'
 D POINTER <NullPointer>

The structure in the variable mystruct now uses the definition from the new version of
the STR structure, but contains the data from the old (restored) structure. In cases
where the data type of a field has changed, the data type of the old data element has
been converted to the new data type. Fields in the new structure definition that do not
correspond to fields in the old definition contain “zero” values (zeroes for numeric
fields, empty strings for string fields, null pointer or references for pointer or
reference fields).
Relaxed Structure Assignment Building IDL Applications

Part II: Basics of
IDL Programming

Chapter 10:

Introduction to IDL
Programming
The following topics are covered in this chapter:
What is an IDL Program? 206
Creating a Simple Program 209
Compiling and Running Your Program . . . 210

Commenting Your IDL Code 214
Saving Compiled IDL Programs and Data 215
Restoring Compiled IDL Programs and Data . 223
Building IDL Applications 205

206 Chapter 10: Introduction to IDL Programming
What is an IDL Program?

An IDL program consists of one or more IDL commands, and may or may not be
compiled before execution. IDL programs can take any of the following forms:

Batch Files

A batch file contains one or more IDL statements or commands. Each line of the
batch file is read and executed before proceeding to the next line. This makes batch
files different from main-level programs, which are compiled as a unit before being
executed, and named programs, in which all program modules are compiled as an
unit before being executed. A file created by the JOURNAL routine is an example of
an batch file. For information on running include files, see Chapter 10, “Executing
Batch Jobs in IDL” in the Using IDL manual.

Note
Batch files are sometimes referred to as include files, since they can be used to
“include” the multiple IDL statements contained in the file in another file.

Main-Level Programs

Main-level programs are entered at the IDL command line, and are useful when you
have a few commands you want to run without creating a separate file to contain your
commands. Main-level programs are not explicitly named; they consist of a series of
statements that are not preceded by a procedure or function heading. They do,
however, require an END statement. Since there is no heading, the program cannot be
called from other routines and cannot be passed arguments. When IDL encounters a
main program as the result of a .RUN executive command, it compiles it into the
special program named $MAIN$ and immediately executes it. Afterwards, it can be
executed again by using the .GO executive command.

The following example creates a simple main-level program:

1. Start IDL

2. At the IDL command line, enter the following:

A = 2

3. Enter .RUN at the IDL command line. The command line prompt changes from
IDL> to -.
What is an IDL Program? Building IDL Applications

Chapter 10: Introduction to IDL Programming 207
4. Enter the following:

A = A * 2
PRINT, A
END

5. This creates a main-level program, which compiles and executes. IDL prints 4.

6. Enter .GO at the IDL command line. The main-level program is executed
again, and now IDL prints 8.

Named Programs

Longer routines and programs, consisting of more than a few lines, are typically
given explicit names, allowing them to be called from other programs as well as
executed at the IDL command line. Named programs are stored in disk files created
using a text editor.

Note
See Chapter 5, “Library Authoring” for information on naming procedures to avoid
conflicts with IDL routine names. It is important to implement and consistently use
a naming scheme from the earliest stages of code development.

Files containing named programs are generally named with the name of the program
and the filename extension .pro. See “Compiling and Running Your Program” on
page 210 for additional information on file naming.

Note
Although any text editor can be used to create an IDL program file, the IDL Editor
contains features that simplify the process of writing IDL code. See Chapter 3,
“Using the IDL Editor” in the Using IDL manual for details on using the IDL
Editor.

Most IDL applications consist of one or more IDL procedures, functions, object
definitions, and object method routines:

• A procedure is a self-contained sequence of IDL statements with an unique
name that performs a well-defined task. Procedures are defined with the
procedure definition statement, PRO.

• A function is a self-contained sequence of IDL statements that performs a
well-defined task and returns a value to the calling program unit when it is
executed. Functions are defined with the function definition statement,
FUNCTION.
Building IDL Applications What is an IDL Program?

208 Chapter 10: Introduction to IDL Programming
• An object definition describes an IDL object, which can encapsulate both
instance data and method routines. For additional information on IDL’s object-
oriented programming features, see Chapter 23, “Object Basics”.

• Object method routines are procedures and functions that act on object
instance data. See Chapter 23, “Object Basics” for additional information.

Example: A Simple IDL Program

For example, suppose you have a file called hello_world.pro containing the
following code:

PRO hello_world
PRINT, 'Hello World'

END

This IDL “program” consists of a single user-defined procedure.

IDL program files are assumed to have the extension .pro or the extension .sav.
When IDL searches for a user-defined procedure or function, it searches for files
consisting of the name of the procedure or function, followed by the .pro or .sav
extension.

Procedures and functions can also accept arguments and keywords. Both arguments
and keywords allow the program that calls the routine to pass data in the form of IDL
variables or expressions to the routine.

For example, the previous user-defined procedure could be changed to include an
argument and a keyword:

PRO hello_world, name, INCLUDE_NAME = include
 IF (KEYWORD_SET(include) && (N_ELEMENTS(name) NE 0)) THEN BEGIN
 PRINT, 'Hello World From '+ name
 ENDIF ELSE PRINT, 'Hello World'
END

PRO hello_world, name, INCLUDE_NAME = include
IF (KEYWORD_SET(include)) THEN PRINT, 'Hello World From ' + $

name ELSE PRINT, 'Hello World'
END

Now if the INCLUDE_NAME keyword is set to a value greater than zero, the above
procedure will include the string contained within the name variable if a value was
supplied for the name argument

Procedures and functions are collectively referred to as routines. An IDL program file
may contain one or many routines, which can be a mix of procedures and functions.
What is an IDL Program? Building IDL Applications

Chapter 10: Introduction to IDL Programming 209
Creating a Simple Program

In this section, we’ll create a simple “Hello World” program consisting of two .pro
files:

1. Start the IDLDE.

2. Start the IDL Editor by selecting File → New or clicking the New File button
on the toolbar.

3. Type the following in the IDL Editor window:

PRO hello_main
name = ''
READ, name, PROMPT='Enter Name: '
str = HELLO_WHO(name)
PRINT, str

END

4. To save the file, select File → Save or click Save button on the toolbar. Save
the file with the name hello_main.pro in the main IDL directory (which the
Save As dialog should already show).

5. Open a new Editor window by selecting File → New, and enter the following
code:

FUNCTION hello_who, who
RETURN, 'Hello ' + who

END

6. Save the file as hello_who.pro in the main IDL directory.

We now have a simple program consisting of a user-defined procedure, which calls a
user-defined function.
Building IDL Applications Creating a Simple Program

210 Chapter 10: Introduction to IDL Programming
Compiling and Running Your Program

Before a procedure or function can be executed, it must be compiled. When a system
routine (a function or procedure built into IDL, such as PLOT) is called, either from
the command line or from another procedure, IDL already knows about this routine
and compiles it automatically. When a user-defined function or procedure is called,
IDL must find the routine and then compile it. Compilation can be either automatic or
manual, as described below.

Automatic Compilation

When you enter the name of an uncompiled user-defined routine at the command line
or call the routine from another routine, IDL searches the current directory for
filename.pro, then filename.sav, where filename is the name of the specified
routine. If no file is found in the current directory, IDL searches each directory
specified by !PATH. (For more on the IDL path, see “!PATH” in the IDL Reference
Guide manual.)

If no file matching the routine name is found, IDL issues an error:

% Attempt to call undefined procedure/function: 'routine'

where routine is the name of the routine you specified.

If a file is found, IDL automatically compiles the contents of the file up to the routine
whose name matches the name of the file (excluding the suffix), and then executes the
routine. If the file does not contain the definition of a routine whose name matches
the name of the file, IDL issues the same error as when the no file with the correct
name is found.

For example, suppose a file named proc1.pro contains the following procedure
definitions:

PRO proc1
PRINT, 'This is proc1'

END

PRO proc2
PRINT, 'This is proc2'

END

PRO proc3
PRINT, 'This is proc3'

END
Compiling and Running Your Program Building IDL Applications

Chapter 10: Introduction to IDL Programming 211
If you enter proc1 at the IDL command line, only the proc1 procedure will be
compiled and executed. If you enter proc2 or proc3 at the command line, you will
get an error informing you that you attempted to call an undefined procedure.

In general, the name of the IDL program file should be the same as the name of the
last routine within the file. This last routine is usually the main routine, which calls all
the other routines within the IDL program file (or, in the case of object classes, the
class definition). Using this convention for your IDL program files ensures that all the
related routines within the file are compiled before being called by the last main
routine.

Many program files within the IDL distribution use this formatting style. For
example, open the program file for the XLOADCT procedure, xloadct.pro, in the
IDL Editor. This file is in the lib/utilities subdirectory of the IDL distribution.
This file contains several routines. The main routine (XLOADCT) is at the bottom of
the file. When this file is compiled, the IDL Output Log notes all the routines within
this file that are compiled:

IDL> .COMPILE XLOADCT
% Compiled module: XLCT_PSAVE.
% Compiled module: XLCT_ALERT_CALLER.
% Compiled module: XLCT_SHOW.
% Compiled module: XLCT_DRAW_CPS.
% Compiled module: XLCT_TRANSFER.
% Compiled module: XLOADCT_EVENT.
% Compiled module: XLOADCT.

Note that the main XLOADCT procedure is compiled last.

Tip
When editing a program file containing multiple functions and/or procedures in the
IDL Editor, you can easily move to the desired function or procedure by selecting
its name from the Functions/Procedures Menu. See “Functions/Procedures Menu”
in Chapter 3 of the Using IDL manual for more information.
Building IDL Applications Compiling and Running Your Program

212 Chapter 10: Introduction to IDL Programming
Manual Compilation

There are several ways to manually compile a procedure or function.

• Use the .COMPILE executive command at the IDL command line:

.COMPILE myFile

where myFile is the name of a .pro file located either in IDL’s current
working directory or in one of the directories specified by !PATH. All the
routines included in the specified file will be compiled, but none will be
executed automatically. If you are using the IDL Development Environment,
the .pro file will also be opened in the IDL Editor.

• If the file is open in the IDL Editor, select Compile from the Run menu or
click the Compile button on the toolbar. All routines within the file will be
compiled, but none will be executed automatically.

• Use the .RUN or .RNEW executive command at the IDL command line:

.RUN myFile

where myFile is the name of a .pro file located either in IDL’s current
working directory or in one of the directories specified by !PATH. All the
routines included in the specified file will be compiled, and any $MAIN$ level
programs will be executed automatically. If you are using the IDL
Development Environment, the .pro file will also be opened in the IDL
Editor.

• Use the .RUN, .RNEW, or .COMPILE executive command with no filename
argument. Invoking any of these executive commands with no filename allows
you to interactively create and compile a $MAIN$ level program. See “Main-
Level Programs” on page 206 for additional details.

Note
Only .pro files can be compiled using the manual compilation mechanisms.
Attempting to compile a .sav file using one of these mechanisms will result in an
error.

In the “Hello World” example shown in “Creating a Simple Program” on page 209,
we have a user-defined procedure that contains a call to a user-defined function. If
you enter the name of the user-defined procedure, hello_main, at the command
line, IDL will compile and execute the hello_main procedure. After you provide
the requested input, a call to the hello_who function is made. IDL searches for
hello_who.pro, and compiles and executes the function.
Compiling and Running Your Program Building IDL Applications

Chapter 10: Introduction to IDL Programming 213
Compilation Errors

If an error occurs during compilation, the error is reported in the Output Log of the
IDLDE. For example, because the END statement is commented out, the following
user-defined procedure will result in a compilation error:

PRO procedure_without_END
PRINT, 'Hello World'

;END

When trying to compile this procedure (after saving it into a file named
procedure_without_END.pro), you will receive the following error in the IDL
Output Log:

IDL> .COMPILE procedure_without_END

% End of file encountered before end of program.
% 1 Compilation errors in module PROCEDURE_WITHOUT_END.

Note
Under Microsoft Windows, the IDL Editor window displays a red dot to the left of
each line that contains an error.
Building IDL Applications Compiling and Running Your Program

214 Chapter 10: Introduction to IDL Programming
Commenting Your IDL Code

In IDL, the semicolon is the comment character. When IDL encounters the
semicolon, it ignores the remainder of the line. It is good programming practice to
fully annotate programs with comments. There are no execution-time or space
penalties for comments in IDL.

A comment can exist on a line by itself, or can follow another IDL statement, as
shown below:

; This is a comment
COUNT = 5 ; Set the variable COUNT equal to 5.
Commenting Your IDL Code Building IDL Applications

Chapter 10: Introduction to IDL Programming 215
Saving Compiled IDL Programs and Data

The SAVE procedure can be used to quickly save IDL routines and data variables in a
binary format that can be shared with other IDL users, or with others who have
installed the IDL Virtual Machine.

Warning
Variables and routines cannot be stored in the same SAVE file.

Note
While IDL routines or data can be saved in a file with any extension, it is common
to use the extension .sav for SAVE files. Using the .sav extension has two
benefits: it makes it clear to another IDL user that the file contains IDL routines or
data, and it allows IDL automatically locate and compile the routines in the file as
described in “Automatic Compilation” on page 210.

If your program or utility consists of multiple routines, each procedure or function
used by your program must be resolved and contained in a SAVE file. You have the
following options:

• Include all routines in a main SAVE file that is restored first. This makes all
routines available without having to restore any additional SAVE files. You can
do this manually, by compiling all of the routines yourself (possibly with the
assistance of the RESOLVE_ALL routine). You can also add all of your .pro
files to an IDL Project and build the project, which creates a single .sav file.
See Chapter 21, “Creating IDL Projects” for additional information.

• Create a separate SAVE file for each routine used by your application.
Assuming each SAVE file uses the .sav extension and has the same name as
the procedure or function it contains, this allows you to simply place the files
in a directory included in !PATH; IDL will compile all of the files
automatically when needed.

If your program also contains variable data, you must create a separate SAVE file to
contain the data. Variable data must be explicitly restored before any routine attempts
to use the variables contained in the file. See “Restoring Compiled IDL Programs and
Data” on page 223 for more information.
Building IDL Applications Saving Compiled IDL Programs and Data

216 Chapter 10: Introduction to IDL Programming
Note
A SAVE file containing data will always be restorable. However, SAVE files
created prior to IDL version 5.5 that contain IDL procedures, functions, and
programs are not always portable between different versions of IDL. If you created
your SAVE file with a version of IDL earlier than 5.5, you will need to recompile
your original .pro files and re-create the SAVE file using the current version of
IDL.

Example: Create a SAVE File of a Simple Routine

The following example creates two SAVE files. One SAVE file will contain variable
data, loaded from an image file. This SAVE file is then restored by the program in the
main SAVE file, which uses a simple call to the ARROW procedure to point out an
area of interest within the image. To create these files, do the following:

1. Start a fresh session of IDL to avoid saving unwanted session information.

2. Open an image file containing an MRI proton density scan of a human thorax,
and read the data into a variable named image:

READ_JPEG, (FILEPATH('pdthorax124.jpg', SUBDIRECTORY= $
['examples', 'data'])), image

3. Use the SAVE procedure to save the image variable in a .sav file by entering
the following:

SAVE, image, FILENAME='imagefile.sav'

This stores the SAVE file in your current working directory.

Note
When using the SAVE procedure, some users identify binary files containing
variable data using a .dat extension instead of a .sav extension. While any
extension can be used to identify files created with SAVE, it is recommended
that you use the .sav extension to easily identify files that can be restored.

4. Create the following IDL program that first restores the image variable
contained within the imagefile.sav file. This variable is used in the
following program statements defining the size of the window and in the TV
routine which displays the image. The ARROW routine then draws an arrow
within the window. Enter the following lines in a text editor.

PRO draw_arrow

; Restore image data.
Saving Compiled IDL Programs and Data Building IDL Applications

Chapter 10: Introduction to IDL Programming 217
RESTORE, 'imagefile.sav'
; Get the dimensions of the image file.
s = SIZE(image, /DIMENSIONS)

; Prepare display device and display image.
DEVICE, DECOMPOSED = 0
WINDOW, 0, XSIZE=s[0], YSIZE=s[1], TITLE="Point of Interest"
TV, image

; Draw the arrow.
ARROW, 40, 20, 165, 115

END

5. Save the file as draw_arrow.pro.

6. Enter .FULL_RESET_SESSION at the IDL prompt. This will ensure that no
unwanted session information is saved along with the program.

7. Open draw_arrow.pro and compile it by entering:

.COMPILE draw_arrow

8. Use RESOLVE_ALL to iteratively compile any uncompiled user-written or
library procedures or functions that are called in any already-compiled
procedure or function:

RESOLVE_ALL

Note
RESOLVE_ALL does not resolve procedures or functions that are called via quoted
strings such as CALL_PROCEDURE, CALL_FUNCTION, or EXECUTE, or in
keywords that can contain procedure names such as TICKFORMAT or
EVENT_PRO. You must manually compile these routines.

9. Create a SAVE file called draw_arrow.sav containing the user-defined
draw_arrow procedure. When the SAVE procedure is called with the
ROUTINES keyword and no arguments, it create a SAVE file containing all
currently compiled routines. Because the procedures within the draw_arrow
procedures are the only routines that are currently compiled, in the IDL
session, create the SAVE file as follows:

SAVE, /ROUTINES, FILENAME='draw_arrow.sav'
Building IDL Applications Saving Compiled IDL Programs and Data

218 Chapter 10: Introduction to IDL Programming
Note
When the name of the SAVE file uses the .sav extension and has the same base
name as the main level program, it can be automatically compiled by IDL. This
means that it can be called from another routine or restored from the IDL command
line using only the name of the saved routine. See “Automatic Compilation” on
page 210 for details.

Example: Customize and Save an ASCII Template

When importing an ASCII data file into IDL, you must first describe the format of the
data using the interactive ASCII_TEMPLATE function. If you have a number of
ASCII files that have the same format, you can create and save a customized ASCII
template using the SAVE procedure. After creating a SAVE file of your custom
template, you can avoid having to repeatedly define the same fields and records when
reading in ASCII files that have the same structure.

1. At the IDL command line, enter the following to create the variable
plotTemplate, which will contain your custom ASCII template:

plotTemplate = ASCII_TEMPLATE()

A dialog box appears, prompting you to select a file.

2. Select the plot.txt file in the examples/data subdirectory of the IDL
distribution.

Note
Another way to import ASCII data is to use the Import ASCII File toolbar
button on the IDLDE toolbar. To use this feature, simply click the button and
select plot.txt from the file selection dialog.

3. After selecting the file, the Define Data Type/Range dialog appears. First,
choose the field type. Since the data file is delimited by tabs (or whitespace)
select the Delimited button. In the Data Starts at Line field, specify to begin
reading the data at line 3, not line 1, since there are two comment lines at the
beginning of the file. Click Next to continue.

4. In the Define Delimiter/Fields dialog box, select Tab as the delimiter between
data elements since it is known that tabs were used in the original file. Click
Next.

5. In the Field Specification dialog box, name each field as follows:

• Click on the first row (row 1). In the Name field, enter time.
Saving Compiled IDL Programs and Data Building IDL Applications

Chapter 10: Introduction to IDL Programming 219
• Select the second row and enter temperature1.

• Select the third row and enter temperature2.

6. Click Finish.

7. Type the following line at the IDL command line to read in the plot.txt file
using the custom template, plotTemplate:

PLOT_ASCII = READ_ASCII(FILEPATH('plot.txt', SUBDIRECTORY = $
['examples', 'data']), TEMPLATE = plotTemplate)

8. Enter the following line to print the plot.txt file data:

PRINT, PLOT_ASCII

The file contents are printed in the Output Log window. Your output will resemble the
following display.

9. Create a SAVE file of your custom template by entering the following:

SAVE, plotTemplate, FILENAME='myPlotTemplate.sav'

10. To restore the template so that you can read another ASCII file, enter:

RESTORE, 'myPlotTemplate.sav'

This file contains your custom ASCII template information stored in the
structure variable, plotTemplate.

Note
If you are attempting to restore a file that is not in your current working directory,
you will need to specify a path to the file.

Figure 10-1: PLOT_ASCII Printout
Building IDL Applications Saving Compiled IDL Programs and Data

220 Chapter 10: Introduction to IDL Programming
11. After restoring your custom template, you can read another ASCII file that is
delimited in the same way as the original file by using the READ_ASCII
function and specifying plotTemplate for the TEMPLATE:

PLOT_ASCII = READ_ASCII(FILEPATH('plot.txt', $
SUBDIRECTORY = ['examples', 'data']), $
TEMPLATE = plotTemplate)

12. Enter the following to display the contents of the file using the customized
ASCII template structure previously defined using the dialog.

PRINT, PLOT_ASCII

Example: Save the XROI Utility with ROI Data

You can easily share your own IDL routines or utilities with other IDL users by using
the SAVE routine to create a binary file of your compiled code. The following
example creates a SAVE file of the XROI utility (a .pro file) and from within this
file, restores a secondary SAVE file containing selected regions of interest.

1. Type XROI at the command line to open the XROI utility.

2. In the file selection dialog, select mineral.png from the examples/data
subdirectory of the IDL distribution.

3. Select the Draw Polygon toolbar button and roughly outline the three large,
angular areas of the image.

4. Select File → Save ROIs and name the file mineralROI.sav. This creates a
SAVE file containing the regions of interest selected within the image.

5. In the IDL Editor or any text editor, enter the following routine:

PRO myXRoi

; Restore ROI object data by specifying a value for the
; RESTORED_OBJECTS keyword.
RESTORE, 'mineralROI.sav', RESTORED_OBJECTS = myROI

; Open XROI, specifying the previously defined value for the
; restored object data as the value for "REGIONS_IN".
XROI, READ_PNG(FILEPATH('mineral.png', $

SUBDIRECTORY = ['examples', 'data'])), $
REGIONS_IN = myROI, /BLOCK

END

Save the routine as myXRoi.pro
Saving Compiled IDL Programs and Data Building IDL Applications

Chapter 10: Introduction to IDL Programming 221
6. Exit and restart IDL or enter .FULL_RESET_SESSION at the IDL command
line before creating a SAVE file to avoid saving unwanted session information.

7. Compile the program you just created:

.COMPILE myXRoi.pro

8. Use RESOLVE_ALL to iteratively compile any uncompiled user-written or
library procedures or functions that are called in any already-compiled
procedure or function:

RESOLVE_ALL

Note
RESOLVE_ALL does not resolve procedures or functions that are called via quoted
strings such as CALL_PROCEDURE, CALL_FUNCTION, or EXECUTE, or in
keywords that can contain procedure names such as TICKFORMAT or
EVENT_PRO. You must manually compile these routines.

9. Create a SAVE file named myXRoi.sav, containing all of the XROI utility
routines. When the SAVE procedure is called with the ROUTINES keyword
and no arguments, it creates a SAVE file containing all currently compiled
routines. Because the routines associated with the XROI utility are the only
ones that are currently compiled in our IDL session, we can create a SAVE file
as follows:

SAVE, /ROUTINES, FILENAME='myXRoi.sav'

10. It is not necessary to use RESTORE to open myXRoi.sav. If the SAVE file
uses the .sav extension and has the same base name as the main level routine,
and all necessary files (in this case, mineralROI.sav and myXRoi.sav) are
stored in the current working directory, simply type the name of the file, minus
the .sav extension, at the command line:

myXRoi
Building IDL Applications Saving Compiled IDL Programs and Data

222 Chapter 10: Introduction to IDL Programming
The following figure will appear, showing the selected regions of interest.

Figure 10-2: Example of Restoring the XROI Utility and ROI Image Data
Saving Compiled IDL Programs and Data Building IDL Applications

Chapter 10: Introduction to IDL Programming 223
Restoring Compiled IDL Programs and Data

This section describes various ways to restore files created with the SAVE procedure.
In order of increasing complexity and flexibility, your options are:

• Use IDL’s automatic compilation mechanism to locate a SAVE file with the
.sav extension, compile one or more routines contained therein, and execute
the specified routine. See “Automatic Restoration, Compilation, and
Execution” on page 223.

• Use the RESTORE procedure to explicitly restore the entire contents of a
SAVE file. See “The RESTORE Procedure” on page 224.

• Use the IDL_Savefile object to query the contents of a SAVE file, optionally
restoring some or all of the contents. See “The IDL_Savefile Object” on
page 224.

These options are described in more detail below.

Automatic Restoration, Compilation, and Execution

To restore, compile, and execute routines contained in a SAVE file that uses the
extension .sav and which contains an IDL routine with the same base name as the
file, simply call the routine using its name. IDL will search for a file whose name
matches the requested routine, then restore, compile, and execute the routine as
described in “Automatic Compilation” on page 210.

For example, to restore and execute the draw_arrow routine contained in the file
draw_arrow.sav (created in “Example: Create a SAVE File of a Simple Routine”
on page 216), enter the following at the command line:

draw_arrow

IDL will search for a file named either draw_arrow.pro or draw_arrow.sav,
beginning in the current working directory and then searching in each directory
specified by !PATH. When it finds a file whose name matches (in this case,
draw_arrow.sav), it will compile the routines in the file up to and including the
routine whose name matches the filename. IDL then executes the routine with the
matching name.
Building IDL Applications Restoring Compiled IDL Programs and Data

224 Chapter 10: Introduction to IDL Programming
The RESTORE Procedure

Use the RESTORE procedure to explicitly restore the entire contents of a SAVE file.
Using RESTORE is more powerful and flexible that relying on IDL’s rules for
automatic compilation, for the following reasons:

• The restored SAVE file can contain IDL variable data.

• If the restored SAVE file contains IDL routines, all routines contained in the
file will be restored, and none will be executed.

• The restored SAVE file can have any filename and extension.

• The restored SAVE file can be in any directory.

For example, in “Example: Create a SAVE File of a Simple Routine” on page 216, we
created two SAVE files: imagefile.sav and draw_arrow.sav. The
imagefile.sav file contains image variable data. To restore the image data, enter
the following at the IDL command line:

RESTORE, 'imagefile.sav'

IDL creates the variable image in the current scope using the saved variable data.

Note
If the file you are attempting to restore is not located in your current working
directory, you will need to specify a path to the file. RESTORE does not search for
SAVE files in any other directory.

The IDL_Savefile Object

The IDL_Savefile object provides an object-oriented interface that allows you to
query a SAVE file for information and restore one or more individual items from the
file. Using IDL_Savefile, you can retrieve information about the user, machine, and
system that created the SAVE file, as well as the number and size of the various items
contained in the file (variables, common blocks, routines, etc). Individual items can
be selectively restored from the SAVE file.

Use IDL_Savefile in preference to the RESTORE procedure when you need to obtain
detailed information on the items contained within a SAVE file without first restoring
it, or when you wish to restore only selected items. Use RESTORE when you want to
restore everything from the SAVE file using a simple interface.
Restoring Compiled IDL Programs and Data Building IDL Applications

Chapter 10: Introduction to IDL Programming 225
Note
The IDL_Savefile object does not provide methods that allow you to modify an
existing SAVE file. The only way to modify an existing SAVE file is to restore its
contents into a fresh IDL session, modify the contained routines or variables as
necessary, and use the SAVE procedure to create a new version of the file.

To use the IDL_Savefile object to restore items from an existing SAVE file, do the
following:

• Create a Savefile Object

• Query the Savefile Object

• Restore Items from the Savefile Object

• Destroy the Savefile Object

The following sections describe each of these steps. For complete information on the
IDL_Savefile object and its methods, see “IDL_Savefile” in Chapter 9 of the IDL
Reference Guide manual.

Create a Savefile Object

When an IDL_Savefile object is instantiated, it opens the actual SAVE file for reading
and creates an in-memory representation of its contents — without actually restoring
the file. The savefile object persists until it is explicitly destroyed (or until the IDL
session ends); the SAVE file itself is held open for reading as long as the savefile
object exists.

To create a savefile object from the draw_arrow.sav file created in “Example:
Create a SAVE File of a Simple Routine” on page 216, use the following command:

myRoutines = OBJ_NEW('IDL_Savefile', 'draw_arrow.sav')

Similarly, to create a savefile object from the saved image data, use the following
command:

myImage = OBJ_NEW('IDL_Savefile', 'imagefile.sav')

Query the Savefile Object

Once you have created a savefile object, three methods allow you to retrieve
information about its contents:

• The Contents method provides information about the SAVE file including the
number and type of items contained therein.
Building IDL Applications Restoring Compiled IDL Programs and Data

226 Chapter 10: Introduction to IDL Programming
• The Names method allows you to retrieve the names of routines and variables
stored in the file.

• The Size method allows you to retrieve size and type information about the
variables stored in the file.

Contents Method

The Contents method returns a structure variable that describes the SAVE file and its
contents. The individual fields in the returned structure are described in detail in
“IDL_Savefile::Contents” in Chapter 9 of the IDL Reference Guide manual.

In addition to providing information about the system that created the SAVE file, the
Contents method allows you to determine the number of each type of saved item
(variable, procedure, function, etc.) in the file. This information can be used to
programmatically restore items from the SAVE file.

Assuming you have created the myRoutines savefile object, the data returned by the
Contents method looks like this:

savefileInfo = myRoutines->Contents()
HELP, savefileInfo, /STRUCTURE

IDL Prints:

** Structure IDL_SAVEFILE_CONTENTS, 17 tags, length=176, data length=172:
FILENAME STRING '/rsi/test/draw_arrow.sav'
DESCRIPTION STRING ''
FILETYPE STRING 'Portable (XDR)'
USER STRING 'dquixote'
HOST STRING 'DULCINEA'
DATE STRING 'Thu May 08 12:04:46 2003'
ARCH STRING 'x86'
OS STRING 'Win32'
RELEASE STRING '6.1'
N_COMMON LONG64 0
N_VAR LONG64 0
N_SYSVAR LONG64 0
N_PROCEDURE LONG64 2
N_FUNCTION LONG64 0
N_OBJECT_HEAPVAR LONG64 0
N_POINTER_HEAPVAR LONG64 0
N_STRUCTDEF LONG64 0

From this you can determine the name of the SAVE file from which the information
was extracted, the names of the user and computer who created the file, the creation
date, and information about the IDL system that created the file. You can also see that
the SAVE file contains definitions for two procedures and nothing else.
Restoring Compiled IDL Programs and Data Building IDL Applications

Chapter 10: Introduction to IDL Programming 227
Names Method

The Names method returns a string array containing the names of the variables,
procedures, functions, or other items contained in the SAVE file. By default, the
method returns the names of variables; keywords allow you to specify that names of
other items should be retrieved. The available keyword options are described in
“IDL_Savefile::Names” in Chapter 9 of the IDL Reference Guide manual.

The names of items retrieved using the Names method can be supplied to the Size
method to retrieve size and type information about the specific items, or to the
Restore method to restore individual items.

For example, calling the Names method with the PROCEDURE keyword on the
myRoutines savefile object yields the names of the two procedures saved in the file:

PRINT, myRoutines->Names(/PROCEDURE)

IDL Prints:

ARROW DRAW_ARROW

Similarly, to retrieve the name of the variable saved in imagefile.sav, which is
referred to by the myImage savefile object:

PRINT, myImage->Names()

IDL Prints:

IMAGE

Size Method

The Size method returns the same information about a variable stored in a SAVE file
as the SIZE function does about a regular IDL variable. It accepts the same keywords
as the SIZE function, and returns the same information using the same formats. The
Size method differs only in that the argument is a string or integer identifier string
(returned by the Names method) that specifies an item within a SAVE file, rather than
an in-memory expression. See “IDL_Savefile::Size” in Chapter 9 of the IDL
Reference Guide manual for additional details.

For example, to determine the dimensions of the image stored in the
imagefile.sav file, do the following:

imagesize = myImage->Size('image', /DIMENSIONS)
PRINT, 'Image X size:', imagesize[0]
PRINT, 'Image Y size:', imagesize[1]

IDL Prints:

Image X size: 256
Image Y size: 256
Building IDL Applications Restoring Compiled IDL Programs and Data

228 Chapter 10: Introduction to IDL Programming
Restore Items from the Savefile Object

The Restore method allows you to selectively restore one or more items from the
SAVE file associated with a savefile object. Items to be restored are specified using
the item name strings returned by the Names method. In addition to functions,
procedures, and variables, you can also restore COMMON block definitions,
structure definitions, and heap variables. See “IDL_Savefile::Restore” in Chapter 9 of
the IDL Reference Guide manual for additional details.

For example, to restore the DRAW_ARROW procedure without restoring the
ARROW procedure, do the following:

myRoutines->Restore, 'draw_arrow'

Note on Restoring Objects and Pointers

Object references and pointers rely on special IDL variables called heap variables.
When you restore a regular IDL variable that contains an object reference or a
pointer, the associated heap variable is restored automatically; there is no need to
restore the heap variables separately. It is, however, possible to restore the heap
variables independently of any regular IDL variables; see “Restoring Heap Variables
Directly” in Chapter 9 of the IDL Reference Guide manual for complete details.

Destroy the Savefile Object

To destroy a savefile object, use the OBJ_DESTROY procedure:

OBJ_DESTROY, myRoutines
OBJ_DESTROY, myImage

Destroying the savefile object will close the SAVE file with which the object is
associated.

Note on IDL 5.4 SAVE Files

With IDL 5.4, RSI released a version of IDL that was 64-bit capable. The original
IDL SAVE/RESTORE format used 32-bit offsets. In order to support 64-bit memory
access, the IDL SAVE/RESTORE file format was modified to allow the use of 64-bit
offsets within the file, while retaining the ability to read old files that use the 32-bit
offsets.

The SAVE command always begins reading any SAVE file using 32-bit offsets. If the
64-bit offset command is detected, 64-bit offsets are then used for any subsequent
commands.
Restoring Compiled IDL Programs and Data Building IDL Applications

Chapter 10: Introduction to IDL Programming 229
• In IDL versions capable of writing large files
(!VERSION.FILE_OFFSET_BITS EQ 64), SAVE writes a special command
at the beginning of the file that switches the format from 32 to 64-bit.

• SAVE always starts reading any .sav file using 32-bit offsets. If it sees the 64-
bit offset command, it switches to 64-bit offsets for any commands following
that one.

This configuration is fully backward compatible, in that any IDL program can read
any SAVE file it has created, or by any earlier IDL version. Note however that files
produced in IDL 5.4 using 64-bit offsets are not readable by older versions of IDL.

It has come to our attention that IDL users commonly transfer SAVE/RESTORE data
files written by newer IDL versions to sites where they are restored by older versions
of IDL. It is not generally reasonable to expect this sort of forward compatibility, and
it does not fit the usual definition of backwards compatibility. RSI has always strived
to maintain this compatibility. However, in IDL 5.4 this was not the case. The
following steps were taken in IDL 5.5 to minimize the problems caused by the IDL
5.4 save format:

• 64-bit offsets encoding has been improved. SAVE files written by IDL 5.5 and
later should be readable by any previous version of IDL, if the file data does
not exceed 2.1 GB in length.

• IDL 5.5 and later versions will retain the ability to read the 64-bit offset files
produced by IDL 5.4.x, thus ensuring backwards compatibility.

• SAVE files written by IDL 5.5 or later versions that contain file data exceeding
2.1GB in length are not readable by older versions of IDL, but will be readable
by IDL 5.5 and later versions of IDL that have !VERSION.MEMORY_BITS
equal to 64.

• The CONVERT_SR54 procedure, a part of the IDL 5.5 user library, can be
used to convert SAVE files written within IDL 5.4 into the newer IDL 5.5
format. This allows existing data files to become readable by previous IDL
versions. The CONVERT_SR54 procedure is located in the
RSI-DIR/lib/obsolete.
Building IDL Applications Restoring Compiled IDL Programs and Data

230 Chapter 10: Introduction to IDL Programming
Restoring Compiled IDL Programs and Data Building IDL Applications

Chapter 11:

Files and Input/Output
The following topics are covered in this chapter:
Overview . 232
File I/O in IDL . 233
Unformatted Input/Output 238
Formatted Input/Output 239
Opening Files . 241
Closing Files . 242
Logical Unit Numbers (LUNs) 243
Reading and Writing Very Large Files . . . 246
Using Free Format Input/Output 248
Using Explicitly Formatted Input/Output . 253

Format Codes . 258
Using Unformatted Input/Output 294
Portable Unformatted Input/Output 301
Associated Input/Output 306
File Manipulation Operations 312
UNIX-Specific Information 325
Windows-Specific Information 328
Scientific Data Formats 329
Support for Standard Image File Formats 330
Building IDL Applications 231

232 Chapter 11: Files and Input/Output
Overview

IDL provides powerful facilities for file input and output. Few restrictions are
imposed on data files by IDL, and there is no unique IDL format. This chapter
describes IDL input/output methods and routines and gives examples of programs
which read and write data using IDL, C, and FORTRAN.

The first section of this chapter provides a description for how IDL input/output
works. It is intentionally brief and is intended to serve only as an introduction.
Additional details are covered in the following sections. For the IDL user, perhaps the
largest single difference between platforms is input/output. The majority of this
chapter covers information that is required in all of the environments IDL supports.
Operating system specific information is concentrated in the final sections of this
chapter.
Overview Building IDL Applications

Chapter 11: Files and Input/Output 233
File I/O in IDL

Before any file input or output can be performed, it is necessary to open a file. This is
done using either the OPENR (Open for Reading), OPENW (Open for Writing), or
OPENU (Open for Update) procedures. When a file is opened, it is associated with a
Logical Unit Number, or LUN. All file input and output routines in IDL use the LUN
rather than the filename, and most require that the LUN be explicitly specified. Once
a file is opened, several input/output routines are available for use. Each routine fills a
particular need – the one to use depends on the particular situation.

There are three exceptions to the need to open any file before performing input/output
on it. Three files are always open – in fact, the user is not allowed to close them.
These files are the standard input (usually the keyboard), the standard output (usually
the IDL log window), and the standard error output (usually the terminal screen).
These three files are associated with LUNs 0, -1, and -2, respectively. Because these
files are always open, there is no need to open them prior to using them for
input/output. The READ and PRINT procedures automatically use these files, so
basic formatted input/output is extremely simple.

Simple Examples

It is easy to use input/output using the default input and output files. The IDL
command:

PRINT, 'Hello World.'

causes IDL to print the line:

Hello World.

on the terminal screen. This happens because PRINT formats its arguments and prints
them to LUN -1, which is the standard output file. It is only slightly more
complicated to use other files. The following IDL statements show how the above
“Hello World” example could be sent to a file named hello.dat:

;Open LUN 1 for hello.dat with write access.
OPENW, 1, 'hello.dat'

;Do the output operation to the file.
PRINTF, 1, 'Hello World.'

;Close the file.
CLOSE, 1
Building IDL Applications File I/O in IDL

234 Chapter 11: Files and Input/Output
Routines for Input/Output

The following routines are useful when doing input/output operations. For more
information on these commands, see the IDL Reference Guide.

Routine Description

ASCII_TEMPLATE Presents a GUI that generates a template
defining an ASCII file format.

ASSOC Associates an array structure with a file.

BINARY_TEMPLATE Presents a GUI for interactively generating a
template structure for use with READ_BINARY.

Alphabetical Listing of CDF
Routines

Common Data Format routines.

CLOSE Closes the specified files.

DIALOG_READ_IMAGE Presents GUI for reading image files.

DIALOG_WRITE_IMAGE Presents GUI for writing image files.

EOF Tests the specified file for the end-of-file
condition.

Alphabetical Listing of EOS
Routines

HDF-EOS (Hierarchical Data Format-Earth
Observing System) routines.

FILEPATH Returns full path to a file in the IDL distribution.

FILE_SEARCH Returns a string array containing the names of all
files matching the input path specification.

FLUSH Flushes file unit buffers.

FREE_LUN Frees previously-reserved file units.

FSTAT Returns information about a specified file unit.

GET_KBRD Gets one input IDL character.

GET_LUN Reserves a logical unit number (file unit).

Table 11-1: Routines for Input/Output
File I/O in IDL Building IDL Applications

Chapter 11: Files and Input/Output 235
Alphabetical Listing of HDF
Routines

Hierarchical Data Format routines.

Alphabetical Listing of HDF5
Routines

Hierarchical Data Format (version 5) routines.

HDF_BROWSER Opens GUI to view contents of HDF, HDF-EOS,
or NetCDF file.

HDF_READ Extracts HDF, HDF-EOS, and NetCDF data and
metadata into an output structure.

IOCTL Performs special functions on UNIX files.

MPEG_CLOSE Closes an MPEG sequence.

MPEG_OPEN Opens an MPEG sequence.

MPEG_PUT Inserts an image array into an MPEG sequence.

MPEG_SAVE Saves an MPEG sequence to a file.

Alphabetical Listing of NCDF
Routines

Network Common Data Format routines.

OPEN Opens files for reading, updating, or writing.

POINT_LUN Sets or gets current position of the file pointer.

PRINT/PRINTF Writes formatted output to screen or file.

READ/READF Reads formatted input from keyboard or file.

READ_ASCII Reads data from an ASCII file.

READ_BINARY Reads the contents of a binary file using a passed
template or basic command line keywords.

READ_BMP Reads Microsoft Windows bitmap file (.BMP).

READ_DICOM Reads an image from a DICOM file.

READ_IMAGE Reads the image contents of a file and returns the
image in an IDL variable.

READ_INTERFILE Reads Interfile (v3.3) file.

Routine Description

Table 11-1: Routines for Input/Output (Continued)
Building IDL Applications File I/O in IDL

236 Chapter 11: Files and Input/Output
READ_JPEG Reads JPEG file.

READ_JPEG2000 Reads JPEG 2000 file.

READ_PICT Reads Macintosh PICT (version 2) bitmap file.

READ_PNG Reads Portable Network Graphics (PNG) file.

READ_PPM Reads PGM (gray scale) or PPM (portable
pixmap for color) file.

READ_SRF Reads Sun Raster Format file.

READ_SYLK Reads Symbolic Link format spreadsheet file.

READ_TIFF Reads TIFF format file.

READ_WAV Reads the audio stream from the named .WAV
file.

READ_WAVE Reads Wavefront Advanced Visualizer file.

READ_X11_BITMAP Reads X11 bitmap file.

READ_XWD Reads X Windows Dump file.

READS Reads formatted input from a string variable.

READU Reads unformatted binary data from a file.

SOCKET Opens a client-side TCP/IP Internet socket as an
IDL file unit.

TVRD Reads an image from a window into a variable.

WRITE_BMP Writes Microsoft Windows Version 3 device
independent bitmap file (.BMP).

WRITE_IMAGE Writes an image and its color table vectors, if
any, to a file of a specified type.

WRITE_JPEG Writes JPEG file.

WRITE_JPEG2000 Writes JPEG 2000 file.

Routine Description

Table 11-1: Routines for Input/Output (Continued)
File I/O in IDL Building IDL Applications

Chapter 11: Files and Input/Output 237
WRITE_NRIF Writes NCAR Raster Interchange Format
rasterfile.

WRITE_PICT Writes Macintosh PICT (version 2) bitmap file.

WRITE_PNG Writes Portable Network Graphics (PNG) file.

WRITE_PPM Writes PPM (true-color) or PGM (gray scale)
file.

WRITE_SRF Writes Sun Raster File (SRF).

WRITE_SYLK Writes SYLK (Symbolic Link) spreadsheet file.

WRITE_TIFF Writes TIFF file with 1 to 3 channels.

WRITE_WAV Writes the audio stream to the named .WAV file.

WRITE_WAVE Writes Wavefront Advanced Visualizer (.WAV)
file.

WRITEU Writes unformatted binary data to a file.

Routine Description

Table 11-1: Routines for Input/Output (Continued)
Building IDL Applications File I/O in IDL

238 Chapter 11: Files and Input/Output
Unformatted Input/Output

Unformatted Input/Output is the most basic form of input/output. Unformatted
input/output transfers the internal binary representation of the data directly between
memory and the file.

Advantages of Unformatted I/O

Unformatted input/output is the simplest and most efficient form of input/output. It is
usually the most compact way to store data.

Disadvantages of Unformatted I/O

Unformatted input/output is the least portable form of input/output. Unformatted data
files can only be moved easily to and from computers that share the same internal
data representation. It should be noted that XDR (eXternal Data Representation) files,
described in “Portable Unformatted Input/Output” on page 301, can be used to
produce portable binary data.

Unformatted input/output is not directly human readable, so you cannot type it out on
a terminal screen or edit it with a text editor.
Unformatted Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 239
Formatted Input/Output

Formatted output converts the internal binary representation of the data to ASCII
characters which are written to the output file. Formatted input reads characters from
the input file and converts them to internal form. Formatted I/O can be either “Free”
format or “Explicit” format, as described below.

Advantages of Formatted I/O

Formatted input/output is very portable. It is a simple process to move formatted data
files to various computers, even computers running different operating systems, as
long as they all use the ASCII character set. (ASCII is the American Standard Code
for Information Interchange. It is the character set used by almost all current
computers, with the notable exception of large IBM mainframes.)

Formatted files are human readable and can be typed to the terminal screen or edited
with a text editor.

Disadvantages of Formatted I/O

Formatted input/output is more computationally expensive than unformatted
input/output because of the need to convert between internal binary data and ASCII
text. Formatted data requires more space than unformatted to represent the same
information. Inaccuracies can result when converting data between text and the
internal representation.

Free Format I/O

With free format input/output, IDL uses default rules to format the data.

Advantages of Free Format I/O

The user is free of the chore of deciding how the data should be formatted. Free
format is extremely simple and easy to use. It provides the ability to handle the
majority of formatted input/output needs with a minimum of effort.

Disadvantages of Free Format I/O

The default formats used are not always exactly what is required. In this case, explicit
formatting is necessary.
Building IDL Applications Formatted Input/Output

240 Chapter 11: Files and Input/Output
Explicit Format I/O

Explicit format I/O allows you to specify the exact format for input/output.

Advantages of Explicit I/O

Explicit formatting allows a great deal of flexibility in specifying exactly how data
will be formatted. Formats are specified using a syntax that is similar to that used in
FORTRAN format statements. Scientists and engineers already familiar with
FORTRAN will find IDL formats easy to write. Commonly used FORTRAN format
codes are supported. In addition, IDL formats have been extended to provide many of
the capabilities found in the scanf () and printf () functions commonly found in the C
language runtime library.

Disadvantages of Explicit I/O

Using explicitly specified formats requires the user to specify more detail—they are,
therefore, more complicated to use than free format.

The type of input/output to use in a given situation is usually determined by
considering the advantages and disadvantages of each method as they relate to the
problem to be solved. Also, when transferring data to or from other programs or
systems, the type of input/output is determined by the application. The following
suggestions are intended to give a rough idea of the issues involved, though there are
always exceptions:

• Images and large data sets are usually stored and manipulated using
unformatted input/output in order to minimize processing overhead. The IDL
ASSOC function is often the natural way to access such data.

• Data that need to be human readable should be written using formatted
input/output.

• Data that need to be portable should be written using formatted input/output.
Another option is to use unformatted XDR files by specifying the XDR
keyword with the OPEN procedures. This is especially important if moving
between computers with markedly different internal binary data formats. XDR
is discussed in “Portable Unformatted Input/Output” on page 301.

• Free format input/output is easier to use than explicitly formatted input/output
and about as easy as unformatted input/output, so it is often a good choice for
small files where there is no strong reason to prefer one method over another.

• Special well-known complex file formats are usually supported directly with
special IDL routines (e.g. READ_JPEG for JPEG images).
Formatted Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 241
Opening Files

Before a file can be processed by IDL, it must be opened using one of the procedures
described in the following table. All open files are associated with a LUN (Logical
Unit Number) within IDL, and all input/output routines refer to files via this number.
For example, to open the file named data.dat for reading on file unit 1, use the
following statement:

OPENR, 1, 'data.dat'

The OPEN procedures can be used with certain keywords to modify their normal
behavior. Some keywords are generally applicable, while others only have effect
under a given operating system. Some operating system specific keywords are
allowed (and ignored) under other operating systems in order to facilitate writing
portable routines.

Platform-Specific Keywords to the OPEN Procedure

Different computers and operating systems perform input/output in different ways.
See “OPEN” in the IDL Reference Guide manual for keywords to the OPEN
procedures that apply under UNIX or Microsoft Windows.

Procedure Description

OPENR Opens an existing file for input only.

OPENW Opens a new file for input and output. If the named file already
exists, its old contents are overwritten.

OPENU Opens an existing file for input and output.

Table 11-2: IDL File Opening Commands
Building IDL Applications Opening Files

242 Chapter 11: Files and Input/Output
Closing Files

After work involving the file is complete, it should be closed. Closing a file removes
the association between the file and its unit number, thus freeing the unit number for
use with a different file. There is usually an operating system-imposed limit on the
number of files a user may have open at once. Although this number is large enough
that it rarely causes problems, situations can occur where a file must be closed before
another file may be opened. In any event, it is good style to only keep needed files
open.

There are three ways to close a file:

• Use the CLOSE procedure.

• Use the FREE_LUN procedure on a LUN that has been allocated by
GET_LUN.

• Exit IDL. IDL closes all open files when it exits.

Calling the CLOSE procedure is the most common way to close a file unit. For
example, to close file unit number 1, use the following statement:

CLOSE, 1

In addition, if FREE_LUN is called with a file unit number that was previously
allocated by GET_LUN, it calls CLOSE before deallocating the file unit. Finally, all
open files are automatically closed when IDL exits.
Closing Files Building IDL Applications

Chapter 11: Files and Input/Output 243
Logical Unit Numbers (LUNs)

IDL Logical Unit Numbers (LUNs) fall within the range −2 to 128. Some LUNs are
reserved for special functions as described below.

The Standard Input, Output, and Error LUNs

The three LUNs described below have special meanings that are operating system
dependent:

UNIX

Logical Unit Numbers 0, -1, and -2 are tied to stdin, stdout, and stderr, respectively.
This means that the normal UNIX file redirection and pipe operations work with IDL.
For example, the shell command

%idl < idl.inp >& idl.out &

will cause IDL to execute in the background, reading its input from the file idl.inp
and writing its output to the file idl.out. Any messages sent to stderr are also sent to
idl.out.

When using the IDL Development Environment (IDLDE), Logical Unit Numbers 0, -
1, and -2 are tied to stdin (the command line), stdout (the log window), and stderr
(the log window), respectively.

Windows

Logical Unit Numbers 0, -1, and -2 are tied to stdin (the command line), stdout (the
log window), and stderr (the log window), respectively.

These special file units are described in more detail below.

File Unit 0

This LUN represents the standard input stream, which is usually the keyboard.
Therefore, the IDL statement:

READ, X

is equivalent to the following:

READF, 0, X
Building IDL Applications Logical Unit Numbers (LUNs)

244 Chapter 11: Files and Input/Output
File Unit -1

This LUN represents the standard output stream, which is usually the terminal screen.
Therefore, the IDL statement:

PRINT, X

is equivalent to the following:

PRINTF, -1, X

File Unit -2

This LUN represents the standard error stream, which is usually the terminal screen.

File Units (1–99)

These are the file units for normal interactive use. When using IDL interactively, the
user arbitrarily selects the file units used. The file units from 1 to 99 are available for
this use.

File Units (100–128)

These are the file units managed by the GET_LUN and FREE_LUN procedures. If an
IDL procedure or function that uses files is written to explicitly use a given file unit,
there is a chance that it will conflict with other routines that use the same unit. It is
therefore necessary to avoid explicit file unit numbers when writing IDL procedures
and functions. The GET_LUN and FREE_LUN procedures provide a standard
mechanism for IDL routines to obtain unique file units. GET_LUN allocates a file
unit from a pool of free units in the range 100 to 128. This unit will not be allocated
again until it is released by a call to FREE_LUN. Meanwhile, it is available for the
exclusive use of the program that allocated it. A typical procedure that needs a file
unit might be structured as follows:

PRO DEMO
;Get a unique file unit and open the file.
OPENR, UNIT, /GET_LUN

;Body of program goes here.
.
.
.

;Return file unit.
FREE_LUN, UNIT
Logical Unit Numbers (LUNs) Building IDL Applications

Chapter 11: Files and Input/Output 245
;Since the file is still open, FREE_LUN will automatically call
;CLOSE.
END

Note
All IDL procedures and functions that open files should use GET_LUN/ FREE_LUN
to obtain file units. Furthermore, the file units between 100 and 128 should never be
used unless previously allocated by GET_LUN.
Building IDL Applications Logical Unit Numbers (LUNs)

246 Chapter 11: Files and Input/Output
Reading and Writing Very Large Files

IDL on all platforms is able to read and write data from files up to 231-1 bytes in
length. On some platforms, it is also able to read and write data from files longer than
this limit.

To see if IDL on your platform supports large files, use the following:

PRINT, !VERSION.FILE_OFFSET_BITS

If IDL prints the number 64, the platform supports large files. For more information,
see “!VERSION” in the IDL Reference Guide manual.

When reading and writing to files smaller than this limit, there is no difference in
behavior between the platforms that can and those that cannot handle larger files. IDL
uses longword integers for file position arguments (e.g. POINT_LUN, FSTAT) and
keywords, as before. However, when dealing with files that exceed this limit, IDL
uses signed 64-bit integers in order to be able to properly represent the offset.
Consider the following example:

;Open the file
OPENW, 1, 'test.dat'

;Initial position should be 0.
POINT_LUN, -1, POS

;Print the position and its type.
HELP, POS

;Move the file pointer past the signed 32-bit boundary.
POINT_LUN, 1, '000000ffffffffff'x

;The position is now too large to represent as a longword.
POINT_LUN, -1, POS

;Print the position and its type.
HELP, POS

CLOSE, 1

Executing these statements results in the following output:

POS LONG = 0
POS LONG64 = 1099511627775

Initially, the file position is 0, which fits easily into a 32-bit integer. Once the file
position exceeds the range of a signed 32-bit number, IDL automatically shifts to the
64-bit integer type.
Reading and Writing Very Large Files Building IDL Applications

Chapter 11: Files and Input/Output 247
Limitations of Large File Support

There are limitations on IDL’s support for very large files that must be understood by
the IDL programmer:

• On any platform, the amount of data that IDL can transfer in a single operation
is limited by the amount of memory it can allocate. On most platforms, IDL is
a 32-bit program, and as such, can theoretically address up to 2^31-1 bytes of
memory (approximately 2.3GB). On these 32-bit platforms, reading, writing,
and processing data larger than this limit must be done in multiple operations.
Most systems do not have 2.3 GB of memory available, and other programs
running on the system also compete for the same memory, so the actual
memory available is likely to be considerably smaller.

To see if your platform is 32- or 64-bit, use the following:

PRINT, !VERSION.MEMORY_BITS

IF “32” is returned, your platform is 32-bit. If “64” is returned, your platform
is 64-bit. For more information, see “!VERSION” in the IDL Reference Guide
manual.

• The ability to read or write to very large files is constrained by the ability of the
underlying file system to support such files. Many platforms can only support
large files on certain file systems. For example, many platforms will be unable
to support these operations on NFS mounted file systems because NFS version
3 and later must be in use on both client and server. Some platforms, such HP-
UX, can only support such operations on special large file systems, and only if
they are mounted using the appropriate mount options. Consult your system
documentation to determine the limitations present on your system and the
procedures for supporting very large file.
Building IDL Applications Reading and Writing Very Large Files

248 Chapter 11: Files and Input/Output
Using Free Format Input/Output

Use of formatted data is most appropriate when the data must be in human readable
form, such as when it is to be prepared or modified with a text editor. Formatted data
also are highly portable between various computers and operating systems.

In addition to the PRINT, PRINTF, READ, and READF routines already discussed,
the STRING function can be used to generate formatted output that is sent to a string
variable instead of a file. The READS procedure can be used to read formatted input
from a string variable.

The exact format of the character data may be specified to these routines by providing
a format string via the FORMAT keyword. If no format string is given, default
formats for each type of data are applied. This method of formatted input/output is
called free format. Free format input/output is suitable for most applications
involving formatted data. It is designed to provide input/output abilities with a
minimum of programming.

Structures and Free Format Input/Output

IDL structures present a special problem for default formatted input and output. The
default format for displaying structure data is to surround the structure with curly
braces ({}). For example, if you define an anonymous structure:

struct = { A:2, B:3, C:'A String' }

and then use default formatted output via the PRINT command:

PRINT, struct

IDL prints:

{ 2 3 A String}

You might suppose that default formatted input would recognize that the curly braces
are part of the formatting and ignore them. This is not the case, however. By default,
to read the third field in the structure (the string field) IDL will read from the “A” to
the end of the line, including the closing brace.

This behavior, while unsymmetric, seems to be the best choice for default behavior—
displaying the result of the PRINT statement on the computer screen. We recommend
that you use explicitly formatted input/output when reading and writing structures to
disk files, so as not to have to explicitly code around the possibility that your structure
may include strings.
Using Free Format Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 249
Free Format Input

The following rules are used by IDL to perform free format input:

1. Input is performed on scalar variables. Array and structure variables are treated
as collections of scalar variables. For example,

A = INTARR(5)
READ, A

causes IDL to read five separate values to fill each element of the variable A.

2. If the current input line is empty and there are variables left requiring input,
read another line.

3. If the current input line is not empty but there are no variables left requiring
input, the remainder of the line is ignored.

4. Input data must be separated by commas or white space (tabs, spaces, or new
lines).

5. When reading into a variable of type string, all characters remaining in the
current input line are placed into the string.

6. When reading into numeric variables, every effort is made to convert the input
into a value of the expected type. Decimal points are optional and exponential
(scientific) notation is allowed. If a floating-point datum is provided for an
integer variable, the value is truncated.

7. When reading into a variable of complex type, the real and imaginary parts are
separated by a comma and surrounded by parentheses. If only a single value is
provided, it is taken as the real part of the variable, and the imaginary part is set
to zero. For example:

;Create a complex variable.
A = COMPLEX(0)

;IDL prompts for input with a colon:
READ, A

;The user enters "(3,4)" and A is set to COMPLEX(3, 4).
:(3, 4)

;IDL prompts for input with a colon:
READ, A

;The user enters "50" and A is set to COMPLEX(50, 0).
:50
Building IDL Applications Using Free Format Input/Output

250 Chapter 11: Files and Input/Output
Free Format Output

The following rules are used by IDL to perform free format output:

1. The format used to output numeric data is determined by the data type. The
formats used are summarized in the table below. The formats are specified in
the FORTRAN-like style used by IDL for explicitly formatted input/output.

2. The current output line is filled with characters until one of the following
happens:

A. There is no more data to output.

B. The output line is full. When output is to a file, the default line width is 80
columns (you can override this default by setting the WIDTH keyword to
the OPEN procedure). When the output is to the standard output, IDL uses
the current width of your tty or command log window.

C. An entire row is output in the case of multidimensional arrays.

3. When outputting a structure variable, its contents are bracketed with “{” and
“}” characters.

Data Type Format

Byte I4

Int, UInt I8

Long, ULong I12

Float G13.6

Long64, ULong64 I22

Double G16.8

Complex '(', G13.6, ',', G13.6, ')'

Double-precision Complex '(', G16.8, ',', G16.8, ')'

String Output full string on current line.

Table 11-3: Formats Used for Free-Format Output
Using Free Format Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 251
Example: Free Format Input/Output

IDL free format input/output is extremely easy to use. The following IDL statements
demonstrate how to read into a complicated structure variable and then print the
results:

;Create a structure named "types" that contains seven of the basic
;IDL data types, as well as a floating-point array.
A = {TYPES, A:0B, B:0, C:0L, D:1.0, E:1D, $

F:COMPLEX(0), G: 'string', E:FLTARR(5)}

;Read free-formatted data from input
READ, A

;IDL prompts for input with a colon. We enter values for the first
;six numeric fields of A and the string.
: 1 2 3 4 5 (6,7) EIGHT

Notice that the complex value was specified as (6, 7). If the parentheses had been
omitted, the complex field of A would have received the value COMPLEX(6, 0), and
the 7 would have been input for the next field. When reading into a string variable,
IDL starts from the current point in the input and continues to the end of the line.
Thus, we do not enter values intended for the rest of the structure on this line.

;There are still fields of A that have not received data, so IDL
;prompts for another line of input.
: 9 10 11 12 13

;Show the result.
PRINT, A

Executing these statements results in the following output:

{ 1 2 3 4.00000 5.0000000
(6.00000, 7.00000) eight

9.00000 10.0000 11.0000 12.0000 13.0000
}

When producing the output, IDL uses default rules for formatting the values and
attempts to place as many items as possible onto each line. Because the variable A is a
structure, braces {} are placed around the output. As noted above, when IDL reads
strings it continues to the end of the line. For this reason, it is usually convenient to
place string variables at the end of the list of variables to be input.
Building IDL Applications Using Free Format Input/Output

252 Chapter 11: Files and Input/Output
For example, if S is a string variable and I is an integer:

;Read into the string first.
READ, S, I

;IDL prompts for input. We enter a string value followed by an
;integer.
: Hello World 34

;The entire previous line was placed into the string variable S,
;and I still requires input. IDL prompts for another line.
: 34
Using Free Format Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 253
Using Explicitly Formatted Input/Output

The FORMAT keyword can be used with the formatted input/output routines to
explicitly specify the appearance of the data. The standard syntax of IDL format
strings is similar to that used in FORTRAN; a C printf()-style syntax is also
supported, as described in “C printf-Style Quoted String Format Code” on page 283.

The format string specifies the format in which data is to be transferred as well as the
data conversion required to achieve that format. The format specification strings
supplied by the FORMAT keyword have the form:

FORMAT = '(q1f1s1f2s2 ... fnqn)'

where q, f, and s are described below.

Record Terminators

q is zero or more slash (/) record terminators. On output, each record terminator
causes the output to move to a new line. On input, each record terminator causes the
next line of input to be read.

Format Codes

f is a format code. Some format codes specify how data should be transferred while
others control some other function related to how input/output is handled. The code f
can also be a nested format specification enclosed in parentheses. This is called a
group specification and has the following form:

...[n](q1f1s1f2s2 ... fnqn) ...

A group specification consists of an optional repeat count n followed by a format
specification enclosed in parentheses. Use of group specifications allows more
compact format specifications to be written. For example, the format specification:

FORMAT = '("Result: ", "<",I5,">", "<",I5,">")'

can be written more concisely using a group specification:

FORMAT = '("Result: ", 2("<",I5,">"))'

If the repeat count is 1 or is not given, the parentheses serve only to group format
codes for use in format reversion (discussed in the next section). Format codes and
their syntax are described in detail in “Format Codes” on page 258.
Building IDL Applications Using Explicitly Formatted Input/Output

254 Chapter 11: Files and Input/Output
Field Separators

s is a field separator. A field separator consists of one or more commas (,) and/or
slash record terminators (/). The only restriction is that two commas cannot occur
side-by-side.

The arguments provided in a call to a formatted input/output routine are called the
argument list. The argument list specifies the data to be moved between memory and
the file. All data are handled in terms of basic IDL components. Thus, an array is
considered to be a collection of scalar data elements, and a structure is processed in
terms of its basic components. Complex scalar values are treated as two floating-
point values.

Rules for Explicitly Formatted Input/Output

IDL uses the following rules to process explicitly formatted input/output:

1. Traverse the format string from left to right, processing each record terminator
and format code until an error occurs or no data is left in the argument list. The
comma field separator serves no purpose except to delimit the format codes.

2. It is an error to specify an argument list with a format string that does not
contain a format code that transfers data to or from the argument list because
an infinite loop would result.

3. When a slash record terminator (/) is encountered, the current record is
completed, and a new one is started. For output, this means that a new line is
started. For input, it means that the rest of the current input record is ignored,
and the next input record is read.
Using Explicitly Formatted Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 255
4. When a format code that does not transfer data to or from the argument list is
encountered, process it according to its meaning. The format codes that do not
transfer data to or from the argument list are summarized in Table 11-4.

Code Action

Quoted String On output, the contents of the string are written out. On input,
quoted strings are ignored.

: The colon format code in a format string terminates format
processing if no more items remain in the argument list. It has no
effect if data still remains on the list.

$ On output, if a $ format code is placed anywhere in the format
string, the new line implied by the closing parenthesis of the
format string is suppressed. On input, the $ format code is
ignored.

nH FORTRAN-style Hollerith string. Hollerith strings are treated
exactly like quoted strings.

nX Skips n character positions.

Tn Tab. Sets the character position of the next item to the n-th position
in the current record.

TLn Tab Left. Specifies that the next character to be transferred to or
from the current record is the n-th character to the left of the
current position.

TRn Tab Right. Specifies that the next character to be transferred to or
from the current record is the n-th character to the right of the
current position.

Table 11-4: Format Codes that do not Transfer Data
Building IDL Applications Using Explicitly Formatted Input/Output

256 Chapter 11: Files and Input/Output
5. When a format code that transfers data to or from the argument list is
encountered, it is matched up with the next datum in the argument list. The
format codes that transfer data to or from the argument list are summarized in
Table 11-5.

6. On input, read data from the file and format it according to the format code. If
the data type of the input data does not agree with the data type of the variable
that is to receive the result, do the type conversion if possible; otherwise, issue
a type conversion error and stop.

7. On output, write the data according to the format code. If the data type does
not agree with the format code, do the type conversion prior to doing the output
if possible. If the type conversion is not possible, issue a type conversion error
and stop.

Code Action

A Transfer character data.

B Transfer binary data.

C() Transfer calendar (Julian date and/or time) data.

D Transfer double-precision, floating-point data.

E Transfer floating-point data using scientific (exponential) notation.

F Transfer floating-point data.

G Use F or E format depending on the magnitude of the value being
processed.

I Transfer integer data.

O Transfer octal data.

Q Obtain the number of characters in the input record remaining to
be transferred during a read operation. In an output statement, the
Q format code has no effect except that the corresponding
input/output list element is skipped.

Z Transfer Hexadecimal data.

Table 11-5: Format Codes that Transfer Data
Using Explicitly Formatted Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 257
8. If the last closing parenthesis of the format string is reached and there are no
data left on the argument list, then format processing terminates. If, however,
there are still data to be processed on the argument list, then part or all of the
format specification is reused. This process is called format reversion.

Format Reversion

In format reversion, the current record is terminated, a new one is initiated, and
format control reverts to the group repeat specification whose opening parenthesis
matches the next-to-last closing parenthesis of the format string. If the format does
not contain a group repeat specification, format control returns to the initial opening
parenthesis of the format string. For example, the IDL command:

PRINT, FORMAT = '("The values are: ", 2("<", I1, ">"))', $
INDGEN(6)

results in the output

The values are: <0><1>
<2><3>
<4><5>

The process involved in generating this output is as follows:

1. Output the string “The values are: ”.

2. Process the group specification and output the first two values. The end of the
format specification is encountered, so end the output record. Data are
remaining, so move back to the group specification

2("<", I1, ">")
by format reversion.

3. Repeat Step 2 until no data remain. End the output record. Format processing
is complete.
Building IDL Applications Using Explicitly Formatted Input/Output

258 Chapter 11: Files and Input/Output
Format Codes

Format codes specify either how data should be transferred or how input/output is
handled.

Syntax of Format Codes

The syntax of an IDL format code is:

[n]FC[+][-][width]

Where:

Padding and Natural Width Formatting

The value being formatted may be shorter than the output width specified by the
width parameter. When this happens, IDL will adjust either the contents of the output
value or the width of the field, using the following mechanisms:

n is an optional repeat count (1 ≤ n) specifying the number of
times the format code should be processed. If n is not
specified, a repeat count of one is used.

FC is the format code. See “Available Format Codes”, below.

+ is an optional flag that specifies that positive numbers should
be output with a “+” prefix. The “+” flag is only valid for
numeric format codes. Normally, negative numbers are output
with a “-” prefix and positive numbers have no sign prefix.
Non-decimal numeric codes (B, O, and Z) allow the
specification of the “+” flag, but ignore it.

- is an optional flag that specifies that string or numeric values
should be output with the text left-justified. Normally, output
is right-justified.

width is an optional width specification. Width specifications and
default values are format-code specific, and are described in
detail along with the format code.

See “Padding and Natural Width Formatting”, below, for
additional information on how output values are formatted
based on the width parameter.
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 259
Whitespace Padding

By default, if the value being formatted uses fewer characters than specified by the
width parameter, IDL pads the value with whitespace characters on the left to create a
string of the specified width. For example, the following IDL statement

PRINT, FORMAT='(I12)', 300

produces the following output:

bbbbbbbbb300

where b represents a space character.

Zero Padding

For numeric format codes, if the first digit of the width parameter is a zero, IDL will
pad the value with zeroes rather than blanks. For example:

PRINT, FORMAT='(I08)', 300

produces the following output:

00000300

When padding values with zeroes, note the following:

1. If you specify the “-” flag to left-justify the output, specifying a leading zero in
the width parameter has no effect, since there are no unused spaces to the left
of the output value.

2. If you specify an explicit minimum width value (via the m width parameter)
for an integer format code, specifying a leading zero in the width parameter has
no effect, since the output value is already padded with zeroes on the left to
create an output value of the specified minimum width.

Natural Width Formatting

If the numeral zero is specified for the width parameter, IDL uses the “natural” width
for the value. The value is read or output using a default format without any leading
or trailing whitespace, in the style of the standard C library printf() function.

Using a value of zero for the width parameter is useful when reading tables of data in
which individual elements may be of varying lengths. For example, if your data
reside in tables of the following form:

26.01 92.555 344.2
101.0 6.123 99.845
23.723 200.02 141.93
Building IDL Applications Format Codes

260 Chapter 11: Files and Input/Output
setting the format to

FORMAT = '(3F0)'

ensures that the correct number of digits are read or output for each element.

Available Format Codes

IDL supports the following format codes:

• The A Format Code (page 261), which transfers character values.

• The : Format Code (page 262), which terminates processing.

• The $ Format Code (page 263), which suppresses newlines in output.

• The F, D, E, and G Format Codes (page 264), which transfer floating-point
values.

• The B, I, O, and Z Format Codes (page 267), which transfer integer values.

• The Q Format Code (page 270), returns the number of characters that remain
to be transferred during a read operation.

• The Quoted String and H Format Codes (page 271), which output string values
directly.

• The T Format Code (page 272), which specifies the absolute position within a
record.

• The TL Format Code (page 273), which moves the position with a record to the
left.

• The TR and X Format Codes (page 274), which move the position within a
record to the right.

• The C() Format Code (page 275), which transfers calendar data.

• The C printf-Style Quoted String Format Code (page 283), which provides an
alternative syntax for specifying the format of an output string.

Examples

For examples using different format codes, see:

• “Example: Reading Tables of Formatted Data” on page 288

• “Example: Reading Records that Contain Multiple Array Elements” on
page 290
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 261
A Format Code

The A format code transfers character data.

The syntax is:

[n]A[-][w]

where the parameters “n” and “-” are as described in “Syntax of Format Codes” on
page 258 and the width specification is as follows:

For example, the IDL statement,

PRINT, FORMAT = '(A6)', '123456789'

generates the following output:

123456

w is an optional width (0 ≤ w) specifying the number of characters to be
transferred. If w is not specified, the entire string is transferred. On
output, if w is greater than the length of the string, the string is right
justified. On input, IDL strings have dynamic length, so w specifies the
resulting length of input string variables. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.
Building IDL Applications Format Codes

262 Chapter 11: Files and Input/Output
: Format Code

The colon format code terminates format processing if there are no more data
remaining in the argument list.

The syntax is:

:

For example, the IDL statement,

PRINT, FORMAT = '(6(I1, :, ", "))', INDGEN(6)

will output the following comma-separated list of integer values:

0, 1, 2, 3, 4, 5

The use of the colon format code prevented a comma from being output following the
final item in the argument list.
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 263
$ Format Code

When IDL completes output format processing, it normally outputs a newline to
terminate the output operation. However, if a “$” format code is found in the format
specification, this default newline is not output. The “$” format code is only used on
output; it is ignored during input formatting.

The syntax is:

$

One use for the “$” format code is in prompting for user input in programs that run in
a tty rather than in the graphical IDL Development Environment. For example, the
following simple program show the difference between strings formatted with and
without the “$” format code. The first PRINT statement prompts the user for input
without forcing the user’s response to appear on a separate line from the prompt; the
second PRINT statement makes the user enter the response on a separate line.

IDL> .run
- PRO format_test
- name=''
- age=0
- PRINT, FORMAT='($, "Enter name")'
- READ, name
- PRINT, FORMAT='("Enter age")'
- READ, age
- PRINT, FORMAT='("You are ", I0, " years old, ", A0)', age, name
- END
% Compiled module: FORMAT_TEST.

Running the procedure looks like this:

IDL> format_test
Enter name: Pat
Enter age
: 29
You are 29 years old, Pat
IDL>

where the values in italics were entered by the user in response to the prompts.
Building IDL Applications Format Codes

264 Chapter 11: Files and Input/Output
F, D, E, and G Format Codes

The F, D, E, and G format codes are used to transfer floating-point values between
memory and the specified file.

The syntax is:

[n]F[+][-][w][.d]
[n]D[+][-][w][.d]
[n]E[+][-][w][.d][Ee]
[n]G[+][-][w][.d][Ee]

where the parameters “n”, “+”, and “-” are as described in “Syntax of Format Codes”
on page 258 and the width specification is as follows:

On input, the F, D, E, and G format codes all transfer w characters from the external
field and assign them as a real value to the corresponding input/output argument list
datum.

The F and D format codes are used to output values using fixed-point notation. The
value is rounded to d decimal positions and right-justified into an external field that is
w characters wide. The value of w must be large enough to include a minus sign when
necessary, at least one digit to the left of the decimal point, the decimal point, and d
digits to the right of the decimal point. The code D is identical to F (except for its
default values for w and d) and exists in IDL primarily for compatibility with
FORTRAN.

w is an optional width specification (0 ≤ w ≤ 256). The variable w specifies
the number of digits to be transferred. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.

d is an optional width specification (1 ≤ d < w). For the F, D, and E format
codes, d specifies the number of positions after the decimal point. For the
G format code, d specifies the number of significant digits displayed.

e is an optional width (1 ≤ e ≤ 256) specifying the width of exponent part
of the field. IDL ignores this value—it is allowed for compatibility with
FORTRAN.
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 265
The E format code is used for scientific (exponential) notation. The value is rounded
to d decimal positions and right-justified into an external field that is w characters
wide. The value of w must be large enough to include a minus sign when necessary, at
least one digit to the left of the decimal point, the decimal point, d digits to the right
of the decimal point, a plus or minus sign for the exponent, the character “e” or “E”,
and at least two characters for the exponent.

Note
IDL uses the standard C library function snprintf() to format numbers and their
exponents. As a result, different platforms may print different numbers of exponent
digits.

The G format code uses the F output style when reasonable and E for other values,
but displays exactly d significant digits rather than d digits following the decimal
point.

Overflow

On output, if the field provided is not wide enough, it is filled with asterisks (*) to
indicate the overflow condition.

Default Values of the w, d, and e Parameters

If w, d, or e are omitted, the values specified in the following table are used.

Data Type w d e

Float, Complex 15 7 2 (3 for Windows)

Double 25 16 2 (3 for Windows)

All Other Types 25 16 2 (3 for Windows)

Table 11-6: Floating Format Defaults
Building IDL Applications Format Codes

266 Chapter 11: Files and Input/Output
Format Code Examples

The following table shows the results of the application of various format codes to
given data values. Note that normally, the case of the format code is ignored by IDL.
However, the case of the E and G format codes determines the case used to output the
exponent in scientific notation.

Format Internal Value Formatted Output

F 100.0 bbbb100.0000000

F 100.0D bbbbb100.0000000000000000

F10.0 100.0 bbbbbb100.

F10.1 100.0 bbbbb100.0

F10.4 100.0 bb100.0000

F2.1 100.0 **

e11.4 100.0 b1.0000e+02

1.0000e+002 (Windows)

Note that “e10.4” displays
“**********” under Windows
because the extra “0” added after the
“e” makes the string longer than 10
characters.

E11.4 100.0 b1.0000E+02

1.0000E+002 (Windows)

g10.4 100.0 bbbbb100.0

g10.4 10000000.0 b1.000e+07

1.000e+007 (Windows)

G10.4 10000000.0 b1.000E+07

1.000E+007 (Windows)

Table 11-7: Floating-Point Output Examples
(“b” represents a blank space)
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 267
B, I, O, and Z Format Codes

The B, I, O, and Z format codes are used to transfer integer values to and from the
specified file. The B format code is used to output binary values, I is used for decimal
values, O is used for octal values, and Z is used for hexadecimal values.

The syntax is:

[n]B[-][w][.m]
[n]I[+][-][w][.m]
[n]O[-][w][.m]
[n]Z[-][w][.m]

where the parameters “n”, “+”, and “-” are as described in “Syntax of Format Codes”
on page 258 and the width specification is as follows:

Overflow

On output, if the field provided is not wide enough, it is filled with asterisks (*) to
indicate the overflow condition.

w is an optional width specification (0 ≤ w ≤ 256). The variable w specifies
the number of digits to be transferred. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 256) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.
Building IDL Applications Format Codes

268 Chapter 11: Files and Input/Output
Default Values of the w Parameter

The default values used by the I, O, and Z format codes if w is omitted are specified
in the following table:

The default values used by the B format code if w is omitted are specified in the
following table:

Data Type w

Byte, Int, UInt 7

Long, ULong, Float 12

Long64, ULong64 22

Double 23

All Other Types 12

Table 11-8: Integer Format Defaults
(I, O, and Z format codes)

Data Type w

Byte 8

Int, UInt 16

Long, ULong 32

Long64, ULong64 64

All Other Types 32

Table 11-9: Integer Format Defaults
(B format code)
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 269
Format Code Examples

The following table shows the results of the application of various format codes to
given data values. Note that normally, the case of the format code is ignored by IDL.
However, the case of the Z format codes determines the case used to output the
hexadecimal digits A-F.

Format Internal
Value

Formatted Output

B 3000 bbbb101110111000

B15 3000 bbb101110111000

B14.14 3000 00101110111000

I 3000 bbb3000

I6.5 3000 b03000

I5.6 3000 *****

I2 3000 **

O 3000 bbb5670

O6.5 3000 b05670

O5.6 3000 *****

O2 3000 **

z 3000 bbbbbb8

Z 3000 bbbbBB8

Z6.5 3000 b00BB8

Z5.6 3000 *****

Z2 3000 **

Table 11-10: Integer Output Examples
(“b” represents a blank space)
Building IDL Applications Format Codes

270 Chapter 11: Files and Input/Output
Q Format Code

The Q format code returns the number of characters in the input record remaining to
be transferred during the current read operation. It is ignored during output
formatting.

The syntax is:

q

Format Q is useful for determining how many characters have been read on a line. For
example, the following IDL statements count the number of characters in file
demo.dat:

;Open file for reading.
OPENR, 1, "demo.dat"

;Create a longword integer to keep the count.
N = 0L

;Count the characters.
WHILE(~ EOF(1)) DO BEGIN

READF, 1, CUR, FORMAT = '(q)' & N = N + CUR
ENDWHILE

;Report the result.
PRINT, FORMAT = '("counted", N, "characters.")'

;Close file.
CLOSE, 1
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 271
Quoted String and H Format Codes

On output, any quoted strings or Hollerith constants are sent directly to the output. On
input, they are ignored.

The syntax for a quoted string is:

"string" or 'string'

where string is the string to be output.

Note
Quoted strings must be enclosed in either single or double quotation marks; use the
type of quotation mark that is not used to enclose the entire format string.

For example, the IDL statement,

PRINT, FORMAT = '("Value: ", I0)', 23

results in the following output:

Value: 23

Note that it would have been equally correct to use double quotes around the entire
format string and single quotes around the quoted string “Value: ”.

Another way to specify a quoted string is with a Hollerith constant.

The syntax for a Hollerith constant is:

nHc1c2 c3 ... cn

where

For example, the following IDL statement,

PRINT, FORMAT = '(7HValue: , I0)', 23

results in the following output:

Value: 23

See “C printf-Style Quoted String Format Code” on page 283 for an alternate form of
the Quoted String Format Code that supports C printf-style capabilities.

n is the number of characters in the constant (1 ≤ n ≤ 255).

ci is the characters that make up the constant. The number of characters
must agree with the value provided for n.
Building IDL Applications Format Codes

272 Chapter 11: Files and Input/Output
T Format Code

The T format code specifies the absolute position in the current record.

The syntax is:

Tn

where

The T format code differs from the TL, TR, and X format codes primarily in that it
specifies an absolute position rather than an offset from the current position. For
example,

PRINT, FORMAT = '("First", 20X, "Last", T10, "Middle")'

produces the following output:

FirstbbbbMiddlebbbbbbbbbbLast

where “b” represents a blank space.

n is the absolute character position within the record to which the current
position should be set (1 ≤ n).
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 273
TL Format Code

The TL format code moves the current position in the external record to the left.

The syntax is:

TLn

where

The TL format code is used to move backwards in the current record. It can be used
on input to read the same data twice or on output to position the output
nonsequentially. For example,

PRINT, FORMAT = '("First", 20X, "Last", TL15, "Middle")'

produces the following output:

FirstbbbbbbbbbMiddlebbbbbLast

where “b” represents a blank space.

n is the number of characters to move left from the current position (1 ≤ n).
If the value of n is greater than the current position, the current position is
moved to column one.
Building IDL Applications Format Codes

274 Chapter 11: Files and Input/Output
TR and X Format Codes

The TR and X format codes move the current position in the record to the right.

The syntax is:

TRn
nX

where

The TR or X format codes can be used to leave whitespace in the output or to skip
over unwanted data in the input. For example, either

PRINT, FORMAT = '("First", 15X, "Last")'

or

PRINT, FORMAT = '("First", TR15, "Last")'

results in the following output:

FirstbbbbbbbbbbbbbbbLast

where “b” represents a blank space.

These two format codes differ in one way. Using the X format code at the end of an
output record will not cause any characters to be written unless it is followed by
another format code that causes characters to be output. The TR format code always
writes characters in this situation. Thus,

PRINT, FORMAT = '("First", 15X)'

results in the following output:

First

whereas

PRINT, FORMAT = '("First", TR15)'

results in the following output:

Firstbbbbbbbbbbbbbbb

where “b” represents a blank space. The X code does not cause the blanks to be
output unless there is additional output following the blanks.

n is the number of characters to skip (1 ≤ n). On input, n characters in the
current input record will be passed over. On output, the current output
position is moved n characters to the right.
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 275
C() Format Code

The C() format code is used to transfer calendar (Julian date and/or time) data.

The syntax is:

[n]C([c0,c1,...,cx])

where the parameter “n” is as described in “Syntax of Format Codes” on page 258
and:

If no ci are provided, the data will be transferred using the standard 24-character
system format that includes the day, date, time, and year, as shown in this string:

Thu Aug 13 12:01:32 1979

For input, this default is equivalent to:

C(CDwA, X, CMoA, X, CDI, X, CHI, X, CMI, X, CSI, CYI5)

For output, this default is equivalent to:

C(CDwA, X, CMoA, X, CDI2.2, X, CHI2.2, ":", CMI2.2, ":", CSI2.2, CYI5)

Note
The C() format code represents an atomic data transfer. Nesting within the
parentheses is not allowed.

Note
For input using the calendar format codes, a small offset is added to each Julian date
to eliminate roundoff errors when calculating the day fraction from hours, minutes,
and seconds. This offset is given by the larger of EPS and EPS*Julian, where Julian
is the integer portion of the Julian date, and EPS is the EPS field from MACHAR.
For typical Julian dates, this offset is approximately 6x10–10 (which corresponds to
5x10–5 seconds). This offset ensures that if the Julian date is converted back to hour,
minute, and second, then the hour, minute, and second will have the same integer
values as were originally input.

Note
Calendar dates must be in the range 1 Jan 4716 B.C.E. to 31 Dec 5000000, which
corresponds to Julian values -1095 and 1827933925, respectively.

ci represents optional calendar format subcodes, or any of the standard
format codes that are allowed within a calendar specification, as
described below
Building IDL Applications Format Codes

276 Chapter 11: Files and Input/Output
Calendar Format Subcodes

The following is a list of the subcodes allowed within the parenthesis of the C()
format code.

Note
The calendar format subcodes are based on the A, I, and F format codes, and share
the same options. See “Syntax of Format Codes” on page 258 for additional
information on the parameters not described explicitly in this section. Note that the
default values of the w and d parameters are different in the calendar format
subcodes than in the base A, I, and F format codes.

CMOA subcodes

The CMOA subcodes transfers the month portion of a date as a string. The format for
an all upper case month string is:

CMOA[-][w]

The format for a capitalized month string is:

CMoA[-][w]

The format for an all lower case month string is:

CmoA[-][w]

where:

Note
The case of the ‘M’ and ‘O’ of these subcodes will be ignored on input, or if the
MONTHS keyword for the current routine is explicitly set.

CMOI subcode

The CMOI subcode transfers the month portion of a date as an integer. The format is
as follows:

CMOI[+][-][w][.m]

w is an optional width (0 ≤ w ≤ 256) specifying the number of characters of
the month name to be transferred. If w is not specified, three characters
will be transferred. See “Padding and Natural Width Formatting” on
page 258 for additional details on the output width of a formatted value.
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 277
where:

CDI subcode

The CDI subcode transfers the day portion of a date as an integer. The format is:

CDI[+][-][w][.m]

where:

CYI subcode

The CYI subcode transfers the year portion of a date as an integer. The format is as
follows:

CYI[+][-][w][.m]

w is an optional width (0 ≤ w ≤ 256) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 256) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.

w is an optional width (0 ≤ w ≤ 256) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 256) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.
Building IDL Applications Format Codes

278 Chapter 11: Files and Input/Output
where:

CHI subcodes

The CHI subcodes transfer the hour portion of a date as an integer. The format for a
24-hour based integer is:

CHI[+][-][w][.m]

The format for a 12 hour based integer is:

ChI[+][-][w][.m]

where:

w is an optional width (0 ≤ w ≤ 256) specifying the width of the field in
characters. The default width is 4. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 256) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.

w is an optional width (0 ≤ w ≤ 256) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 256) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 279
CMI subcode

The CMI subcode transfers the minute portion of a date as an integer. The format is:

CMI[+][-][w][.m]

where:

CSI subcode

The CSI subcode transfers the seconds portion of a date as an integer. The format is:

CSI[+][-][w][.m]

where:

w is an optional width (0 ≤ w ≤ 256) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 256) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.

w is an optional width (0 ≤ w ≤ 256) specifying the width of the field in
characters. The default width is 2. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.

m is an optional minimum number (1 ≤ m ≤ 256) of nonblank digits to be
shown on output. The field is zero-filled on the left if necessary. If m is
omitted or zero, the output is padded with blanks to achieve the specified
width.

Note - The m parameter is ignored if w is zero.
Building IDL Applications Format Codes

280 Chapter 11: Files and Input/Output
CSF subcode

The CSF subcode transfers the seconds portion of a date as a floating-point value.
The format is:

CSF[+][-][w][.d]

where:

Overflow

The value of w must be large enough to include at least one digit to the left of the
decimal point, the decimal point, and d digits to the right of the decimal point. On
output, if the field provided is not wide enough, it is filled with asterisks (*) to
indicate the overflow condition.

CDWA subcodes

The CDWA subcodes transfers the day of week portion of a data as a string. The
format for an all upper case day of week string is:

CDWA[-][w]

The format for a capitalized day of week string is:

CDwA[-][w]

The format for an all lower case day of week string is:

CdwA[-][w]

where:

w is an optional width specification (0 ≤ w ≤ 256). The variable w specifies
the number of characters in the external field; the default is 5. See
“Padding and Natural Width Formatting” on page 258 for additional
details on the output width of a formatted value.

d is an optional width specification (1 ≤ d < w). The variable d specifies the
number of positions after the decimal point; the default is 2.

w is an optional width (0 ≤ w ≤ 256), specifying the number of characters of
the day of week name to be transferred. If w is not specified, three
characters will be transferred. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 281
Note
The case of the ‘D’ and ‘W’ of these subcodes will be ignored on input, or if the
DAYS_OF_WEEK keyword for the current routine is explicitly set.

CAPA subcodes

The CAPA subcodes transfers the am or pm portion of a date as a string. The format
for an all upper case AM or PM string is:

CAPA[-][w]

The format for a capitalized AM or PM string is:

CApA[-][w]

The format for an all lower case AM or PM string is:

CapA[-][w]

where:

Note
The case of the first ‘A’ and ‘P’ of these subcodes will be ignored on input, or if the
AM_PM keyword for the current routine is explicitly set.

Standard Format Codes Allowed within a Calendar
Specification

None of these subcodes are allowed outside of a C() format specifier. In addition to
the subcodes listed above, only quoted strings, “TL”, “TR”, and “X” format codes are
allowed inside of the C() format specifier.

Example:

To print the current date in the default format:

PRINT, FORMAT='(C())', SYSTIME(/JULIAN)

The printed result should look something like:

Fri Aug 14 12:34:14 1998

w is an optional width (0 ≤ w ≤ 256), specifying the number of characters of
the AM or PM string to be transferred. If w is not specified, two
characters will be transferred. See “Padding and Natural Width
Formatting” on page 258 for additional details on the output width of a
formatted value.
Building IDL Applications Format Codes

282 Chapter 11: Files and Input/Output
Example:

To print the current date as a two-digit month value followed by a slash followed by a
two-digit day value:

PRINT, FORMAT='(C(CMOI,"/",CDI))',SYSTIME(/JULIAN)

The printed result should look something like:

8/14

Example:

To print the current time in hours, minutes, and floating-point seconds, all zero-filled
if necessary, and separated by colons:

PRINT, $
FORMAT='(C(CHI2.2,":",CMI2.2,":",CSF05.2))',SYSTIME(/JULIAN)

 The printed result should look something like:

09:59:07.00

Note that to do zero-filling for the floating-point seconds, it is necessary to specify a
leading 0 in the width to the CSF format code.
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 283
C printf-Style Quoted String Format Code

IDL’s explicitly formatted specifications, which are based on those found in the
FORTRAN language, are extremely powerful and capable of specifying almost any
desired output. However, they require fairly verbose specifications, even in simple
cases. In contrast, the C language (and the many languages influenced by C) have a
different style of format specification used by functions such as printf() and
snprintf(). Most programmers are very familiar with such formats. In this style,
text and format codes (prefixed by a % character) are intermixed in a single string.
User-supplied arguments are substituted into the format in place of the format
specifiers. Although less powerful, this style of format is easier to read and write in
common simple cases.

IDL supports the use of printf-style formats within format specifications, using a
special variant of the Quoted String Format Code (discussed in “Quoted String and H
Format Codes” on page 271) in which the opening quote starts with a % character
(e.g. %" or %' rather than " or '). The presence of this % before the opening quote
(with no whitespace between them) tells IDL that this is a printf-style quoted string
and not a standard quoted string.

As a simple example, consider the following IDL statement that uses normal quoted
string format codes:

PRINT, FORMAT='("I have ", I0, " monkeys, ", A, ".")', $
23, 'Scott'

Executing this statement yields the output:

I have 23 monkeys, Scott.

Using a printf-style quoted string format code instead, this statement could be
written:

PRINT, FORMAT='(%"I have %d monkeys, %s.")', 23, 'Scott'

These two statements are completely equivalent in their action. In fact, IDL compiles
both into an identical internal representation before processing them.

The printf-style quoted string format codes can be freely mixed with any other
format code, so hybrid formats like the following are allowed:

PRINT, $
FORMAT='(%"I have %d monkeys, %s,", " and ", I0, " parrots.")',$
23, 'Scott', 5

This generates the output:

I have 23 monkeys, Scott, and 5 parrots.
Building IDL Applications Format Codes

284 Chapter 11: Files and Input/Output
Supported “%” Formats

The following table lists the % format codes allowed within a printf-style quoted
string format code, as well as their correspondence to the standard format codes that
do the same thing. In addition to the format codes described in the table, the special
sequence %% causes a single % character to be written to the output. This % is
treated as a regular character instead of as a format code specifier. Finally, the flags
and the width padding options described in “Syntax of Format Codes” on page 258
are also available when using printf-style format codes.

Printf-Style Normal-Style Normal Style Described
in Section

%[w.d]e or %[w.d]E e[w.d] or E[w.d] “F, D, E, and G Format
Codes” on page 264

%[w]b or %[w]B

%[w.m]b or %[w.m]B

B[w]

B[w.m]

“B, I, O, and Z Format
Codes” on page 267

%[w]d or %[w]D

%[w.m]D or %[w.m]D

%[w]i or %[w]I

%[w.m]i or %[w.m]I

I[w]

I[w.m]

I[w]

I[w.m]

“B, I, O, and Z Format
Codes” on page 267

%[w]f or %[w]F

%[w.d]f or %[w.d]F

F[w]

F[w.d]

“F, D, E, and G Format
Codes” on page 264

%[w]g or %[w]G

%[w.d]g or %[w.d]G

g[w] or G[w]

g[w.d] or G[w.d]

“F, D, E, and G Format
Codes” on page 264

%[w]o or %[w]O

%[w.m]o or %[w.m]O

O[w]

O[w.m]

“B, I, O, and Z Format
Codes” on page 267

%[w]s or %[w]S A[w] “A Format Code” on
page 261

%[w]x or %[w]X

%[w.m]x or %[w.m]X

%[w]z or %[w]Z

%[w.m]z or %[w.m]Z

Z[w]

Z[w.m]

Z[w]

Z[w.m]

“B, I, O, and Z Format
Codes” on page 267

Table 11-11: Supported “%” Formats
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 285
As indicated in the above table, there is a one to one correspondence between each
printf-style % format code and one of the normal format codes documented earlier
in this chapter. When reading this table, please keep the following considerations in
mind:

• The %d (or %D) format is identical to the %i (or %I) format. Note that %D
does not correspond to the normal-style D format.

• The w, d, m, and e parameters listed as optional parameters (i.e. between the
square brackets, []) are the same values documented for the normal-style
format codes, and behave identically to them.

• The default value for the w parameters for printf-style formatting is 0,
meaning that printf-style output produces “natural” width by default. For
example, a %d format code corresponds to a normal format code of I0 (not I,
which would use the default value for w based on the data type). Similarly, a
%e format code corresponds to a normal format code of e0 (not e).

• The E and G format codes allow the following styles for compatibility with
FORTRAN:

E[w.dEe] or e[w.dEe]
G[w.dEe] or g[w.dEe]

These styles are not available using the printf-style format codes. In other
words, the following formats are not allowed:

%[w.dEe]E or %[w.dEe]e
%[w.dEe]G or %[w.dEe]g

• Normal-style format codes allow repetition counts (e.g. 5I0). The
printf-style format codes do not allow this. Instead, each printf-style
format code has an implicit repetition count of 1.

• Like normal format codes (but unlike the C language printf() function),
printf-style format codes are allowed to be upper or lower case (e.g. %d and
%D mean the same thing). Whether or not case has an influence on the
resulting output depends on the specific format code. The specific behavior is
the same as with the normal-style version for each code.

Supported “\” Character Escapes

The C programming language allows “escape sequences” that start with the backslash
character, \, to appear within strings. These escapes are used in several ways:

1. To specify characters that have no printed representation. For example, \n
means linefeed, and \r means carriage return.
Building IDL Applications Format Codes

286 Chapter 11: Files and Input/Output
2. To remove any special meaning that a character might normally have. For
example, \" allows you to create a string containing a double-quote character
even though double-quote normally delimits a string. Note that backslash can
also be used to escape itself, so "\\" corresponds to a string containing a single
backslash character.

3. To introduce arbitrary characters into a string using octal or hexadecimal
notation. For example, if the hexadecimal value b1 represents the ± character
in the current font, then the following statement:

print, format='(%"I have \xb1%d monkeys")', 5

results in the following output:

I have ±5 monkeys

Although IDL does not normally support backslash escapes within strings, the
escapes described in the following table are allowed within printf-style quoted
string format codes. If a character not specified in this table is preceded by a
backslash, the backslash is removed and the character is inserted into the output
without any special interpretation. This means that \" puts a single " character into the
output and that " does not terminate the string constant. Another useful example is
that \% causes a single % character to be placed into the output without starting a
format code. Hence, \% and %% mean the same thing: a single % character with no
special meaning.

Escape
Sequence

ASCII code

\a BEL (7B)

\b Backspace (8B)

\f Formfeed (12B)

\n Linefeed (10B)

\r Carriage Return (13B)

\t Horizontal Tab (9B)

\v Vertical Tab (11B)

\ooo Octal value ooo (Octal value of 1-3 digits)

\xhh Hexadecimal value hh (Hex value of 1-2 digits)

Table 11-12: Supported "\" Character Escapes
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 287
Note
Case is ignored in escape sequences: either “\n” or “\N” specifies a linefeed
character.

Differences Between C printf() and IDL printf-Style Formats

IDL’s printf-style quoted string format code is very similar to a simplified C
language printf() format string. However, there are important differences that an
experienced C programmer should be aware of:

• The IDL PRINT and PRINTF procedures implicitly add an end-of-line
character to the end of the line (unless suppressed by use of the $ format code).
Hence, the use of \n at the end of the format string to end the line is neither
necessary nor recommended.

• Only the % format sequences listed in the table under “Supported “%”
Formats” on page 284 are understood by IDL. Most C printf functions
accept more codes than these, but those codes are not necessary in IDL.

For example, the C printf/scanf functions require the use of the %u format
code to indicate an unsigned value, and also use type modifiers (h, l, ll) to
indicate the size of the data being processed. IDL uses the type of the
arguments being substituted into the format to determine this information.
Therefore, the u, h, l, and ll codes are not required in IDL and are not accepted.

• The % and \ sequences in IDL printf-style strings are case-insensitive. C
printf is case-sensitive (e.g. \n and \N do not both mean the linefeed
character as they do in IDL).

• The C printf function allows the use of %n$d notation to specify that
arguments should be substituted into the format string in a different order than
they are listed. IDL does not support this.

• The C printf function allows the use of %*d notation to indicate that the
field width will be supplied by the next argument, and the argument following
that supplies the actual value. IDL does not support this.

• IDL printf-style formats allow %z for hexadecimal output as well as %x.
The C printf() function does not understand %z. This deviation from the
usual implementation is allowed by IDL because IDL programmers are used to
treating Z as the hexadecimal format code.

• IDL printf-style formats allow %b for binary output. The C printf()
function does not understand %b.
Building IDL Applications Format Codes

288 Chapter 11: Files and Input/Output
Example: Reading Tables of Formatted Data

IDL explicitly formatted input/output has the power and flexibility to handle almost
any kind of formatted data. A common use of explicitly formatted input/output
involves reading and writing tables of data. Consider a data file containing employee
data records. Each employee has a name (String, 32 columns) and the number of
years they have been employed (Integer, 3 columns) on the first line. The next two
lines contain each employee’s monthly salary for the last twelve months. A sample
file named employee.dat with this format might look like the following:

Bullwinkle 10
1000.0 9000.97 1100.0 2000.0
5000.0 3000.0 1000.12 3500.0 6000.0 900.0
Boris 11
400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25
Natasha 10
950.0 1050.0 1350.0 410.0 797.0 200.36
2600.0 2000.0 1500.0 2000.0 1000.0 400.0
Rocky 11
1000.0 9000.0 1100.0 0.0 0.0 2000.37
5000.0 3000.0 1000.01 3500.0 6000.0 900.12

The following IDL statements read data with the above format and produce a
summary of the contents of the file:

;Open data file for input.
OPENR, 1, 'employee.dat'

;Create variables to hold the name, number of years, and monthly
;salary.
name = '' & years = 0 & salary = FLTARR(12)

;Output a heading for the summary.
PRINT, FORMAT='("Name", 28X, "Years", 4X, "Yearly Salary")'

;Note: The actual dashed line is longer than is shown here.
PRINT, '========'

;Loop over each employee.
WHILE (~ EOF(1)) DO BEGIN

;Read the data on the next employee.
READF, 1, $
FORMAT = '(A32,I3,2(/,6F10.2))', name, years, salary

;Output the employee information. Use TOTAL to sum the monthly
;salaries to get the yearly salary.
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 289
PRINT, FORMAT='(A32,I5,5X,F10.2)', name, years, TOTAL(salary)

ENDWHILE

CLOSE, 1

The output from executing these statements on employee.dat is as follows:

Name Years Yearly Salary
==
Bullwinkle 10 32501.09
Borris 11 6805.35
Natasha 10 14257.36
Rocky 11 32500.50
Building IDL Applications Format Codes

290 Chapter 11: Files and Input/Output
Example: Reading Records that Contain Multiple
Array Elements

Frequently, data are written to files with each record containing single elements of
more than one array. One example might be a file consisting of observations of
altitude, pressure, temperature, and velocity with each line or record containing a
value for each of the four variables. Because IDL has no equivalent of the FORTRAN
implied DO list, special procedures must be used to read or write this type of file.

The first approach, which is the simplest, may be used only if all of the variables have
the same data type. An array is created with as many columns as there are variables
and as many rows as there are elements. The data are read into this array, the array is
transposed storing each variable as a row, and each row is extracted and stored into a
variable which becomes a vector. For example, the FORTRAN program which writes
the data and the IDL program which reads the data are as follows:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
OPEN (UNIT = 1, STATUS='NEW', FILE='TEST')
WRITE(1,'(4(1x,g15.5))')

(ALT(I),PRES(I),TEMP(I),VELO(I),I=1,100)

IDL Read:

;Open file for input.
OPENR, 1, 'test'

;Define variable (NVARS by NOBS).
A = FLTARR(4,100)

;Read the data.
READF, 1, A

;Transpose so that columns become rows.
A = TRANSPOSE(A)

;Extract the variables.
ALT = A[*, 0]
PRES = A[*, 1]
TEMP = A[*, 2]
VELO = A[*, 3]
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 291
Note that this same example may be written without the implied DO list, writing all
elements for each variable contiguously and simplifying matters considerably:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
OPEN (UNIT = 1, STATUS='NEW', FILE='TEST')
WRITE (1,'(4(1x,G15.5))') ALT,PRES,TEMP,VELO

IDL Read:

;Define variables.
ALT = FLTARR(100)
PRES = ALT & TEMP = ALT & VELO = ALT
OPENR, 1, 'test'
READF, 1, ALT, PRES, TEMP, VELO

A different approach must be taken when the columns contain different data types or
the number of lines or records are not known. This method involves defining the
arrays, defining a scalar variable to contain each datum in one record, then writing a
loop to read each line into the scalars, and then storing the scalar values into each
array. For example, assume that a fifth variable, the name of an observer which is of
string type, is added to the variable list. The FORTRAN output routine and IDL input
routine are as follows:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
CHARACTER * 10 OBS(100)
OPEN (UNIT = 1, STATUS = 'NEW', FILE = 'TEST')
WRITE (1,'(4(1X,G15.5),2X,A)')
(ALT(I),PRES(I),TEMP(I),VELO(I),OBS(I),I=1,100)

IDL Read:

;Access file. Read files containing from 1 to 200 records.
OPENR, 1, 'test'

;Define vector, make it large enough for the biggest case.
ALT = FLTARR(200)

;Define other vectors using the first.
PRES = ALT & TEMP = ALT & VELO = ALT

;Define string array.
OBS = STRARR(200)

;Define scalar string.
Building IDL Applications Format Codes

292 Chapter 11: Files and Input/Output
OBSS = ''

;Initialize counter.
I = 0

WHILE ~ EOF(1) DO BEGIN
;Read scalars.
READF, 1, $

FORMAT = '(4(1X, G15.5), 2X, A10)', $
ALTS, PRESS, TEMPS, VELOS, OBSS

;Store in each vector.
ALT[I] = ALTS & PRES[I] = PRESS & TEMP[I] = TEMPS
VELO[I] = VELOS & OBS[I] = OBSS

;Increment counter and check for too many records.
IF I LT 199 THEN I = I + 1 ELSE STOP, 'Too many records'

ENDWHILE

If desired, after the file has been read and the number of observations is known, the
arrays may be truncated to the correct length using a series of statements similar to
the following:

ALT = ALT[0:I-1]

The above statement represents a worst case example. Reading is greatly simplified
by writing data of the same type contiguously and by knowing the size of the file.
One frequently used technique is to write the number of observations into the first
record so that when reading the data the size is known.
Format Codes Building IDL Applications

Chapter 11: Files and Input/Output 293
Warning
It might be tempting to implement a loop in IDL which reads the data values
directly into array elements, using a statement such as the following:

FOR I = 0, 99 DO READF, 1, ALT[I], PRES[I], TEMP[I], VELO[I]

This statement is incorrect. Subscripted elements (including ranges) are temporary
expressions passed as values to procedures and functions (READF in this example).
Parameters passed by value do not pass results back to the caller. The proper
approach is to read the data into scalars and assign the values to the individual array
elements as follows:

A = 0. & P = 0. & T = 0. & V = 0.
FOR I = 0, 99 DO BEGIN

READF, 1, A, P, T, V
ALT[I] = A & PRES[I] = P & TEMP[I] = T & VELO[I] = V

ENDFOR
Building IDL Applications Format Codes

294 Chapter 11: Files and Input/Output
Using Unformatted Input/Output

Unformatted input/output involves the direct transfer of data between a file and
memory without conversion to and from a character representation. Unformatted
input/output is used when efficiency is important and portability is not an issue. It is
faster and requires less space than formatted input/output. IDL provides three
procedures for performing unformatted input/output:

READU

Reads unformatted data from the specified file unit.

WRITEU

Writes unformatted data to the specified file unit.

ASSOC

Maps an array structure to a logical file unit, providing efficient and convenient direct
access to data.

This section discusses READU and WRITEU, while ASSOC is discussed in
“Associated Input/Output” on page 306. The READU and WRITEU procedures
provide IDL’s basic unformatted input/output capabilities. They have the form:

READU, Unit, Var1, ..., Varn
WRITEU, Unit, Var1, ..., Varn

where

Unit — The logical file unit with which the input/output operation will be performed.

Vari — One or more IDL variables (or expressions in the case of output).

The WRITEU procedure writes the contents of its arguments directly to the file, and
READU reads exactly the number of bytes required by the size of its arguments. Both
cases directly transfer binary data with no interpretation or formatting.
Using Unformatted Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 295
Unformatted Input/Output of String Variables

Strings are the only basic IDL data type that do not have a fixed size. A string
variable has a dynamic length that is dependent only on the length of the string
currently assigned to it. Thus, although it is always possible to know the length of the
other types, string variables are a special case. IDL uses the following rules to
determine the number of characters to transfer:

Input

Input enough bytes to fill the original length of the string. The length of the resulting
string is truncated if the string contains a null byte.

Output

Output the number of bytes contained in the string. This number is the same number
returned by the STRLEN function and does not include a terminating null byte.

Note that these rules imply that when reading into a string variable from a file, you
must know the length of the original string so as to be able to initialize the destination
string to the correct length. For example, the following IDL statements produce the
following output, because the receiving variable A was not long enough.

;Open a file.
OPENW, 1, 'temp.tmp'

;Write an 11-character string.
WRITEU, 1, 'Hello World'

;Rewind the file.
POINT_LUN, 1, 0

;Prepare a nine-character string.
A = ' '

;Read back in the string.
READU, 1, A

;Show what was input.
PRINT, A

CLOSE, 1

produce the following, because the receiving variable A was not long enough:

Hello Wor
Building IDL Applications Using Unformatted Input/Output

296 Chapter 11: Files and Input/Output
The only solution to this problem is to know the length of the string being input. The
following IDL statements demonstrate a useful “trick” for initializing strings to a
known length:

;Open a file.
OPENW, 1, 'temp.tmp'

;Write an 11-character string.
WRITEU, 1, 'Hello World'

;Rewind the file.
POINT_LUN, 1, 0

;Create a string of the desired length initialized with blanks.
;REPLICATE creates a byte array of 11 elements, each element
;initialized to 32, which is the ASCII code for a blank. Passing
;this byte array to STRING converts it to a scalar string
;containing 11 blanks.
A = STRING(REPLICATE(32B,11))

;Read in the string.
READU, 1, A

;Show what was input.
PRINT, A

CLOSE, 1

This example takes advantage of the special way in which the BYTE and STRING
functions convert between byte arrays and strings. See the description of the BYTE
and STRING functions for additional details.

Example: Reading C-Generated Unformatted Data
with IDL

The following C program produces a file containing employee records. Each record
stores the first name of each employee, the number of years he has been employed,
and his salary history for the last 12 months.

#include <stdio.h>

main()
{

static struct rec {
char name[32]; /* Employee's name */
int years; /* # of years with company */
float salary[12]; /* Salary for last 12 months */
Using Unformatted Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 297
} employees[] = {
{ {'B','u','l','l','w','i','n','k','l','e'}, 10,

{1000.0, 9000.97, 1100.0, 0.0, 0.0, 2000.0,
5000.0, 3000.0, 1000.12, 3500.0, 6000.0, 900.0} },{

{'B','o','r','r','i','s'}, 11,
{400.0, 500.0, 1300.10, 350.0, 745.0, 3000.0,

200.0, 100.0, 100.0, 50.0, 60.0, 0.25} },
{ {'N','a','t','a','s','h','a'}, 10,

{950.0, 1050.0, 1350.0, 410.0, 797.0, 200.36,
2600.0, 2000.0, 1500.0, 2000.0, 1000.0, 400.0} },

{ {'R','o','c','k','y'}, 11,
{1000.0, 9000.0, 1100.0, 0.0, 0.0, 2000.37,

5000.0, 3000.0, 1000.01, 3500.0, 6000.0, 900.12}}
};

FILE *outfile;

outfile = fopen("data.dat", "w");
(void) fwrite(employees, sizeof(employees), 1, outfile);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the employee records. The
following IDL statements can be used to read and print this file:

;Create a string with 32 characters so that the proper number of
;characters will be input from the file. REPLICATE is used to
;create a byte array of 32 elements, each containing the ASCII code
;for a space (32). STRING turns this byte array into a string
;containing 32 blanks.
STR32 = STRING(REPLICATE(32B, 32))

;Create an array of four employee records to receive the input
;data.
A = REPLICATE({EMPLOYEES, NAME:STR32, YEARS:0L, $

SALARY:FLTARR(12)}, 4)

;Open the file for input.
OPENR, 1, 'data.dat'

;Read the data.
READU, 1, A

CLOSE, 1

;Show the results.
PRINT, A
Building IDL Applications Using Unformatted Input/Output

298 Chapter 11: Files and Input/Output
Executing these IDL statements produces the following output:

{ Bullwinkle 10
1000.00 9000.97 1100.00 0.00000 0.00000 2000.00
5000.00 3000.00 1000.12 3500.00 6000.00 900.000
}{Borris 11
400.000 500.000 1300.10 350.000 745.000 3000.00
200.000 100.000 100.000 50.0000 60.0000 0.250000
}{ Natasha 10
950.000 1050.00 1350.00 410.000 797.000 200.360
2600.00 2000.00 1500.00 2000.00 1000.00 400.000
}{ Rocky 11
1000.00 9000.00 1100.00 0.00000 0.00000 2000.37
5000.00 3000.00 1000.01 3500.00 6000.00 900.120
}

Example: Reading IDL-Generated Unformatted Data
with C

The following IDL program creates an unformatted data file containing a 5 x 5 array
of floating-point values:

;Open a file for output.
OPENW, 1, 'data.dat'

;Write 5x5 array with each element set to its 1-dimensional index.
WRITEU, 1, FINDGEN(5, 5)

CLOSE, 1

This file can be read and printed by the following C program:

#include <stdio.h>

main()
{

float data[5][5];
FILE *infile; int i, j;
infile = fopen("data.dat", "r");
(void) fread(data, sizeof(data), 1, infile);
(void) fclose(infile);
for (i = 0; i < 5; i++) {

for (j = 0; j < 5; j++) {
printf("%8.1f", data[i][j]);
printf("\n");

}
}

}

Using Unformatted Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 299
Running this program gives the following output:

0.0 1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0 9.0
10.0 11.0 12.0 13.0 14.0
15.0 16.0 17.0 18.0 19.0
20.0 21.0 22.0 23.0 24.0

Example: Reading a Sun Rasterfile from IDL

Sun computers use rasterfiles to store scanned images. This example shows how to
read such an image and display it using IDL. In the interest of keeping the example
brief, a number of simplifications are made, no error checking is performed, and only
8-bit deep rasterfiles are handled. See the READ_SRF procedure (the file
read_srf.pro in the lib subdirectory of the IDL distribution) for a complete
example. The format used for rasterfiles is documented in the C header file
/usr/include/rasterfile.h. That file provides the following information:

Each file starts with a fixed header that describes the image. In C, this header is
defined as follows:

struct rasterfile{
int ras_magic; /* magic number */
int ras_width; /* width (pixels) of image */
int ras_height; /* height (pixels) of image */
int ras_depth; /* depth (1, 8, or 24 bits) */
int ras_length; /* length (bytes) of image */
int ras_type; /* type of file */
int ras_maptype; /* type of colormap */
int ras_maplength; /* length(bytes) of colormap */ };

The color map, if any, follows directly after the header information. The image data
follows directly after the color map.

The following IDL statements read an 8-bit deep image from the file ras.dat:

;Define IDL structure that matches the Sun-defined rasterfile
;structure. A C int variable on a Sun corresponds to an IDL LONG
;int.
h = {rasterfile, magic:0L, width:0L, height:0L, depth: 0L,$

length:0L, type:0L, maptype:0L, maplength:0L}

;Open the file, allocating a file unit at the same time.
OPENR, unit, file, /GET_LUN

;Read the header information.
READU, unit, h

;Is there a color map?
Building IDL Applications Using Unformatted Input/Output

300 Chapter 11: Files and Input/Output
IF ((h.maptype EQ 1) AND (h.maplength NE 0)) THEN BEGIN

;Calculate length of each vector.
maplen = h.maplength/3

;Create three byte vectors to hold the color map.
r=(g=(b=BYTARR(maplen, /NOZERO)))

;Read the color map.
READU, unit, r, g, b

ENDIF

;Create a byte array to hold image.
image = BYTARR(h.width, h.height, /NOZERO)

;Read the image.
READU, unit, image

;Free the previously-allocated Logical Unit Number and close the
;file.
FREE_LUN, unit
Using Unformatted Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 301
Portable Unformatted Input/Output

Normally, unformatted input/output is not portable between different machine
architectures because of differences in the way various machines represent binary
data. However, it is possible to produce binary files that are portable by specifying the
XDR keyword with the OPEN procedures. XDR (for eXternal Data Representation)
is a scheme under which all binary data is written using a standard “canonical”
representation. All machines supporting XDR understand this standard representation
and have the ability to convert between it and their own internal representation.

XDR represents a compromise between the extremes of unformatted and formatted
input/output:

• It is not as efficient as purely unformatted input/output because it does involve
the overhead of converting between the external and internal binary
representations.

• It is still much more efficient than formatted input/output because conversion
to and from ASCII characters is much more involved than converting between
binary representations.

• It is much more portable than purely unformatted data, although it is still
limited to those machines that support XDR. However, XDR is freely available
and can be moved to any system.

XDR Considerations

The primary differences in the way IDL input/output procedures work with XDR
files, as opposed to files opened normally are as follows:

• To use XDR, you must specify the XDR keyword when opening the file.

• The only input/output data transfer routines that can be used with a file opened
for XDR are READU and WRITEU.

• XDR converts between the internal and standard external binary
representations for data instead of simply using the machine’s internal
representation.

• Since XDR adds extra “bookkeeping” information to data stored in the file and
because the binary representation used may not agree with that of the machine
being used, it does not make sense to access an XDR file without using XDR.

• OPENW and OPENU normally open files for both input and output. However,
XDR files can only be opened in one direction at a time. Thus, using these
Building IDL Applications Portable Unformatted Input/Output

302 Chapter 11: Files and Input/Output
procedures with the XDR keyword results in a file open for output only.
OPENR works in the usual way.

• The length of strings is saved and restored along with the string. This means
that you do not have to initialize a string of the correct length before reading a
string from the XDR file. (This is necessary with normal unformatted
input/output and is described in “Using Unformatted Input/Output” on
page 294).

• For efficiency reasons, byte arrays are transferred as a single unit; therefore,
byte variables must be initialized to the correct number of elements for the data
to be input, or an error will occur. For example, given the statements,

;Open a file for XDR output.
OPENW, /XDR, 1, 'data.dat'

;Write a 10-element byte array.
WRITEU, 1, BINDGEN(10)

;Close the file and re-open it for input.
CLOSE, 1 & OPENR, /XDR, 1, 'data.dat'

then the statement,

;Try to read the first byte only.
B = 0B & READU, 1, B

results in the following error:

% READU: Error encountered reading from file unit: 1.

Instead, it is necessary to read the entire byte array back in one operation using
a statement such as:

;Read the whole array back at once.
B=BYTARR(10) & READU, 1, B

This restriction does not exist for other data types.
Portable Unformatted Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 303
IDL XDR Conventions for Programmers

IDL uses certain conventions for reading and writing XDR files. If your only use of
XDR is through IDL, you do not need to be concerned about these conventions
because IDL takes care of it for you. However, programmers who want to create IDL-
compatible XDR files from other languages need to know the actual XDR routines
used by IDL for various data types. The following table summarizes this information.

The routines used for type COMPLEX, DCOMPLEX, and STRING are not primitive
XDR routines. Their definitions are as follows:

bool_t xdr_complex(xdrs, p)
XDR *xdrs;
struct complex { float r, i} *p;

{
return(xdr_float(xdrs, (char *) &p->r) &&

xdr_float(xdrs, (char *) &p->i));
}
bool_t xdr_dcomplex(xdrs, p)

XDR *xdrs;

Data Type XDR routine

Byte xdr_bytes()

Integer xdr_short()

Long xdr_long()

Float xdr_float()

Double xdr_double()

Complex xdr_complex()

String xdr_counted_string()

Double Complex xdr_dcomplex()

Unsigned Integer xdr_u_short()

Unsigned Long xdr_u_long()

64-bit Integer xdr_long_long_t()

Unsigned 64-bit Integer xdr_u_long_long_t()

Table 11-13: XDR Routines Used by IDL
Building IDL Applications Portable Unformatted Input/Output

304 Chapter 11: Files and Input/Output
struct dcomplex { double r, i} *p;
{

return(xdr_double(xdrs, (char *) &p->r) &&
xdr_double(xdrs, (char *) &p->i));

}
bool_t xdr_counted_string(xdrs, p)

XDR *xdrs;
char **p;

{
int input = (xdrs->x_op == XDR_DECODE);
short length;

/* If writing, obtain the length */
if (!input) length = strlen(*p);

/* Transfer the string length */
if (!xdr_short(xdrs, (char *) &length)) return(FALSE);

/* If reading, obtain room for the string */
if (input)
{

*p = malloc((unsigned) (length + 1));
p[length] = '\0'; / Null termination */

}
/* If the string length is nonzero, transfer it */
return(length ? xdr_string(xdrs, p, length) : TRUE);

}

Example: Reading C-Generated XDR Data with IDL

The following C program produces a file containing different types of data using
XDR. The usual error checking is omitted for the sake of brevity.

#include <stdio.h>
#include <rpc/rpc.h>
[xdr_complex() and xdr_counted_string() included here]

main()
{

static struct { /* Output data */
unsigned char c;
short s;
long l;
float f;
double d;
struct complex { float r, i } cmp;
char *str;

}

Portable Unformatted Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 305
data = {1, 2, 3, 4, 5.0, { 6.0, 7.0}, "Hello" };
u_int c_len = sizeof(unsigned char); /* Length of a char */
char *c_data = (char *) &data.c; /* Addr of byte field */
FILE *outfile; /* stdio stream ptr */
XDR xdrs; /* XDR handle */

/* Open stdio stream and XDR handle */
outfile = fopen("data.dat", "w");
xdrstdio_create(&xdrs, outfile, XDR_ENCODE);

/* Output the data */
(void) xdr_bytes(&xdrs, &c_data, &c_len, c_len);
(void) xdr_short(&xdrs, (char *) &data.s);
(void) xdr_long(&xdrs, (char *) &data.l);
(void) xdr_float(&xdrs, (char *) &data.f);
(void) xdr_double(&xdrs, (char *) &data.d);
(void) xdr_complex(&xdrs, (char *) &data.cmp);
(void) xdr_counted_string(&xdrs, &data.str);

/* Close XDR handle and stdio stream */
xdr_destroy(&xdrs);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the XDR data. The
following IDL statements can be used to read this file and print its contents:

;Create structure containing correct types.
DATA={S, C:0B, S:0, L:0L, F:0.0, D:0.0D, CMP:COMPLEX(0), STR:''}

;Open the file for input.
OPENR, /XDR, 1, 'data.dat'

;Read the data.
READU, 1, DATA

;Close the file.
CLOSE, 1

;Show the results.
PRINT, DATA

Executing these IDL statements produces the output:

{ 1 2 3 4.00000 5.0000000
(6.00000, 7.00000) Hello}

For further details about XDR, consult the XDR documentation for your machine.
Sun users should consult their Network Programming manual.
Building IDL Applications Portable Unformatted Input/Output

306 Chapter 11: Files and Input/Output
Associated Input/Output

Unformatted data stored in files often consists of a repetitive series of arrays or
structures. A common example is a series of images. IDL-associated file variables
offer a convenient and efficient way to access such data.

An associated variable is a variable that maps the structure of an IDL array or
structure variable onto the contents of a file. The file is treated as an array of these
repeating units of data. The first array or structure in the file has an index of zero, the
second has index one, and so on. Such variables do not keep data in memory like a
normal variable. Instead, when an associated variable is subscripted with the index of
the desired array or structure within the file, IDL performs the input/output operation
required to access the data.

When their use is appropriate (the file consists of a sequence of identical arrays or
structures), associated file variables offer the following advantages over READU and
WRITEU for unformatted input/output:

• Input/output occurs when an associated file variable is subscripted. Thus, it is
possible to perform input/output within an expression without a separate
input/output statement.

• The size of the data set is limited primarily by the maximum possible size of
the file containing the data instead of the maximum memory available. Data
sets too large for memory can be accessed.

• There is no need to declare the maximum number of arrays or structures
contained in the file.

• Associated variables offer transparent access to data. Direct access to any
element in the file is rapid and simple—there is no need to calculate offsets
into the file and/or position the file pointer prior to performing the input/output
operation.

An associated file variable is created by assigning the result of the ASSOC function
to a variable. See “ASSOC” in the IDL Reference Guide manual for details.
Associated Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 307
Example of Using Associated Input/Output

Assume that a file named data.dat exists, and that this file contains a series of 10 x 20
arrays of floating-point data. The following two IDL statements open the file and
create an associated file variable mapped to the file:

;Open the file.
OPENU, 1, 'data.dat'

;Make a file variable. Using the NOZERO keyword with FLTARR
;increases efficiency.
A = ASSOC(1, FLTARR(10, 20, /NOZERO))

The order of these two statements is not important—it would be equally valid to call
ASSOC first, and then open the file. This is because the association is between the
variable and the logical file unit, not the file itself. It is also legitimate to close the
file, open a new file using the same LUN, and then use the associated variable
without first executing a new ASSOC. Naturally, an error occurs if the file is not open
when the file variable is subscripted in an expression or if the file is open for the
wrong type of access (for example, trying to assign to an associated file variable
linked with a file opened for read-only access).

As a result of executing the two statements above, the variable A is now an associated
file variable. Executing the statement,

HELP, A

gives the following response:

A FLOAT = File<data.dat> Array(10, 20)

The associated variable A maps the structure of a 10 x 20, floating-point array onto
the contents of the file data.dat. Thus, the response from the HELP procedure shows
it as having the structure of a two-dimensional array. An associated file variable only
performs input/output to the file when it is subscripted. Thus, the following two IDL
statements do not cause input/output to happen:

B = A

This assignment does not transfer data from the file to variable B because A is not
subscripted. Instead, B becomes an associated file variable with the same structure,
and to the same logical file unit, as A.

B = 23

This assignment does not result in the value 23 being transferred to the file because
variable B (which became a file variable in the previous statement) is not subscripted.
Building IDL Applications Associated Input/Output

308 Chapter 11: Files and Input/Output
Instead, B becomes a scalar integer variable containing the value 23. It is no longer an
associated file variable.

Reading Data from Associated Files

Once a variable has been associated with a file, data are read from the file whenever
the associated variable appears in an expression with a subscript. The position of the
array or structure read from the file is given by the value of the subscript. The
following IDL statements assume that the associated file variable A is defined as in
the previous section, and give some examples of using file variables:

;Copy the contents of the first array into normal variable Z. Z is
;now a 10 x 20, floating-point array.
Z = A[0]

;Form the sum of the first 10 arrays. (Z was initialized in the
;previous statement to the value of the first array. This statement
;adds the following nine to it.) Note the use of the compound
;operator += to avoid creating a new copy of Z each time we add a
;new array.
FOR I = 1, 9 DO Z += A[I]

;Read fourth array and plot it.
PLOT, A[3]

;Subtract array four from array five, and plot the result. The
;result of the subtraction is then discarded.
PLOT, A[5] - A[4]

Writing Data to Associated Files

When a subscripted associated variable appears on the left side of an assignment
statement, the expression on the right side is written into the file at the given array
position:

;Sets sixth record to zero.
A[5] = FLTARR(10, 20)

;Write ARR into sixth record after any necessary type conversions.
A[5] = ARR

;Averages records J and J+1, and writes the result into record J.
A[J] = (A[J] + A[J + 1])/2
Associated Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 309
Multiple Subscripts With Associated File Variables

Usually, when subscripts are used with associated file variables, only a single
subscript is present, specifying an array within the associated file. This is the most
efficient way to access associated file variables. However, IDL allows you to specify
individual elements within the selected array using multiple subscripts. When
multiple subscripts are present with an associated file variable, the rightmost
subscript selects the array within the file, and the other subscripts specify the specific
element within that array.

For example, consider the following statement using the variable A defined above:

Z = A[0,0,1]

This statement assigns the value of element [0,0] of the second array within the file to
the variable Z. The rightmost subscript is interpreted as the subscript of the array
within the file, causing IDL to read the entire array into memory. This resulting array
expression is then further subscripted by the remaining subscripts.

Similarly, the statement:

A[2,3,4] = 45

assigns the value 45 to element [2,3] of the fifth array within the file.

Note
Although the ability to directly refer to array elements within an associated file can
be convenient, it can also be very slow because every access to an array element
causes the entire array to be transferred to or from memory. Unless only one
operation on the array is required, it is faster to assign the contents of the array to a
normal variable by subscripting the file variable with a single subscript, and then
access the individual array elements within the normal variable as needed. If you
make changes to the value of the normal variable that should be reflected in the file,
a final assignment to the associated variable, indexed with a single subscript, can be
used to update the file and complete the operation.
Building IDL Applications Associated Input/Output

310 Chapter 11: Files and Input/Output
Files with Multiple Structures

The same file may be associated with a number of different structures. Assume a
number of 128 x 128-byte images are contained on a file. The statement,

ROW = ASSOC(1, BYTARR(128))

will map the file into rows of 128 bytes each. ROW[3] is the fourth row of the first
image, while ROW[128] is the first row of the second image. The statement,

IMAGE = ASSOC(1, BYTARR(128, 128))

maps the file into entire images; IMAGE[4] will be the fifth image.

Offset Parameter

The Offset parameter to ASSOC specifies the position in the file at which the first
array starts. This parameter is useful when a file contains a header followed by data
records. For example, if a file uses the first 1,024 bytes of the file to contain header
information, followed by 512 x 512-byte images, the statement,

IMAGE = ASSOC(1, BYTARR(512, 512), 1024)

sets the variable IMAGE to access the images while skipping the header.

Efficiency

Arrays are accessed most efficiently if their length is an integer multiple of the block
size of the filesystem holding the file. Common values are powers of 2, such as 512,
2K (2048), 4K (4096), or 8K (8192) bytes. For example, on a disk with 512-byte
blocks, one benchmark program required approximately one-eighth of the time
required to read a 512 x 512-byte image that started and ended on a block boundary,
as compared to a similar program that read an image that was not stored on even
block boundaries.

Each time a subscripted associated variable is referenced, one or more records are
read from or written to the file. Therefore, if a record is to be accessed more than a
few times, it is more efficient to read the entire record into a variable. After making
the required changes to the in-memory variable, it can be written back to the file if
necessary.
Associated Input/Output Building IDL Applications

Chapter 11: Files and Input/Output 311
Unformatted Data from UNIX FORTRAN Programs

Unformatted data files generated by FORTRAN programs under UNIX contain an
extra long word before and after each logical record in the file. ASSOC does not
interpret these extra bytes but considers them to be part of the data. This is true even
if the F77_UNFORMATTED keyword is specified on the OPEN statement.
Therefore, ASSOC should not be used with such files. Instead, such files should be
processed using READU and WRITEU. An example of using IDL to read such data
is given in “Using Unformatted Input/Output” on page 294.
Building IDL Applications Associated Input/Output

312 Chapter 11: Files and Input/Output
File Manipulation Operations

IDL provides a variety of routines that allow you to retrieve information about and
manipulate files and directories.

IDL File Handling Routines

IDL file handling routines are listed in the following table:

File Handling Routine Description

FILE_CHMOD Allows you to change file access permissions.

FILE_COPY Allows you to copy files and directories.

FILE_DELETE Allows you to delete files and empty directories.

FILE_EXPAND_PATH Fully qualifies file and directory paths.

FILE_INFO Returns file status information.

FILE_LINES Returns the number of lines of text in a specified file.

FILE_LINK Creates UNIX links.

FILE_MKDIR Creates directories.

FILE_MOVE Allows you to rename files and directories.

FILE_READLINK Returns the path to a file referenced by a UNIX
symbolic link.

FILE_SAME Allows you to determine whether two file names refer
to the same file.

FILE_SEARCH Finds files whose names match a specified string.

FILE_TEST Tests a file or directory for existence and other
specific attributes.

FILE_WHICH Searches for a specified file in a directory search path.

Table 11-14: IDL File Handling Routines
File Manipulation Operations Building IDL Applications

Chapter 11: Files and Input/Output 313
Locating Files

The FILE_SEARCH function returns an array of strings containing the names of all
files that match its argument string. The argument string may contain any wildcard
characters understood by the command interpreter. For example, to determine the
number of IDL procedure files that exist in the current directory, use the following
statement:

PRINT, '# IDL pro files:',N_ELEMENTS(FILE_SEARCH('*.pro'))

See “FILE_SEARCH” in the IDL Reference Guide manual for details.

Changing File Access Permissions

The FILE_CHMOD procedure allows you to change the current access permissions
(also referred to as modes) associated with a file or directory. File modes are specified
using the standard Posix convention of three protection classes (user, group, other),
each containing three attributes (read, write, execute). This is the same format
familiar to users of the UNIX chmod(1) command. For example, to make the file
moose.dat read-only to everyone except the owner of the file, but otherwise not
change any other settings:

FILE_CHMOD, 'moose.dat', /u_write, g_write=0, o_write=0

To make the file be readable and writable to the owner and group, but read-only to
anyone else, and remove any other modes:

FILE_CHMOD, 'moose.dat', '664'

To find the current protection settings for a given file, you can use the GET_MODE
keyword to the FILE_TEST function.

See “FILE_CHMOD” in the IDL Reference Guide manual for details.

Copying Files and Directories

The FILE_COPY procedure allows you to copy files and directories from one
location to another. The copies retain the protection settings of the original files, and
belong to the user that performed the copy.

See “FILE_COPY” in the IDL Reference Guide manual for details.
Building IDL Applications File Manipulation Operations

314 Chapter 11: Files and Input/Output
Renaming Files and Directories

The FILE_MOVE procedure allows you to rename files and directories. The moved
files retain their protection and ownership attributes. Within a given file system or
volume, FILE_MOVE does not copy file data. Rather, it simply changes the file
names by updating the directory structure of the file system.

See “FILE_MOVE” in the IDL Reference Guide manual for details.

Deleting Files and Empty Directories

The FILE_DELETE procedure allows you to delete files and empty directories for
which they have appropriate permission. The process must have the necessary
permissions to remove the file, as defined by the current operating system.
FILE_CHMOD can be used to change file protection settings.

Microsoft Windows users should be careful to not specify a trailing backslash at the
end of a specification. For example:

FILE_DELETE, 'c:\mydir\myfile'

and not:

FILE_DELETE, 'c:\mydir\myfile\'

See “FILE_DELETE” in the IDL Reference Guide manual for details.
File Manipulation Operations Building IDL Applications

Chapter 11: Files and Input/Output 315
Expanding Files and Directory Paths

The FILE_EXPAND_PATH function can be used with a given a file or directory
name to convert the name to its fully qualified form and return it. A fully-qualified
file path completely specifies the location of a file without the need to consider the
user’s current working directory.

Note
This routine should be used only to make sure that file paths are fully qualified, but
not to expand wildcard characters (e.g. *). The behavior of FILE_EXPAND_PATH
when it encounters a wildcard is platform dependent, differs between platforms, and
should not depended on. These differences are due to the underlying operating
system, and are beyond the control of IDL. To expand the wildcard and obtain fully
qualified paths, combine the FILE_SEARCH function with
FILE_EXPAND_PATH:

A = FILE_EXPAND_PATH(FILE_SEARCH('*.pro'))

Alternatively, you can use the FULLY_QUALIFY_PATH keyword to
FILE_SEARCH:

A = FILE_SEARCH('*.pro', /FULLY_QUALIFY_PATH)

See “FILE_EXPAND_PATH” in the IDL Reference Guide manual for details.

Creating Directories

You can create a directory using the FILE_MKDIR procedure. The resulting
directory or directories are created with default access permissions for the current
process. If needed, you can use the FILE_CHMOD procedure to alter access
permissions. If a specified directory has non-existent parent directories,
FILE_MKDIR automatically creates all the intermediate directories as well. For
instance, to create a subdirectory named moose in the current working directory:

FILE_MKDIR, 'moose'

See “FILE_MKDIR” in the IDL Reference Guide manual for details.
Building IDL Applications File Manipulation Operations

316 Chapter 11: Files and Input/Output
Testing for a File’s Existence

The FILE_TEST function allows you to determine if a file exists without having to
open it. Additionally, using the FILE_TEST keywords provides information about the
file’s attributes. For example, to determine whether your IDL distribution supports
the SGI IRIX operating system:

result = FILE_TEST(!DIR + '/bin/bin.sgi', /DIRECTORY)
PRINT, 'SGI IDL Installed: ', result ? 'yes' : 'no'

See “FILE_TEST” in the IDL Reference Guide manual for details.

Searching for a Specific File

The FILE_WHICH function separates a specified file path into its component
directories, and searches each directory in turn. If a directory contains the file, the full
name of that file including the directory path is returned. If FILE_WHICH does not
find the desired file, a NULL string is returned.

This command is modeled after the UNIX which(1) command, but is written in the
IDL language and is available on all platforms. Its source code can be found in the
file file_which.pro in the lib subdirectory of the IDL distribution.

As an example, the following line of code allows you to find the location of the
file_which.pro file:

Result = FILE_WHICH('file_which.pro')

Alternately, to find the location of the UNIX ls command:

Result = FILE_WHICH(getenv('PATH'), 'ls')

See “FILE_WHICH” in the IDL Reference Guide manual for details.
File Manipulation Operations Building IDL Applications

Chapter 11: Files and Input/Output 317
Working with UNIX Links

On UNIX platforms, you can create file links, both regular (hard) and symbolic. A
hard link is a directory entry that references a file. UNIX allows multiple such links to
exist simultaneously, meaning that a given file can be referenced by multiple names.
The following limitations on hard links are enforced by the operating system:

• Hard links may not span file systems, as hard linking is only possible within a
single file system.

• Hard links may not be created between directories, as doing so has the
potential to create infinite circular loops within the hierarchical Unix file
system. Such loops will confuse many system utilities, and can even cause file
system damage.

A symbolic link is an indirect pointer to a file; its directory entry contains the name of
the file to which it is linked. Symbolic links may span file systems and may refer to
directories.

Use the FILE_LINK procedure to create hard and soft links on UNIX systems. See
“FILE_LINK” in the IDL Reference Guide manual for details.

Use the FILE_READLINK procedure to retrieve the path to a file referenced by a
UNIX symbolic link. See “FILE_READLINK” in the IDL Reference Guide manual
for details.

Use the FILE_SAME function to determine whether two file names refer to the same
underlying file. See “FILE_SAME” in the IDL Reference Guide manual for details.

Getting Help and Information

Information about currently open file units is available by using the FILES keyword
with the HELP procedure. If no arguments are provided, information about all
currently open user file units (units 1–128) is given. For example, the following
command can be used to get information about the three special units (−2, −1, and 0):

HELP, /FILES, -2, -1, 0

This command results in output similar to the following:

Unit Attributes Name
-2 Write, New, Tty, Reserved <stderr>
-1 Write, New, Tty, Reserved <stdout>
0 Read, Tty, Reserved <stdin>

See “HELP” in the IDL Reference Guide manual for details.
Building IDL Applications File Manipulation Operations

318 Chapter 11: Files and Input/Output
Getting Information About a File

You can use the FILE_INFO function to retrieve information about a file that is not
currently open (that is, for which there is no IDL Logical Unit Number available). To
get information about an open file, use the FSTAT function.

The FILE_INFO function returns a structure expression of type FILE_INFO
containing information about the file. For example, use to get information on the file
dist.pro within the IDL User Library:

HELP,/STRUCTURE, FILE_INFO(FILEPATH('dist.pro', $
SUBDIRECTORY = 'lib'))

The above command will produce output similar to:

** Structure FILE_INFO, 21 tags, length=72:
 NAME STRING '/usr/local/rsi/idl/lib/dist.pro'
 EXISTS BYTE 1
 READ BYTE 1
 WRITE BYTE 0
 EXECUTE BYTE 0
 REGULAR BYTE 1
 DIRECTORY BYTE 0
 BLOCK_SPECIAL BYTE 0
 CHARACTER_SPECIAL
 BYTE 0
 NAMED_PIPE BYTE 0
 SETGID BYTE 0
 SETUID BYTE 0
 SOCKET BYTE 0
 STICKY_BIT BYTE 0
 SYMLINK BYTE 0
 DANGLING_SYMLINK
 BYTE 0
 MODE LONG 420
 ATIME LONG64 970241431
 CTIME LONG64 970241595
 MTIME LONG64 969980845
 SIZE LONG64 1717

The fields of the FILE_INFO structure provide various information about the file,
such as the size of the file, and the dates of last access, creation, and last modification.
For more information on the fields of the FILE_INFO structure, see “FILE_INFO” in
the IDL Reference Guide manual.

Use the FILE_LINES function to retrieve the number of lines of text in a file. See
“FILE_LINES” in the IDL Reference Guide manual for details.
File Manipulation Operations Building IDL Applications

Chapter 11: Files and Input/Output 319
The FSTAT Function

The FSTAT function can be used to retrieve information about a file that is currently
open (that is, for which there is an IDL Logical Unit Number available). It returns a
structure expression of type FSTAT or FSTAT64 containing information about the
file. For example, to get detailed information about the standard input, use the
following command:

HELP, /STRUCTURES, FSTAT(0)

This displays the following information:

** Structure FSTAT, 17 tags, length=64:
UNIT LONG 0
NAME STRING '<stdin>'
OPEN BYTE 1
ISATTY BYTE 0
ISAGUI BYTE 1
INTERACTIVE BYTE 1
XDR BYTE 0
COMPRESS BYTE 0
READ BYTE 1
wWRITE BYTE 0
ATIME LONG64 0
CTIME LONG64 0
MTIME LONG64 0
TRANSFER_COUNT LONG 0
CUR_PTR LONG 0
SIZE LONG 0
REC_LEN LONG 0

On some platforms, IDL can support files that are longer than 2^31-1 bytes in length.
If FSTAT is applied to such a file, it returns an expression of type FSTAT64 instead of
the FSTAT structure shown above. FSTAT64 differs from FSTAT only in that the
TRANSFER_COUNT, CUR_PTR, SIZE, and REC_LEN fields are signed 64-bit
integers (type LONG64) in order to be able to represent the larger sizes.

The fields of the FSTAT and FSTAT64 structures provide various information about
the file, such as the size of the file, and the dates of last access, creation, and last
modification. For more information on the fields of the FSTAT and FSTAT64
structures, see “FSTAT” in the IDL Reference Guide manual.

An Example Using FSTAT

The following IDL function can be used to read single-precision, floating-point data
from a stream file into a vector when the number of elements in the file is not known.
Building IDL Applications File Manipulation Operations

320 Chapter 11: Files and Input/Output
It uses the FSTAT function to get the size of the file in bytes and divides by four (the
size of a single-precision, floating-point value) to determine the number of values.

;READ_DATA reads all the floating point values from a stream file
;and returns the result as a floating-point vector.
FUNCTION READ_DATA, file

;Get a unique file unit and open the data file.
OPENR, /GET_LUN, unit, file

;Get file status.
status = FSTAT(unit)

;Make an array to hold the input data. The SIZE field of status
;gives the number of bytes in the file, and single-precision,
;floating-point values are four bytes each.
data = FLTARR(status.size / 4)

;Read the data.
READU, unit, data

;Deallocate the file unit. The file also will be closed.
FREE_LUN, unit

RETURN, data

END

Assuming that a file named data.dat exists and contains 10 floating-point values,
the READ_DATA function could be used as follows:

;Read floating-point values from data.dat.
A = READ_DATA('data.dat')

;Show the result.
HELP, A

The following output is produced:

A FLOAT = Array(10)
File Manipulation Operations Building IDL Applications

Chapter 11: Files and Input/Output 321
Flushing File Units

For efficiency, IDL buffers its input/output in memory. Therefore, when data are
output, there is a window of time during which data are in memory and have not been
actually placed into the file. Normally, this behavior is transparent to the user (except
for the improved performance). The FLUSH routine exists for those rare occasions
where a program needs to be certain that the data has actually been written to the file
immediately. For example, use the statement,

FLUSH, 1

to flush file unit one.

See “FLUSH” in the IDL Reference Guide manual for details.

Positioning File Pointers

Each open file unit has a current file pointer associated with it. This file pointer
indicates the position in the file at which the next input/output operation will take
place. The file position is specified as the number of bytes from the start of the file.
The first position in the file is position zero. The following statement will rewind file
unit 1 to its start:

POINT_LUN, 1, 0

The following sequence of statements will position it at the end of the file:

tmp = FSTAT(1)
POINT_LUN, 1, tmp.size

POINT_LUN has the following operating-system specific behavior:

• UNIX: the current file pointer can be positioned arbitrarily – moving to a
position beyond the current end-of-file causes the file to grow out to that point.
The gap created is filled with zeroes.

• Windows: the current file pointer can be positioned arbitrarily – moving to a
position beyond the current end-of-file causes the file to grow out to that point.
Unlike UNIX, the gap created is filled with arbitrary data instead of zeroes.

See “POINT_LUN” in the IDL Reference Guide manual for details.

Testing for End-Of-File

The EOF function is used to test a file unit to see if it is currently positioned at the
end of the file. It returns true (1) if the end-of-file condition is true and false (0)
otherwise.
Building IDL Applications File Manipulation Operations

322 Chapter 11: Files and Input/Output
For example, to read the contents of a file and print it on the screen, use the following
statements:

;Open file demo.doc for reading.
OPENR, 1, 'demo.doc'

;Create a variable of type string.
LINE = ''

;Read and print each line until the end of the file is encountered.
WHILE(~ EOF(1)) DO BEGIN READF,1,LINE & PRINT,LINE & END

;Done with the file.
CLOSE, 1

See “EOF” in the IDL Reference Guide manual for details.

GET_KBRD

The GET_KBRD function returns the next character available from the standard
input (IDL file unit zero) as a single character string. It takes a single parameter
named WAIT. If WAIT is zero, the function returns the null string if there are no
characters in the terminal typeahead buffer. If it is nonzero, the function waits for a
character to be typed before returning.

Under Windows, the GET_KBRD function can be used to return Windows special
characters (in addition to the standard keyboard characters). To get a special
character, hold down the Alt key and type the character’s ANSI equivalent on the
numeric keypad while GET_KBRD is waiting. Control + key combinations are not
supported.

See “GET_KBRD” in the IDL Reference Guide manual for details.

Note
RSI recommends the use of a GUI interface (e.g. WIDGET_BUTTON) instead of
GET_KBRD where possible.

Example—Using GET_KBRD

A procedure that updates the screen and exits when the carriage return is typed might
appear as follows:

;Procedure definition.
PRO UPDATE, ...

;Loop forever.
File Manipulation Operations Building IDL Applications

Chapter 11: Files and Input/Output 323
WHILE 1 DO BEGIN

;Update screen here...
...

;Read character, no wait.
CASE GET_KBRD(0) OF

;Process letter A.
'A':

;Process letter B.
'B':

;Process other alternatives.
...

;Exit on carriage return (ASCII code = 15 octal).
STRING("15B): RETURN

;Ignore all other characters.
ELSE:

ENDCASE

ENDWHILE

;End of procedure.
END

Using the STRING Function to Format Data

The STRING function is very similar to the PRINT and PRINTF procedures. It can
be thought of as a version of PRINT that places its formatted output into a string
variable instead of a file. If the output is a single line, the result is a scalar string. If
the output has multiple lines, the result is a string array with each element of the array
containing a single line of the output.

Example—Using STRING with Explicit Formatting

The IDL statements:

;Produce a string array.
A=STRING(FORMAT='("The values are:", /, (I))', INDGEN(5))

;Show its structure.
HELP, A
Building IDL Applications File Manipulation Operations

324 Chapter 11: Files and Input/Output
;Print out the result.
FOR I = 0, 5 DO PRINT, A[I]

produce the following output:

A STRING = Array(6)
The values are:

0
1
2
3
4

See “STRING” in the IDL Reference Guide manual for details.

Reading Data from a String Variable

The READS procedure performs formatted input from a string variable and writes the
results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of a file.

This routine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of the file can be read into a string using
READF. Then the components of that line can be read into variables using READS.

See the description of “READS” in the IDL Reference Guide manual for more details.
File Manipulation Operations Building IDL Applications

Chapter 11: Files and Input/Output 325
UNIX-Specific Information

UNIX offers only a single type of file. All files are considered to be an uninterpreted
stream of bytes, and there is no such thing as record structure at the operating system
level. (By convention, records of text are simply terminated by the linefeed character,
which is referred to as “newline.”) It is possible to move the current file pointer to any
arbitrary position in the file and to begin reading or writing data at that point. This
simplicity and generality form a system in which any type of file can be manipulated
easily using a small set of file operations.

Reading FORTRAN-Generated Unformatted Data with
IDL

The UNIX file system considers all files to be an uninterpreted stream of bytes.
Standard FORTRAN I/O considers all input/output to be done in terms of logical
records.

In order to reconcile the FORTRAN need for logical records with UNIX files, UNIX
FORTRAN programs add a longword count before and after each logical record of
data. These longwords contain an integer count giving the number of bytes in that
record. Note that direct-access FORTRAN I/O does not write data in this format, but
simply transfers binary data to or from the file.

The use of the F77_UNFORMATTED keyword with the OPENR statement informs
IDL that the file contains unformatted data produced by a UNIX FORTRAN
program. When a file is opened with this keyword, IDL interprets the longword
counts properly and is able to read and write files that are compatible with
FORTRAN.

Reading data from a FORTRAN file

The following UNIX FORTRAN program produces a file containing a five-column
by three-row array of floating-point values with each element set to its one-
dimensional subscript:

PROGRAM ftn2idl

INTEGER i, j
REAL data(5, 3)

OPEN(1, FILE="ftn2idl.dat", FORM="unformatted")
DO 100 j = 1, 3

DO 100 i = 1, 5
data(i,j) = ((j - 1) * 5) + (i - 1)
Building IDL Applications UNIX-Specific Information

326 Chapter 11: Files and Input/Output
print *, data(i,j)
100 CONTINUE

WRITE(1) data
END

Running this program creates the file ftn2idl.dat containing the unformatted array.
The following IDL statements can be used to read this file and print out its contents:

;Create an array to contain the fortran array.
data = FLTARR(5,3)

;Open the fortran-generated file. The F77_UNFORMATTED keyword is
;necessary so that IDL will know that the file contains unformatted
;data produced by a UNIX FORTRAN program.
OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;Read the data in a single input operation.
READU, lun, data

;Release the logical unit number and close the fortran file.
FREE_LUN, lun

;Print the result.
PRINT, data

Executing these IDL statements produces the following output:

0.00000 1.00000 2.00000 3.00000 4.00000
5.00000 6.00000 7.00000 8.00000 9.00000
10.0000 11.0000 12.0000 13.0000 14.0000

Because unformatted data produced by UNIX FORTRAN unformatted WRITE
statements are interspersed with extra information before and after each logical
record, it is important that the IDL program read the data in the same way that the
FORTRAN program wrote it. For example, consider the following attempt to read the
above data file one row at a time:

;Create an array to contain one row of the FORTRAN array.
data = FLTARR(5, /NOZERO)

OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;One row at a time.
FOR I = 0, 4 DO BEGIN

;Read a row of data.
READU, lun, data

;Print the row.
PRINT, data
UNIX-Specific Information Building IDL Applications

Chapter 11: Files and Input/Output 327
ENDFOR

;Close the file.
FREE_LUN, lun

Executing these IDL statements produces the output:

0.00000 1.00000 2.00000 3.00000 4.00000
% READU: End of file encountered. Unit: 100

File: ftn2idl.dat6
% Execution halted at $MAIN$(0).

Here, IDL attempted to read the single logical record written by the FORTRAN
program as if it were written in five separate records. IDL hit the end of the file after
reading the first five values of the first record.

Writing data to a FORTRAN file

The following IDL statements create a five-column by three-row array of floating-
point values with each element set to it’s one-dimensional subscript, and writes the
array to a data file suitable for reading by a FORTRAN program:

;Create the array.
data = FINDGEN(5,3)

;Open a file for writing. Note that the F77_UNFORMATTED keyword is
;necessary to tell IDL to write the data in a format readable by a
;FORTRAN program.
OPENW, lun, 'idl2ftn.dat', /GET_LUN, /F77_UNFORMATTED

;Write the data.
WRITEU, lun, data

;Close the file.
FREE_LUN, lun

The following FORTRAN program reads the data file created by IDL:

PROGRAM idl2ftn

INTEGER i, j
REAL data(5, 3)

OPEN(1, FILE="idl2ftn.dat", FORM="unformatted")
READ(1) data

DO 100 j = 1, 3
DO 100 i = 1, 5

PRINT *, data(i,j)
100 CONTINUE

END
Building IDL Applications UNIX-Specific Information

328 Chapter 11: Files and Input/Output
Windows-Specific Information

Under Microsoft Windows, a file is read or written as an uninterrupted stream of
bytes-there is no record structure at the operating system level. Lines in a Windows
text file are terminated by the character sequence CR LF (carriage return, line feed).

The Microsoft C runtime library considers a file to be in either binary or text mode,
and its behavior differs depending on the current mode of the file. The programmer
confusion caused by this distinction is a cause of many C/C++ program bugs.
Programmers familiar with this situation may be concerned about how IDL handles
read and write operations. IDL is not affected by this quirk of the C runtime library,
and no special action is required to work around it. Read/write operations are handled
the same in Windows as in Unix: when IDL performs a formatted I/O operation, it
reads/writes the CR/LF line termination. When it performs a binary operation, it
simply reads/writes raw data.

Versions of IDL prior to IDL 5.4 (5.3 and earlier), however, were affected by the
text/binary distinction made by the C library. The BINARY and NOAUTOMODE
keywords to the OPEN procedures were provided to allow the user to change IDL’s
default behavior during read/write operations. In IDL 5.4 and later versions, these
keywords are no longer necessary. They continue to be accepted in order to allow
older code to compile and run without modification, but they are completely ignored
and can be safely removed from code that does not need to run on those older
versions of IDL.
Windows-Specific Information Building IDL Applications

Chapter 11: Files and Input/Output 329
Scientific Data Formats

IDL supports the HDF (Hierarchical Data Format), HDF-EOS (Hierarchical Data
Format-Earth Observing System), CDF (Common Data Format), and NetCDF
(Network Common Data Format) self-describing, scientific data formats. Collections
of built-in routines provide an interface between IDL and these formats.
Documentation for specific routines and further discussion of the various formats can
be found in the IDL Reference Guide.
Building IDL Applications Scientific Data Formats

330 Chapter 11: Files and Input/Output
Support for Standard Image File Formats

IDL includes routines for reading and writing many standard graphics file formats.
These routines and the types of files they support are listed in the table below.
Documentation on these routines can be found in the online help (enter “?” at the IDL
prompt).

Format Read/Write
Routines Query Routine Description

BMP READ_BMP
WRITE_BMP

QUERY_BMP Windows Bitmap (.bmp)
Format

Interfile READ_INTERFILE

(Write routine is n/a)

n/a Interfile version 3.3
Format

JPEG READ_JPEG
WRITE_JPEG

QUERY_JPEG Joint Photographic
Experts Group files

JPEG
2000

READ_JPEG2000
WRITE_JPEG2000

QUERY_JPEG2
000

JPEG 2000 files

NRIF (Read routine is n/a)

WRITE_NRIF

n/a NCAR Raster
Interchange Format

PICT READ_PICT
WRITE_PICT

QUERY_PICT Macintosh version 2
PICT files (bitmap only)

PNG READ_PNG
WRITE_PNG

QUERY_PNG Portable Network
Graphics file

PPM READ_PPM
WRITE_PPM

QUERY_PPM PPM/PGM Format

SRF READ_SRF
WRITE_SRF

QUERY_SRF Sun Raster File

TIFF READ_TIFF
WRITE_TIFF

QUERY_TIFF 8-bit or 24-bit Tagged
Image File Format

X11
Bitmap

READ_X11_BITMAP
(Write routine is n/a)

n/a X11 Bitmap format used
for reading bitmaps for
IDL widget button labels

Table 11-15: IDL-Supported Graphics Standards
Support for Standard Image File Formats Building IDL Applications

Chapter 11: Files and Input/Output 331
XWD READ_XWD
(Write routine is n/a)

n/a X Windows Dump format

Format Read/Write
Routines Query Routine Description

Table 11-15: IDL-Supported Graphics Standards (Continued)
Building IDL Applications Support for Standard Image File Formats

332 Chapter 11: Files and Input/Output
Support for Standard Image File Formats Building IDL Applications

Chapter 12:

Assignment
The following topics are covered in this chapter:
Overview of the Assignment Statement . . 334
Assigning a Value to a Variable 336
Assigning Scalars to Array Elements 337
Assigning Arrays to Array Elements 338

Avoid Using Range Subscripts 340
Compound Assignment Operators 342
Using Associated File Variables 344
Building IDL Applications 333

334 Chapter 12: Assignment
Overview of the Assignment Statement

The assignment statement stores a value in a variable. There are three forms of the
assignment statement, as shown in the following table.

Syntax
Subscript
Structure

Expression
Structure Effect

Variable = Expression None All Expression is stored in
Variable.

Variable[Subscripts] =
Expression

Scalar Scalar Expression is stored in
a single element of
Variable

Scalar Array Expression array is
inserted in Variable
array.

Array Scalar Expression scalar is
stored in designated
elements of Variable.

Array Array Elements of
Expression are stored
in designated
elements of Variable.

Table 12-1: Types of Assignment Statements
Overview of the Assignment Statement Building IDL Applications

Chapter 12: Assignment 335
Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work as in previous version of IDL, we strongly suggest that you use brackets in all
new code. See “Array Subscript Syntax: [] vs. ()” on page 140 for additional
details.

Variable[Range] =
Expression

Range Scalar When possible, range
subscripts should be
avoided. See “Avoid
Using Range
Subscripts” on
page 340.

Scalar is inserted into
subarray.

Range Array When possible, range
subscripts should be
avoided. See “Avoid
Using Range
Subscripts” on
page 340.

If Variable[Range]
and Array are the
same size, elements of
Array specified by
Range are inserted in
Variable. Illegal if
Variable[Range] and
Array are different
sizes.

Syntax Subscript
Structure

Expression
Structure Effect

Table 12-1: Types of Assignment Statements (Continued)
Building IDL Applications Overview of the Assignment Statement

336 Chapter 12: Assignment
Assigning a Value to a Variable

The most basic form of the assignment statement is as follows:

Variable = Expression

The old value of the variable, if any, is discarded, and the value of the expression is
stored in the variable. The expression on the right side can be of any type or structure.

Examples

Some examples of the basic form of the assignment statement are as follows:

;Set mmax to value.
mmax = 100 * X + 2.987

;name becomes a scalar string variable.
name = 'Mary'

;Make arr a 100-element, floating-point array.
arr = FLTARR(100)

;Discard points 0 to 49 of arr. It is now a 50-element array.
arr = arr[50:*]
Assigning a Value to a Variable Building IDL Applications

Chapter 12: Assignment 337
Assigning Scalars to Array Elements

The second type of assignment statement has the following form:

Variable[Subscripts] = Scalar_Expression

Here, a single element of the specified array is set to the value of the scalar
expression. The expression can be of any type and is converted, if necessary, to the
type of the variable. The variable on the left side must be either an array or a file
variable. Some examples of assigning scalar expressions to subscripted variables are:

;Set element 100 of data to value.
data[100] = 1.234999

;Store string in an array. name must be a string array or an error
;will result.
name[index] = 'Joe'

;Set element [X, Y] of the 2-dimensional array image to the value
contained in pixel.
image[X, Y] = pixel

Using Array Subscripts

The subscripted variable can have either a scalar or array subscript. If the subscript
expression is an array, the scalar value is stored in the elements of the array whose
subscripts are elements of the subscript array. For example, the following statement
zeroes the four specified elements of data: data[3], data[5], data[7] and data[9]:

data[[3, 5, 7, 9]] = 0

The subscript array is converted to integer type if necessary before use. Elements of
the subscript array that are negative, or greater than the highest subscript of the
subscripted array, are clipped to the target array boundaries. Note that a common
error is to use a negative scalar subscript (e.g., A[-1]). Using this type of subscript
causes an error. Negative array subscripts (e.g., A[[-1]]) do not cause errors.

The WHERE function can be used to select array elements to be changed. For
example, the statement:

data[WHERE(data LT 0)] = -1

sets all negative elements of data to -1 without changing the positive elements. The
result of the function, WHERE(data LT 0), is a vector composed of the subscripts of
the negative elements of data. Using this vector as a subscript changes only the
negative elements.
Building IDL Applications Assigning Scalars to Array Elements

338 Chapter 12: Assignment
Assigning Arrays to Array Elements

The third type of assignment statement has the following form:

Variable[Subscripts] = Array

Note that this form is syntactically identical to the second type of assignment
statement, but that the expression on the right-hand-side is an array instead of a
scalar. This form of the assignment statement is used to insert one array into another.

The array expression on the right is inserted into the array appearing on the left side
of the equal sign starting at the point designated by the subscripts.

Examples

For example, to insert the contents of an array called A into array B, starting at point
B[13, 24], use the following statement:

B[13, 24] = A

If A is a 5-column by 6-row array, elements B[13:17, 24:29] are replaced by the
contents of array A.

In the next example, a subarray is moved from one position to another:

B[100, 200] = B[200:300, 300:400]

A subarray of B, specifically the columns 200 to 300 and rows 300 to 400, is moved
to columns 100 to 200 and rows 200 to 300, respectively.

Using Array Subscripts

If the subscript expression applied to the variable is an array and an array appears on
the right side of the statement:

Variable[Array] = Array

then elements from the right side are stored in the elements designated by the
subscript vector. Only those elements of the subscripted variable whose subscripts
appear in the subscript vector are changed. For example, the statement

B[[2, 4, 6]] = [4, 16, 36]

is equivalent to the following series of assignment statements:

B[2] = 4
B[4] = 16
B[6] = 36
Assigning Arrays to Array Elements Building IDL Applications

Chapter 12: Assignment 339
Subscript elements are interpreted as if the subscripted variable is a vector. For
example, if A is a 10 × n matrix, the element A[i, j] has the subscript i+10*j. The
subscript array is converted to longword type before use, if necessary.

As described previously for the second form of assignment statement, elements of the
subscript array that are negative or larger than the highest subscript are clipped to the
target array boundaries. Note that a common error is to use a negative scalar
subscript (e.g., A[-1]). Using this type of subscript causes an error. Negative array
subscripts (e.g., A[[-1]]) do not cause errors.

As another example, assume that the vector DATA contains data elements and that a
data drop-out is denoted by a negative value. In addition, assume that there are never
two or more adjacent drop-outs. The following statements replace all drop-outs with
the average of the two adjacent good points:

;Subscript vector of drop-outs.
bad = WHERE(data LT 0)

;Replace drop-outs with average of previous and next point.
data[bad] = (data[bad - 1] + data[bad + 1]) / 2

In this example, the following actions are performed:

• We use the LT (less than) operator to create an array, with the same dimensions
as data, that contains a 1 for every element of data that is less than zero and a
zero for every element of data that is zero or greater. We use this “drop-out
array” as a parameter for the WHERE function, which generates a vector that
contains the one-dimensional subscripts of the elements of the drop-out array
that are nonzero. The resulting vector, stored in the variable bad, contains the
subscripts of the elements of data that are less than zero.

• The expression data[bad - 1] is a vector that contains the subscripts of the
points immediately preceding the drop-outs; while similarly, the expression
data[bad + 1] is a vector containing the subscripts of the points immediately
after the drop-outs.

• The average of these two vectors is stored in data[bad], the points that
originally contained drop-outs.
Building IDL Applications Assigning Arrays to Array Elements

340 Chapter 12: Assignment
Avoid Using Range Subscripts

It is possible to use range subscripts in an assignment statement, however, when
possible, you should avoid using range subscripts in favor of using scalar or array
subscripts. This type of assignment statement takes the following form:

Variable[Subscript_Range] = Expression

A subscript range specifies a beginning and ending subscript. The beginning and
ending subscripts are separated by the colon character. An ending subscript equal to
the size of the dimension minus one can be written as *.

For example, arr[I:J] denotes those points in the vector arr with subscripts between I
and J inclusive. I must be less than or equal to J and greater than or equal to zero. J
denotes the points in arr from arr[I] to the last point and must be less than the size of
the dimension arr [I:*]. See Chapter 7, “Arrays” for more details on subscript ranges.

Examples

Assuming the variable B is a 512 × 512-byte array, some examples are as follows:

;Store 1 in every element of the i-th row.
array[*, I] = 1

;Store 1 in every element of the j-th column.
array[J, *] = 1

;Zero all the rows of columns 200 through 220 of array.
array[200:220, *] = 0

;Store the value 100 in all the elements of array.
array[*] = 100

When possible, you should avoid using range subscripts in favor of using scalar or
array subscripts. Consider the following example:

A = INTARR(10)
X = [1,1,1]
PRINT, 'A = ', A
; Slow way:
t=SYSTIME(1) & FOR i=0L,100000 DO A[4:6] = X &

PRINT,'Slow way: ', SYSTIME(1)-t
PRINT, 'A = ', A
; Correct way is 4 times faster!!:
t=SYSTIME(1) & FOR i=0L,100000 DO a[4] = X &

PRINT, 'Fast way: ', SYSTIME(1)-t
PRINT, 'A = ', A
Avoid Using Range Subscripts Building IDL Applications

Chapter 12: Assignment 341
IDL Prints:

A = 0 0 0 0 0 0 0 0 0 0
Slow way: 0.47000003
A = 0 0 0 0 1 1 1 0 0 0
Fast way: 0.12100005
A = 0 0 0 0 1 1 1 0 0 0

The statement A[4] = X, where X is a three-element array, causes IDL to start at
index 4 of array A, and replace the next three elements in A with the elements in X.
Because of the way it is implemented in IDL, A[4:6] = X is much less efficient
than A[4] = X.
Building IDL Applications Avoid Using Range Subscripts

342 Chapter 12: Assignment
Compound Assignment Operators

In addition to the standard assignment operator, IDL supports the following
compound assignment operators:

These compound operators combine assignment with another operator. A statement
such as:

A op= expression

where op is an IDL operator that can be combined with the assignment operator to
form one of the above-listed compound operators, and expression is any IDL
expression, produces the same result as the statement:

A = A op (expression)

The difference is that the statement using the compound operator makes more
efficient use of memory, because it performs the operation on the target variable A
in place. In contrast, the statement using the simple operators makes a copy of the
variable A, performs the operation on the copy, and then assigns the resulting value
back to A, temporarily using extra memory.

Note that the statement:

A op= expression

is identical to the IDL statement:

A = TEMPORARY(A) op (expression)

which uses the TEMPORARY function to avoid making a copy of the variable A.
While there is no efficiency benefit to using the compound operator rather than the
TEMPORARY function, the compound operator allows you to write the same
statement more succinctly.

##= #= *= += -=

/= <= >= AND= EQ=

GE= GT= LE= LT= MOD=

NE= OR= XOR= ^=
Compound Assignment Operators Building IDL Applications

Chapter 12: Assignment 343
Compound Operators and Whitespace

When using the compound operators that include an operator referenced by a
keyword rather than a symbol (AND=, for example), you must be careful to use
whitespace between the operator and the target variable. Without appropriate
whitespace, the result will not be what you expect. Consider the difference between
these two statements:

AAND= 23
A AND= 23

The first statement assigns the value 23 to a variable named AAND. The second
statement performs the AND operation between A and 23, storing the result back into
the variable A.

Compound operators that do not involve IDL keywords (+=, for example) do not
require whitespace in order to be properly parsed by IDL, although such whitespace
is recommended for code readability. That is, the statements

A+= 23
A += 23

are identical, but the latter is more readable.
Building IDL Applications Compound Assignment Operators

344 Chapter 12: Assignment
Using Associated File Variables

A special case occurs when using an associated file variable in an assignment
statement. For additional information regarding the ASSOC function, see “ASSOC”
in the IDL Reference Guide manual. When a file variable is referenced, the last (and
possibly only) subscript denotes the record number of the array within the file. This
last subscript must be a simple subscript. Other subscripts and subscript ranges,
except the last, have the same meaning as when used with normal array variables.

An implicit extraction of an element or subarray in a data record can also be
performed. For example:

;Variable A associates the file open on unit 1 with the records of
;200-element, floating-point vectors.
A = ASSOC(1, FLTARR(200))

;Then, X is set to the first 100 points of record number 2, the
;third record of the file.
X = A[0:99, 2]

;Set the 24th point of record 16 to 12.
A[23, 16] = 12

;Increment points 10 to 199 of record 12. Points 0 to 9 of the
;record remain unchanged.
A[10, 12] = A[10:*, 12]+1
Using Associated File Variables Building IDL Applications

Chapter 13:

Program Control
The following topics are covered in this chapter:
Overview . 346
Compound Statements 347
Conditional Statements 350

Loop Statements . 357
Jump Statements . 365
Building IDL Applications 345

346 Chapter 13: Program Control
Overview

IDL contains various constructs for controlling the flow of program execution, such
as conditional expressions and looping mechanisms. These constructs include:

Compound Statements

• BEGIN...END

Conditional Statements

• IF...THEN...ELSE

• CASE

• SWITCH

Loop Statements

• FOR...DO

• REPEAT...UNTIL

• WHILE...DO

Jump Statements

• BREAK

• CONTINUE

• GOTO
Overview Building IDL Applications

Chapter 13: Program Control 347
Compound Statements

Many of the language constructs that we will discuss in this chapter evaluate an
expression, then perform an action based on whether the expression is true or false,
such as with the IF statement:

IF expression THEN statement

For example, we would say “If X equals 1, then set Y equal to 2” as follows:

IF (X EQ 1) THEN Y = 2

But what if we want to do more than one thing if X equals 1? For example, “If X
equals 1, set Y equal to 2 and print the value of Y.” If we wrote it as follows, then the
PRINT statement would always be executed, not just when X equals 1:

IF (X EQ 1) THEN Y = 2
PRINT, Y

IDL provides a container into which you can put multiple statements that are the
subject of a conditional or repetitive statement. This container is called a
BEGIN...END block, or compound statement. A compound statement is treated as a
single statement and can be used anywhere a single statement can appear.

BEGIN...END

The BEGIN...END statement is used to create a block of statements, which is simply
a group of statements that are treated as a single statement. Blocks are necessary
when more than one statement is the subject of a conditional or repetitive statement.

For example, the above code could be written as follows:

IF (X EQ 1) THEN BEGIN
Y = 2
PRINT, Y

END

All the statements between the BEGIN and the END are the subject of the IF
statement. The group of statements is executed as a single statement. Syntactically, a
block of statements is composed of one or more statements of any type, started by
BEGIN and ended by an END identifier. To be syntactically correct, we should have
ended our block with ENDIF rather than just END:

IF (X EQ 1) THEN BEGIN
Y = 2
PRINT, Y

ENDIF
Building IDL Applications Compound Statements

348 Chapter 13: Program Control
This is to ensure proper nesting of blocks. The END identifier used to terminate the
block should correspond to the type of statement in which BEGIN is used. The
following table lists the correct END identifiers to use with each type of statement.

Note
CASE and SWITCH also have their own END identifiers. CASE should always be
ended with ENDCASE, and SWITCH should always be ended with ENDSWITCH.

Statement END
Identifier

Example

ELSE BEGIN ENDELSE IF (0) THEN A=1 ELSE BEGIN
A=2

ENDELSE

FOR variable=init, limit DO
BEGIN

ENDFOR FOR i=1,5 DO BEGIN
PRINT, array[i]

ENDFOR

IF expression THEN BEGIN ENDIF IF (0) THEN BEGIN
A=1

ENDIF

REPEAT BEGIN ENDREP REPEAT BEGIN
A = A * 2

ENDREP UNTIL A GT B

WHILE expression DO BEGIN ENDWHILE WHILE ~ EOF(1) DO BEGIN
READF, 1, A, B, C

ENDWHILE

LABEL: BEGIN END LABEL1: BEGIN
PRINT, A

END

case_expression: BEGIN END CASE name OF
'Moe': BEGIN

PRINT, 'Stooge'
END

ENDCASE

switch_expression: BEGIN END SWITCH name OF
'Moe': BEGIN

PRINT, 'Stooge'
END

ENDSWITCH

Table 13-1: Types of END Identifiers
Compound Statements Building IDL Applications

Chapter 13: Program Control 349
The IDL compiler checks the end of each block, comparing it with the type of the
enclosing statement. Any block can be terminated by the generic END, but no type
checking is performed. Using the correct type of END identifier for each block makes
it easier to find blocks that you have not properly terminated.

Listings produced by the IDL compiler indent each block four spaces to the right of
the previous level to make the program structure easier to read. (See “.RUN” in the
IDL Reference Guide manual for details on producing program listings with the IDL
compiler.)
Building IDL Applications Compound Statements

350 Chapter 13: Program Control
Conditional Statements

Most useful applications have the ability to perform different actions in response to
different conditions. This decision-making ability is provided in the form of
conditional statements.

IF...THEN...ELSE

The IF statement is used to conditionally execute a statement or a block of
statements. The syntax of the IF statement is as follows:

IF expression THEN statement [ELSE statement]

or

IF expression THEN BEGIN
statements

ENDIF [ELSE BEGIN
statements

ENDELSE]

The expression after the “IF” is called the condition of the IF statement. This
expression (or condition) is evaluated, and if true, the statement following the
“THEN” is executed. (See “Definition of True and False” on page 368 for details on
how the “truth” of an expression is determined.)

For example:

A = 2
IF A EQ 2 THEN PRINT, 'A is two '

Here, IDL prints “A is two”.

If the expression evaluates to a false value, the statement following the “ELSE”
clause is executed:

A = 3
IF A EQ 2 THEN PRINT, 'A is two ' ELSE PRINT, 'A is not two'

Here, IDL prints “A is not two”.

Control passes immediately to the next statement if the condition is false and the
ELSE clause is not present.
Conditional Statements Building IDL Applications

Chapter 13: Program Control 351
Note
Another way to write an IF...THEN...ELSE statement is with a conditional
expression using the ?: operator. For more information, see “Conditional
Expression” on page 39.

Using Statement Blocks with the IF Statement

The THEN and ELSE clauses can be in the form of a block (or group of statements)
with the delimiters BEGIN and END (see “BEGIN...END” on page 347). To ensure
proper nesting of blocks, you can use ENDIF and ENDELSE to terminate the block,
instead of using the generic END. Below is an example of the use of blocks within an
IF statement.

IF (I NE 0.0) THEN BEGIN
...

ENDIF ELSE BEGIN
...

ENDELSE

Nesting IF Statements

IF statements can be nested in the following manner:

IF P1 THEN S1 ELSE $
IF P2 THEN S2 ELSE $

...
IF PN THEN SN ELSE SX

If condition P1 is true, only statement S1 is executed; if condition P2 is true, only
statement S2 is executed, etc. If none of the conditions are true, statement SX will be
executed. Conditions are tested in the order they are written. The construction above
is similar to the CASE statement except that the conditions are not necessarily
related.
Building IDL Applications Conditional Statements

352 Chapter 13: Program Control
CASE

The CASE statement is used to select one, and only one, statement for execution,
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. The general form of the CASE
statement is as follows:

CASE expression OF
expression: statement
...
expression: statement

[ELSE: statement]
ENDCASE

Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If a match is
found, the statement is executed and control resumes directly below the CASE
statement.

The ELSE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the CASE statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

Example

An example of the CASE statement follows:

CASE name OF
'Larry': PRINT, 'Stooge 1'
'Moe': PRINT, 'Stooge 2'
'Curly': PRINT, 'Stooge 3'

ELSE: PRINT, 'Not a Stooge'
ENDCASE

Another example shows the CASE statement with the number 1 as the selector
expression of the CASE. One is equivalent to true and is matched against each of the
conditionals.

CASE 1 OF
(X GT 0) AND (X LE 50): Y = 12 * X + 5
(X GT 50) AND (X LE 100): Y = 13 * X + 4
Conditional Statements Building IDL Applications

Chapter 13: Program Control 353
(X LE 200): BEGIN
Y = 14 * X - 5
Z = X + Y

END
ELSE: PRINT, 'X has an illegal value.'
ENDCASE

In this CASE statement, only one clause is selected, and that clause is the first one
whose value is equal to the value of the case selector expression.

Tip
Each clause is tested in order, so it is most efficient to order the most frequently
selected clauses first.

SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.
This expression is called the switch selector expression.

The general form of the SWITCH statement is as follows:

SWITCH Expression OF
Expression: Statement
...
Expression: Statement

[ELSE: Statement]
ENDSWITCH

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the selector expression. SWITCH executes by comparing
the SWITCH expression with each selector expression in the order written. If a match
is found, program execution jumps to that statement and execution continues from
that point. Unlike the CASE statement, execution does not resume below the
SWITCH statement after the matching statement is executed. Whereas CASE
executes at most one statement within the CASE block, SWITCH executes the first
matching statement and any following statements in the SWITCH block. Once a
match is found in the SWITCH block, execution falls through to any remaining
statements. For this reason, the BREAK statement is commonly used within
SWITCH statements to force an immediate exit from the SWITCH block.
Building IDL Applications Conditional Statements

354 Chapter 13: Program Control
The ELSE clause of the SWITCH statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the switch statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.

CASE Versus SWITCH

The CASE and SWITCH statements are similar in function, but differ in the
following ways:

• Execution exits the CASE statement at the end of the matching statement. By
contrast, execution within a SWITCH statement falls through to the next
statement. The following table illustrates this difference:

Because of this difference, the BREAK statement is often used within
SWITCH statements, but less frequently within CASE. (For more information
on using the BREAK statement, see “BREAK” on page 365.) For example, we
can add a BREAK statement to the SWITCH example in the above table to
make the SWITCH example behave the same as the CASE example:

x=2
SWITCH x OF

1: PRINT, 'one'
2: BEGIN

PRINT, 'two'
BREAK

CASE SWITCH

x=2
CASE x OF

1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDCASE

x=2
SWITCH x OF

1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDSWITCH

IDL Prints:

two

IDL Prints:

two
three
four

Table 13-2: CASE versus SWITCH
Conditional Statements Building IDL Applications

Chapter 13: Program Control 355
END
3: PRINT, 'three'
4: PRINT, 'four'

ENDSWITCH

IDL Prints:

two

• If there are no matches within a CASE statement and there is no ELSE clause,
IDL issues an error and execution halts. Failure to match is not an error within
a SWITCH statement. Instead, execution continues immediately following the
SWITCH.

The decision on whether to use CASE or SWITCH comes down deciding which of
these behaviors fits your code logic better. For example, our first example of the
CASE statement looked like this:

CASE name OF
'Larry': PRINT, 'Stooge 1'
'Moe': PRINT, 'Stooge 2'
'Curly': PRINT, 'Stooge 3'

ELSE: PRINT, 'Not a Stooge'
ENDCASE

We could write this example using SWITCH:

SWITCH name OF
'Larry': BEGIN

PRINT, 'Stooge 1'
BREAK

END
'Moe': BEGIN

PRINT, 'Stooge 2'
BREAK

END
'Curly': BEGIN

PRINT, 'Stooge 3'
BREAK

END
ELSE: PRINT, 'Not a Stooge'
ENDSWITCH

Clearly, this code can be more succinctly expressed using a CASE statement.
Building IDL Applications Conditional Statements

356 Chapter 13: Program Control
There may be other cases when the fall-through behavior of SWITCH suits your
application. The following example illustrates an application that uses SWITCH
more effectively. The DAYS_OF_XMAS procedure accepts an integer argument
specifying which of the 12 days of Christmas to start on. It starts on the specified day,
and prints the presents for all previous days. If we enter 3, for example, we want to
print the presents for days 3, 2, and 1. Therefore, the fall-through behavior of
SWITCH fits this problem nicely. The first day of Christmas requires special
handling, so we use a BREAK statement at the end of the statement for case 2 to
prevent execution of the statement associated with case 1:

PRO DAYS_OF_XMAS, day

IF (N_ELEMENTS(day) EQ 0) THEN DAY = 12
IF ((day LT 1) OR (day GT 12)) THEN day = 12
day_name = ['First', 'Second', 'Third', 'Fourth', 'Fifth', $

'Sixth', 'Seventh', 'Eighth', 'Ninth', 'Tenth',$
'Eleventh', 'Twelfth']

PRINT, 'On The ', day_name[day - 1], $

' Day Of Christmas My True Love Gave To Me:'

SWITCH day of
12: PRINT, ' Twelve Drummers Drumming'
11: PRINT, ' Eleven Pipers Piping'
10: PRINT, ' Ten Lords A-Leaping'
9: PRINT, ' Nine Ladies Dancing'
8: PRINT, ' Eight Maids A-Milking'
7: PRINT, ' Seven Swans A-Swimming'
6: PRINT, ' Six Geese A-Laying'
5: PRINT, ' Five Gold Rings'
4: PRINT, ' Four Calling Birds'
3: PRINT, ' Three French Hens'
2: BEGIN

PRINT, ' Two Turtledoves'
PRINT, ' And a Partridge in a Pear Tree!'
BREAK

END
1: PRINT, ' A Partridge in a Pear Tree!'

ENDSWITCH
END

If we pass the value 3 to the DAYS_OF_XMAS procedure, we get the following
output. Achieving this behavior with CASE would be difficult.

On The Third Day Of Christmas My True Love Gave To Me:
Three French Hens
Two Turtledoves
And a Partridge in a Pear Tree!
Conditional Statements Building IDL Applications

Chapter 13: Program Control 357
Loop Statements

One of the most common programming tasks is to perform the same set of statements
multiple times. Rather than repeat a set of statements again and again, a loop can be
used to perform the same set of statements repeatedly.

Note
IDL’s array capabilities can often be used in place of loops to write much more
efficient programs. For example, if you want to perform the same calculation on
each element of an array, you could write a loop to iterate over each array element:

array = INDGEN(10)
FOR i = 0,9 DO BEGIN

array[i] = array[i] * 2
ENDFOR

This is much less efficient than using IDL’s built-in array capabilities:

array = INDGEN(10)
array = array * 2

FOR...DO

The FOR statement is used to execute one or more statements repeatedly, while
incrementing or decrementing a variable with each repetition, until a condition is met.
It is analogous to the DO statement in FORTRAN.

In IDL, there are two types of FOR statements: one with an implicit increment of 1
and the other with an explicit increment. If the condition is not met the first time the
FOR statement is executed, the subject statement is not executed.

FOR Statement with an Increment of One

The FOR statement with an implicit increment of one is written as follows:

FOR Variable = Expression, Expression DO Statement
Building IDL Applications Loop Statements

358 Chapter 13: Program Control
The variable after the FOR is called the index variable and is set to the value of the
first expression. The subject statement is executed, and the index variable is
incremented by 1 until the index variable is larger than the second expression. This
second expression is called the limit expression. Complex limit and increment
expressions are converted to floating-point type.

Warning
The data type of the index variable is determined by the type of the initial value
expression. Keep this fact in mind to avoid the following:

FOR I = 0, 50000 DO

This loop does not produce the intended result. Converting the longword constant
50,000 to a short integer yields −15,536 because of truncation. The loop is not
executed. The index variable’s initial value is larger than the limit variable. The loop
should be written as follows:

FOR I = 0L, 50000 DO

Note also that changing the data type of an index variable within a loop is not
allowed, and will cause an error.

Warning
Also be aware of FOR loops that are entered but are not terminated after the
expected number of iterations, because of the truncation effect. For example, if the
index value exceeds the maximum value for the initial data type (and so is
truncated) when it is expected instead to exceed the specified index limit, then the
loop will continue beyond the expected number of iterations.

The following FOR statement continues infinitely:

FOR i = 0B, 240, 16 DO PRINT, i

The problem occurs because the variable i is initialized to a byte type with 0B. After
the index reaches the limit value 240B, i is incremented by 16, causing the value to
go to 256B, which is interpreted by IDL as 0B, because of the truncation effect. As
a result, the FOR loop “wraps around” and the index can never be exceeded.
Loop Statements Building IDL Applications

Chapter 13: Program Control 359
Examples

A simple FOR statement:

FOR I = 1, 4 DO PRINT, I, I^2

This statement produces the following output:

1 1
2 4
3 9
4 16

The index variable I is first set to an integer variable with a value of one. The call to
the PRINT procedure is executed, then the index is incremented by one. This is
repeated until the value of I is greater than four at which point execution continues at
the statement following the FOR statement.

The next example displays the use of a block structure (instead of a single statement)
as the subject of the FOR statement. The example is a common process used for
computing a count-density histogram. (Note that a HISTOGRAM function is
provided by IDL.)

FOR K = 0, N - 1 DO BEGIN
C = A[K]
HIST(C) = HIST(C)+1

ENDFOR

The next example displays a FOR statement with floating-point index and limit
expressions, where X is set to a floating-point variable and steps through the values
(1.5, 2.5, ..., 10.5):

FOR X = 1.5, 10.5 DO S = S + SQRT(X)

The indexing variables and expressions can be integer, longword, floating-point, or
double-precision. The type of the index variable is determined by the type of the first
expression after the “=” character.
Building IDL Applications Loop Statements

360 Chapter 13: Program Control
Warning
Due to the inexact nature of IEEE floating-point numbers, using floating-point
indexing can cause “infinite loops” and other problems. This problem is also
manifested in both the C and FORTRAN programming languages. For example, the
numbers 0.1, 0.01, 1.6, and 1.7 do not have exact representations under the IEEE
standard. To see this phenomenon, enter the following IDL command:

PRINT, 0.1, 0.01, 1.6, 1.7, FORMAT='(f20.10)'

IDL prints the following approximations to the numbers we requested:

0.1000000015
0.0099999998
1.6000000238
1.7000000477

See “Accuracy & Floating-Point Operations” in Chapter 22 of the Using IDL
manual for more information about floating-point numbers.

FOR Statement with Variable Increment

The format of the second type of FOR statement is as follows:

FOR Variable = Expression1, Expression2, Increment DO Statement

This form is used when an increment other than 1 is desired.

The first two expressions describe the range of numbers for the index variable. The
Increment specifies the increment of the index variable. A negative increment allows
the index variable to step downward.

Examples

The following examples demonstrate the second type of FOR statement.

;Decrement, K has the values 100., 99., ..., 1.
FOR K = 100.0, 1.0, -1 DO ...

;Increment by 2., loop has the values 0., 2., 4., ..., 1022.
FOR loop = 0, 1023, 2 DO ...

;Divide range from bottom to top by 4.
FOR mid = bottom, top, (top - bottom)/4.0 DO ...
Loop Statements Building IDL Applications

Chapter 13: Program Control 361
Warning
If the value of the increment expression is zero, an infinite loop occurs. A common
mistake resulting in an infinite loop is a statement similar to the following:

FOR X = 0, 1, .1 DO

The variable X is first defined as an integer variable because the initial value
expression is an integer zero constant. Then the limit and increment expressions are
converted to the type of X, integer, yielding an increment value of zero because .1
converted to integer type is 0. The correct form of the statement is:

FOR X = 0., 1, .1 DO

which defines X as a floating-point variable.

Sequence of the FOR Statement

The FOR statement performs the following steps:

1. The value of the first expression is evaluated and stored in the specified
variable, which is called the index variable. The index variable is set to the type
of this expression.

2. The value of the second expression is evaluated, converted to the type of the
index variable, and saved in a temporary location. This value is called the limit
value.

3. The value of the third expression, called the step value, is evaluated, type-
converted if necessary, and stored. If omitted, a value of 1 is assumed.

4. If the index variable is greater than the limit value (in the case of a positive step
value) the FOR statement is finished and control resumes at the next statement.
Similarly, in the case of a negative step value, if the index variable is less than
the limit value, control resumes after the FOR statement.

5. The statement or block following the DO is executed.

6. The step value is added to the index variable.

7. Steps 4, 5, and 6 are repeated until the test of Step 4 fails.
Building IDL Applications Loop Statements

362 Chapter 13: Program Control
REPEAT...UNTIL

REPEAT...UNIL loops are used to repetitively execute a subject statement until a
condition is true. The condition is checked after the subject statement is executed.
Therefore, the subject statement is always executed at least once. (See “Definition of
True and False” on page 368 for details on how the “truth” of an expression is
determined.)

The syntax of the REPEAT statement is as follows:

REPEAT statement UNTIL expression

or

REPEAT BEGIN
 statements
ENDREP UNTIL expression

Examples

The following example finds the smallest power of 2 that is greater than B:

A = 1
B = 10
REPEAT A = A * 2 UNTIL A GT B

The subject statement can also be in the form of a block:

A = 1
B = 10
REPEAT BEGIN

A = A * 2
ENDREP UNTIL A GT B

The next example sorts the elements of ARR using the inefficient bubble sort method.
(A more efficient way to sort elements is to use IDL’s SORT function.)

;Sort array.
REPEAT BEGIN

;Set flag to true.
NOSWAP = 1
FOR I = 0, N - 2 DO IF arr[I] GT arr[I + 1]THEN BEGIN
;Swapped elements, clear flag.
NOSWAP = 0
T = arr[I] & arr[I] = arr[I + 1] & arr[I + 1] = T
ENDIF

;Keep going until nothing is moved.
ENDREP UNTIL NOSWAP
Loop Statements Building IDL Applications

Chapter 13: Program Control 363
WHILE...DO

WHILE...DO loops are used to execute a statement repeatedly while a condition
remains true. The WHILE...DO statement is similar to the REPEAT...UNTIL
statement except that the condition is checked prior to the execution of the statement.
(See “Definition of True and False” on page 368 for details on how the “truth” of an
expression is determined.)

The syntax of the WHILE...DO statement is as follows:

WHILE expression DO statement

or

WHILE expression DO BEGIN
 statements
ENDWHILE

When the WHILE statement is executed, the conditional expression is tested, and if it
is true, the statement following the DO is executed. Control then returns to the
beginning of the WHILE statement, where the condition is again tested. This process
is repeated until the condition is no longer true, at which point the control of the
program resumes at the next statement.

In the WHILE statement, the subject is never executed if the condition is initially
false.

Examples

The following example reads data until the end-of-file is encountered:

WHILE ~ EOF(1) DO READF, 1, A, B, C

The subject statement can also be in the form of a block:

WHILE ~ EOF(1) DO BEGIN
READF, 1, A, B, C

ENDWHILE

The next example demonstrates one way to find the first element of an array greater
than or equal to a specified value assuming the array is sorted into ascending order:

array = [2, 3, 5, 6, 10]
i = 0 ;Initialize index
n = N_ELEMENTS(array)

;Increment i until a point larger than 5 is found or the end of the
;array is reached:

WHILE (array[i] LT 5) AND (i LT n) DO i = i + 1
Building IDL Applications Loop Statements

364 Chapter 13: Program Control
PRINT, 'The first element >= 5 is element ', i

IDL Prints:

The first element >= 5 is element 2

Tip
Another way to accomplish the same thing is with the WHERE command, which is
used to find the subscripts of the points where ARR[I] is greater than or equal to X.

P = WHERE(arr GE X)
;Save first subscript:
I = P(0)
Loop Statements Building IDL Applications

Chapter 13: Program Control 365
Jump Statements

Jump statements can be used to modify the behavior of conditional and iterative
statements. Jump statements allow you to exit a loop, start the next iteration of a loop,
or explicitly transfer program control to a specified location in your program.

Statement Labels

Labels are the destinations of GOTO statements as well as the ON_ERROR and
ON_IOERROR procedures. The label field is simply an identifier followed by a
colon. Label identifiers, as with variable names, consist of 1 to 15 alphanumeric
characters, and are case insensitive. The dollar sign ($) and underscore (_) characters
can appear after the first character. Some examples of labels are as follows:

LABEL1:
LOOP_BACK: A = 12
I$QUIT: RETURN ;Comments are allowed.

BREAK

The BREAK statement provides a convenient way to immediately exit from a loop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to the
GOTO statement.

Example

This example illustrates a situation in which using the BREAK statement makes a
loop more efficient. In this example, we create a 10,000-element array of integers
from 0 to 9999, ordered randomly. Then we use a loop to find where in the array the
value 5 is located. If the value is found, we BREAK out of the loop because there is
no need to check the rest of the array:

Note
This example could be written more efficiently using the WHERE function. This
example is intended only to illustrate how BREAK might be used.

; Create a randomly-ordered array of integers
; from 0 to 9999:

array = SORT(RANDOMU(seed,10000))
n = N_ELEMENTS(array)

; Find where in array the value 5 in located:

Building IDL Applications Jump Statements

366 Chapter 13: Program Control
FOR i = 0,n-1 DO BEGIN
 IF (array[i] EQ 5) THEN BREAK
ENDFOR

PRINT, i

We could write this loop without using the BREAK statement, but this would require
us to continue the loop even after we find the value we’re looking for (or resort to
using a GOTO statement):

FOR i = 0, n-1 DO BEGIN
 IF (array[i] EQ 5) THEN found=i
ENDFOR

PRINT, found

CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop. Whereas the BREAK
statement exits from a loop, the CONTINUE statement exits only from the current
loop iteration, proceeding immediately to the next iteration.

Note
Do not confuse the CONTINUE statement described here with the .CONTINUE
executive command The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not allowed within CASE or SWITCH statements. This is in
contrast with the C language, which does allow this.

Example

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10:

FOR I=1,10 DO BEGIN
IF (I AND 1) THEN CONTINUE ; If odd, start next iteration

PRINT, I
ENDFOR
Jump Statements Building IDL Applications

Chapter 13: Program Control 367
GOTO

The GOTO statement is used to transfer program control to a point in the program
specified by the label. The GOTO statement is generally considered to be a poor
programming practice that leads to unwieldy programs. Its use should be avoided.
However, for those cases in which the use of a GOTO is appropriate, IDL does
provide the GOTO statement.

Note that using a GOTO to jump into the middle of a loop results in an error.

The syntax of the GOTO statement is as follows:

GOTO, Label

Warning
You must be careful in programming with GOTO statements. It is not difficult to
get into a loop that will never terminate, especially if there is not an escape (or test)
within the statements spanned by the GOTO.

Example

In the following example, the statement at label JUMP1 is executed after the GOTO
statement, skipping any intermediate statements:

GOTO, JUMP1
PRINT, 'Skip this' ; This statement is skipped
PRINT, 'Skip this' ; This statement is also skipped
JUMP1: PRINT, 'Do this'

The label can also occur before the GOTO statement that refers to the label, but you
must be careful to avoid an endless loop. GOTO statements are frequently the
subjects of IF statements, as in the following statement:

IF A NE G THEN GOTO, MISTAKE
Building IDL Applications Jump Statements

368 Chapter 13: Program Control
Definition of True and False

A predicate expression is an expression that is evaluated as being “true” or “false” as
part of a statement that controls program execution. IDL evaluates predicate
expressions in the following contexts:

• IF...THEN...ELSE statements

• ? : inline conditional expressions

• WHILE...DO statements

• REPEAT...UNTIL statements

The definition of true and false for the different data types is as follows:

• By default:

• Byte, integer, and long: odd integers are true, even integers are false.

• Floating-point, and complex: non-zero values are true, zero values are
false.

• String: any string with a nonzero length is true, null strings are false.

• Heap variables (pointers and object references): non-null values are true,
null values are false.

• If the LOGICAL_PREDICATE compile option is set:

• Numerical values: non-zero values are true, zero is false.

• String and heap variables: non-null values are true, null values are false

See “COMPILE_OPT” in the IDL Reference Guide manual for additional details on
the LOGICAL_PREDICATE compilation option.

In the following example, the logical statement for the condition is a conjunction of
two conditions:

IF (LON GT -40) AND (LON LE -20) THEN ...

If both conditions (LON being larger than –40 and less than or equal to –20) are true,
the statement following the THEN is executed.
Definition of True and False Building IDL Applications

Chapter 14:

Writing Efficient IDL
Programs
The following topics are covered in this chapter:
Overview . 370
Expression Evaluation Order 371
Avoid IF Statements 372
Use Vector and Array Operations 373
Use System Functions and Procedures . . . 375

Use Constants of the Correct Type 376
Eliminate Invariant Expressions 377
Virtual Memory . 378
IDL Implementation 383
The IDL Code Profiler 384
Building IDL Applications 369

370 Chapter 14: Writing Efficient IDL Programs
Overview

This chapter presents ideas to consider when trying to create the most efficient
programs possible, and discusses how to analyze the performance of your
applications.

Knowledge of IDL’s implementation and the pitfalls of virtual memory can be used
to greatly improve the efficiency of IDL programs. In IDL, complicated computations
can be specified at a high level. Therefore, inefficient IDL programs can suffer severe
speed penalties — perhaps much more so than with most other languages.

Techniques for writing efficient programs in IDL are identical to those in other
computer languages with the addition of the following simple guidelines:

• Use array operations rather than loops wherever possible. Try to avoid loops
with high repetition counts.

• Use IDL system functions and procedures wherever possible.

• Access array data in machine address order.

Attention also must be given to algorithm complexity and efficiency, as this is usually
the greatest determinant of resources used.
Overview Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 371
Expression Evaluation Order

The order in which an expression is evaluated can have a significant effect on
program speed. Consider the following statement, where A is an array:

;Scale A from 0 to 16.
B = A * 16. / MAX(A)

This statement first multiplies every element in A by 16 and then divides each
element by the value of the maximum element. The number of operations required is
twice the number of elements in A. A much faster way of computing the same result
is used in the following statement:

;Scale A from 0 to 16 using only one array operation.
B = A * (16./MAX(A))

or

;Operators of equal priority are evaluated from left to right. Only
;one array operation is required.
B = 16./MAX(A) * A

The faster method only performs one operation for each element in A, plus one scalar
division. To see the speed difference on your own machine, execute the following
statements:

A = RANDOMU(seed, 512, 512)
t1 = SYSTIME(1) & B = A*16./MAX(A) & t2 = SYSTIME(1)
PRINT, 'Time for inefficient calculation: ', t2-t1
t3 = SYSTIME(1) & B = 16./MAX(A)*A & t4 = SYSTIME(1)
PRINT, 'Time for efficient calculation: ', t4-t3
Building IDL Applications Expression Evaluation Order

372 Chapter 14: Writing Efficient IDL Programs
Avoid IF Statements

Programs with array expressions run faster than programs with scalars, loops, and IF
statements. Some examples of slow and fast ways to achieve the same results follow.

Example—Summing Elements

The first example adds all positive elements of array B to array A.

;Using a loop will be slow.
FOR I = 0, (N-1) DO IF B[I] GT 0 THEN A[I] = A[I] + B[I]

;Fast way: Mask out negative elements using array operations.
A = A + (B GT 0) * B

;Faster way: Add B > 0.
A = A + (B > 0)

When an IF statement appears in the middle of a loop with each element of an array
in the conditional, the loop can often be eliminated by using logical array
expressions.

Example—Using Array Operators and WHERE

In the example below, each element of C is set to the square-root of A if A[I] is
positive; otherwise, C[I] is set to minus the square-root of the absolute value of A[I].

;Using an IF statement is slow.
FOR I=0,(N-1) DO IF A[I] LE 0 THEN $

C[I]=-SQRT(-A[I]) ELSE C[I]=SQRT(A[I])

;Using an array expression is much faster.
C = ((A GT 0) * 2-1) * SQRT(ABS(A))

The expression (A GT 0) has the value 1 if A[I] is positive and has the value 0 if
A[I]is not. (A GT 0)* 2 - 1 is equal to +1 if A[I] is positive or -1 if A[I] is negative,
accomplishing the desired result without resorting to loops or IF statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

;Get subscripts of negative elements.
negs = WHERE(A LT 0)
;Take root of absolute value.
C = SQRT(ABS(A))
;Negate elements in C corresponding to negative elements in A.
C[negs] = -C[negs]
Avoid IF Statements Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 373
Use Vector and Array Operations

Whenever possible, vector and array data should always be processed with IDL array
operations instead of scalar operations in a loop. For example, consider the problem
of inverting a 512 × 512 image. This problem arises because approximately half the
available image display devices consider the origin to be the lower-left corner of the
screen, while the other half recognize it as the upper-left corner.

The following example is for demonstration only. The IDL system variable !ORDER
should be used to control the origin of image devices. The ORDER keyword to the
TV procedure serves the same purpose.

A programmer without experience in using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN

;Temporarily save pixel image.
temp = image[I, J]

;Exchange pixel in same column from corresponding row at bottom
image[I, J] = image[I, 511 - J]

image[I, 511-J] = temp

ENDFOR

A more efficient approach to this problem capitalizes on IDL’s ability to process arrays as
a single entity:

FOR J = 0, 255 DO BEGIN

;Temporarily save current row.
temp = image[*, J]

;Exchange row with corresponding row at bottom.
image[*, J] = image[*, 511-J]

image[*, 511-J] = temp

ENDFOR

At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

;Get a second array to hold inverted copy.
image2 = BYTARR(512, 512)
Building IDL Applications Use Vector and Array Operations

374 Chapter 14: Writing Efficient IDL Programs
;Copy the rows from the bottom up.
FOR J = 0, 511 DO image2[*, J] = image[*, 511-J]

Even more efficient is the single line:

image2 = image[*, 511 - INDGEN(512)]

that reverses the array using subscript ranges and array-valued subscripts.

Finally, using the built-in ROTATE function is quickest of all:

image = ROTATE(image, 7)

Inverting the image is equivalent to transposing it and rotating it 270 degrees
clockwise.
Use Vector and Array Operations Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 375
Use System Functions and Procedures

IDL supplies a number of built-in functions and procedures to perform common
operations. These system-supplied functions have been carefully optimized and are
almost always much faster than writing the equivalent operation in IDL with loops
and subscripting.

Example

A common operation is to find the sum of the elements in an array or subarray. The
TOTAL function directly and efficiently evaluates this sum at least 10 times faster
than directly coding the sum.

;Slow way: Initialize SUM and sum each element.
sum = 0. & FOR I = J, K DO sum = sum + array[I]

;Efficient, simple way.
sum = TOTAL(array[J:K])

Similar savings result when finding the minimum and maximum elements in an array
(MIN and MAX functions), sorting (SORT function), finding zero or nonzero
elements (WHERE function), etc.
Building IDL Applications Use System Functions and Procedures

376 Chapter 14: Writing Efficient IDL Programs
Use Constants of the Correct Type

As explained in Chapter 3, “Constants and Variables”, the syntax of a constant
determines its type. Efficiency is adversely affected when the type of a constant must
be converted during expression evaluation. Consider the following expression:

A + 5

If the variable A is of floating-point type, the constant 5 must be converted from short
integer type to floating point each time the expression is evaluated.

The type of a constant also has an important effect in array expressions. Care must be
taken to write constants of the correct type. In particular, when performing arithmetic
on byte arrays with the intent of obtaining byte results, be sure to use byte constants;
e.g., nB. For example, if A is a byte array, the result of the expression A + 5B is a byte
array, while A + 5 yields a 16-bit integer array.
Use Constants of the Correct Type Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 377
Eliminate Invariant Expressions

Expressions whose values do not change inside a loop should be moved outside the
loop. For example, in the loop:

FOR I = 0, N - 1 DO arr[I, 2*J-1] = ...,

the expression (2*J-1) is invariant and should be evaluated only once before the loop
is entered:

temp = 2*J-1
FOR I = 0, N-1 DO arr[I, temp] =
Building IDL Applications Eliminate Invariant Expressions

378 Chapter 14: Writing Efficient IDL Programs
Virtual Memory

The IDL programmer and user must be cognizant of the characteristics of virtual
memory computer systems to avoid penalty. Virtual memory allows the computer to
execute programs that require more memory than is actually present in the machine
by keeping those portions of programs and data that are not being used on the disk.
Although this process is transparent to the user, it greatly affects the efficiency of the
program.

Note
In relatively modern computers, plentiful physical memory (hundreds of megabytes
for a single-use machine) is not uncommon. Remember, however, that IDL is
generally not the only consumer of memory on a system. Other applications, the
operating system itself, and other users on multi-user systems may consume large
amounts of physical and virtual memory. If your IDL program appears to be
inefficient or slow, inspect the system memory situation to determine whether
virtual memory is being used, and if so, whether there is enough of it.

IDL arrays are stored in dynamically allocated memory. Although the program can
address large amounts of data, only a small portion of that data actually resides in
physical memory at any given moment; the remainder is stored on disk. The portion
of data and program code in real physical memory is commonly called the working
set.

When an attempt is made to access a datum in virtual memory not currently residing
in physical memory, the operating system suspends IDL, arranges for the page of
memory containing the datum to be moved into physical memory and then allows
IDL to continue. This process involves deciding where the datum should go in
memory, writing the current contents of the selected memory page out to the disk,
and reading the page with the datum into the selected memory page. A page fault is
said to occur each time this process takes place. Because the time required to read
from or write to the disk is very large in relation to the physical memory access time,
page faults become an important consideration.

When using IDL with large arrays, it is important to have access to sufficient physical
and virtual memory. Given a suitable amount of physical memory, the parameters
that regulate virtual memory require adjustment to assure best performance. These
parameters are discussed below. See “Virtual Memory System Parameters” on
page 382. If you suspect that lack of physical or virtual memory is causing problems,
consult your system manager.
Virtual Memory Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 379
Access Large Arrays by Memory Order

When an array is larger than or close to the working set size (i.e., the amount of
physical memory available for the process), it is preferable to access it in memory
address order.

Consider the process of transposing a large array. Assume the array is a 512 × 512
byte image with a 100 kilobyte working set. The array requires 512 × 512, or
approximately 250 kilobytes. Less than half of the image can be in memory at any
one instant.

In the transpose operation, each row must be interchanged with the corresponding
column. The first row, containing the first 512 bytes of the image, will be read into
memory, if necessary, and written to the first column. Because arrays are stored in
row order (the first subscript varies the fastest), one column of the image spans a
range of addresses almost equal to the size of the entire image. To write the first
column, 250,000 bytes of data must be read into physical memory, updated, and
written back to the disk. This process must be repeated for each column, requiring the
entire array be read and written almost 512 times. The amount of time required to
transpose the array using the method described above is relatively large.

In contrast, the IDL TRANSPOSE function transposes large arrays by dividing them
into subarrays smaller than the working set size enabling it to transpose a 512 × 512
image in a much smaller amount of time.

Example

Consider the operation of the following IDL statement:

FOR X = 0, 511 DO FOR Y = 0, 511 DO ARR[X, Y] = ...

This statement requires an extremely large execution time because the entire array
must be transferred between memory and the disk 512 times. The proper form of the
statement is to process the points in address order by using the following statement:

FOR Y = 0, 511 DO FOR X = 0, 511 DO ARR[X, Y] = ...

This approach cuts computing time by a factor of at least 50.
Building IDL Applications Virtual Memory

380 Chapter 14: Writing Efficient IDL Programs
Running Out of Virtual Memory

If you process large images with IDL and use the vendor-supplied default system
parameters (especially if you have a small system), you may encounter the error
message

% Unable to allocate memory.

This error message means that IDL was unable to obtain enough virtual memory to
hold all your data. Whenever you define an array, image, or vector, IDL asks the
operating system for some virtual memory in which to store the data. When you
reassign the variable, IDL frees the memory for re-use.

The first time you get this error, you will either have to stop what you are doing and
exit IDL or delete unused variables containing images or arrays, thereby releasing
enough virtual memory to continue. You can delete the memory allocation of array
variables by setting the variable equal to a scalar value.

If you need to exit IDL, you first should use the SAVE procedure to save your
variables in an IDL save file. Later, you will be able to recover those variables from
the save file using the RESTORE procedure.

The HELP,/MEMORY command tells you how much virtual memory you have
allocated. For example, a 512 × 512 complex floating array requires 8 × 5122 bytes or
about 2 megabytes of memory because each complex element requires 8 bytes.
Deleting a variable containing a 512 × 512 complex array will increase the amount of
memory available by this amount.

Minimizing Virtual Memory

If virtual memory is a problem, try to tailor your programming to minimize the
number of images held in IDL variables. Keep in mind that IDL creates temporary
arrays to evaluate expressions involving arrays. For example, when evaluating the
statement

A = (B + C) * (E + F)

IDL first evaluates the expression B + C and creates a temporary array if either B or
C are arrays. In the same manner, another temporary array is created if either E or F
are arrays. Finally, the result is computed, the previous contents of A are deleted, and
the temporary area holding the result is saved as variable A. Therefore, during the
evaluation of this statement, enough virtual memory to hold two arrays’ worth of data
is required in addition to normal variable storage.
Virtual Memory Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 381
It is a good idea to delete the allocation of a variable that contains an image and that
appears on the left side of an assignment statement, as shown in the following
program.

;Loop to process an image.
FOR I = ... DO BEGIN

;Processing steps.
...

;Delete old allocation for A.
A = 0

;Compute image expression and store.
A = Image_Expression

...

;End of loop.
ENDFOR

The purpose of the statement A=0 is to free the old memory allocation for the
variable A before computing the image expression in the next statement. Because the
old value of A is going to be replaced in the next statement, it makes sense to free A’s
allocation first.

The TEMPORARY Function

Another way to minimize memory use when performing operations on large arrays is
to use the TEMPORARY function. TEMPORARY returns the value of its argument
as a temporary variable and makes the argument undefined. In this way, you avoid
making a new copy of temporary results. For example, assume that A is a large array.
To add 1 to each element in A, you could enter:

A = A+1

However, this statement creates a new array for the result of the addition and assigns
the result to A before freeing the old allocation of A. Hence, the total storage required
for the operation is twice the size of A. The statement:

A = TEMPORARY(A) + 1

requires no additional space.
Building IDL Applications Virtual Memory

382 Chapter 14: Writing Efficient IDL Programs
Virtual Memory System Parameters

The first step is to determine how much virtual memory you require. For example, if
you compute complex Fast Fourier Transforms (FFT) on 512 × 512 images, each
complex image requires 2 megabytes. Suppose that during a typical session you need
to have twenty images stored in variables and require enough memory for ten images
to hold temporary results, resulting in a total of thirty images or 60 megabytes.
Rounding up to 80 megabytes gives a reasonable value for the amount of physical and
virtual memory that should be available to IDL.

UNIX Virtual Memory

For UNIX, The size of the swapping area(s) determines how much virtual memory
your process is allowed. To increase the amount of available virtual memory, you
must increase the size of the swap device (sometimes called the swap partition).
Increasing the size of a swap partition is a time-consuming task that should be
planned carefully. It usually requires saving the contents of the disk, reformatting the
disk with the new file partition sizes, and restoring the original contents.Some
systems offer the alternative of swapping to a regular file. This is a considerably
easier solution, although it may not be as efficient. Consult your system
documentation for details and instructions on how to perform these operations.

Windows Virtual Memory

For Microsoft Windows, creation and management of virtual memory files (called
“paging files”) are handled more or less automatically. You can, however, adjust the
initial and maximum size of the paging file for a given disk. Consult your system
documentation for details and instructions on how to perform these operations.
Virtual Memory Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 383
IDL Implementation

IDL programs are compiled into a low-level abstract machine code which is
interpretively executed. The dynamic nature of variables in IDL and the relative
complexity of the operators precludes the use of directly executable code. Statements
are only compiled once, regardless of the frequency of their execution.

The IDL interpreter emulates a simple stack machine with approximately 50
operation codes. When performing an operation, the interpreter must determine the
type and structure of each operand and branch to the appropriate routine. The time
required to properly dispatch each operation may be longer than the time required for
the operation itself.

The characteristics of the time required for array operations is similar to that of vector
computers and array processors. There is an initial set-up time, followed by rapid
evaluation of the operation for each element. The time required per element is shorter
in longer arrays because the cost of this initial set-up period is spread over more
elements. The speed of IDL is comparable to that of optimized FORTRAN for array
operations. When data are treated as scalars, IDL efficiency degrades by a factor of
30 or more.
Building IDL Applications IDL Implementation

384 Chapter 14: Writing Efficient IDL Programs
The IDL Code Profiler

The IDL Code Profiler helps you analyze the performance of your applications. You
can easily monitor the calling frequency and execution time for procedures and
functions. The Profiler can be used with programs entered from the command line as
well as programs run from within a file.

You can start the IDL Code Profiler by selecting “Profile” from the Run menu of the
IDLDE or by entering PROFILER at the Command Input Line. For more information
about the PROFILER procedure, see “PROFILER” in the IDL Reference Guide
manual.

Note
Calling the Profiler from the Command Input Line does not start the Profiler dialog.

The Profile Dialog

Select “Profile” from the Run menu. The Profile dialog appears.

Figure 14-1: Profile Dialog
The IDL Code Profiler Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 385
User Modules

User modules include user-written procedures as well as library procedures and
functions provided with IDL. By default, none of the User Modules are selected for
profiling. To select a module, click on the checkbox next to it. All user modules must
be compiled before opening the Profile dialog in order to be available for profiling.

All User Modules

Select this checkbox to select all the user modules for profiling.

System Modules

This field includes all IDL system procedures and functions.

All System Modules

Select this checkbox to select all the system modules for profiling.

Buttons

Click “Profile All” to enable profiling for all the available modules—System and
User. Click “Clear All” to disable profiling for all the available modules—System
and User. Click “Reset” to clear the report shown in the “Profile Report” dialog. The
“Profile Report” dialog is dismissed, as it no longer contains any information. Click
“Report” to generate a profile of the selected modules. The Profile Report dialog
appears. Click “Cancel” to dismiss the Profile dialog. Click “Help” to display Help
on this dialog.

The Profile Report Dialog

Click “Report” from the Profile dialog in the Run menu of the IDLDE. The Profile
Report dialog appears.

Fields in the Profiler Report Dialog

The fields in the Profiler Report dialog show the following attributes of the modules
selected for profiling from the Profile dialog. You can sort the values in each column
in both ascending and descending order by clicking anywhere within the column. By
default, the Modules column is sorted alphabetically.
Building IDL Applications The IDL Code Profiler

386 Chapter 14: Writing Efficient IDL Programs
Note
Whether you enter a program at the command line or run a program contained in a
file, the PROFILER procedure reports the status of all the modules compiled and
executed either since profiling was first set or since the PROFILER was reset.

Modules

The name of the library, user, or system procedure or function.

Typ

The type of module. System procedures or functions are associated with an “S”. User
or library functions or procedures are associated with a “U”.

Count

The number of times the procedure or function has been called.

Only(sec)

The time required, in seconds, for IDL to execute the given function or procedure, not
including any calls to other functions or procedures (children).

Only Avg

Average of the Only(sec) field above.

+Children(sec)

The time required, in seconds, for IDL to execute the given function or procedure
including any calls to other functions or procedures.

+Child Avg

Average of the +Children(sec) field above.

Buttons

Click “Print” to print the report. The Print dialog appears. You can also select “Print”
from the File menu of the IDLDE. Click “Save” to save the report as a text file. The
Save Profile Report dialog appears. Click “Cancel” to dismiss the Profile Report
dialog. The contents remain available after cancelling. Click “Help” to display Help
on this dialog.

Using the IDL Code Profiler

Open a new editor file by selecting “New” from the File menu.
The IDL Code Profiler Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 387
Enter the following lines in the editor:

PRO prof_test
OPENR, 1, FILEPATH(’nyny.dat’, SUBDIR=[’examples’, ’data’])
a=ASSOC(1, BYTARR(768,512))
b=a[0]
CLOSE, 1
TV, b

END

Save the file as prof_test.pro by selecting “Save” from the File menu. The Save As
dialog appears.

To use the IDL Code Profiler, you must first compile the routines you would like to
profile. For more involved programs, you can use RESOLVE_ALL to compile all
uncompiled functions or procedures that are called in any already-compiled
procedure or function.

Select “Profile...” from the Run menu. The Profile dialog appears; it will remain
visible until dismissed. Select “Profile All” to profile all the available modules.

Run the application by selecting “Run” from the File menu. After the application is
finished, return to the Profile dialog and click “Report”. The Profile Report dialog
appears, as shown in the following figure.

For more information about the capabilities of either dialog, see “The Profile Dialog”
on page 384 and “The Profile Report Dialog” on page 385.

Figure 14-2: Profile Report Dialog
Building IDL Applications The IDL Code Profiler

388 Chapter 14: Writing Efficient IDL Programs
Profiling with Command Line Modules

We will demonstrate how the Profiler handles newly compiled modules. The above
example set profiling for all system files, plus the user module, prof_test, and the
library function, FILEPATH. If you have altered the above results, reset the report and
run prof_test again.

Enter the following lines at the Command Input Line:

;Create a dataset using the library function DIST. Note that DIST
;is immediately compiled.
A= DIST(500)

;Display the image.
TV, A

Return to the Profile dialog. You will note that the DIST function has been appended
to the User Module field, but that it remains deselected. The Profiler will not include
any uncompiled modules by default. Click “Report” in the Profile dialog to refresh
the Profile Report dialog’s results. The following figure shows the new results. Note
that TV is counted twice, and that more system modules have been appended to the
Modules column. The DIST function, although it is not itself included, calls system
routines which were previously selected for profiling.

Figure 14-3: Refreshing the Profile Report
The IDL Code Profiler Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 389
If you select DIST in the User Modules field in the Profile dialog and then re-enter
only the statement calling TV at the Command Input Line, you will notice that only
the count for TV increases in the profiler report. You must re-enter the statement
calling DIST at the Command Input Line; the already-compiled library function is
executed again, making it available for profiling.
Building IDL Applications The IDL Code Profiler

390 Chapter 14: Writing Efficient IDL Programs
The IDL Code Profiler Building IDL Applications

Chapter 15:

Multithreading in IDL
This chapter describes the implementation of the IDL Thread Pool and how it can be used to
accelerate your computations.
The IDL Thread Pool 392
Controlling the IDL Thread Pool 395

Routines that Use the Thread Pool 401
Building IDL Applications 391

392 Chapter 15: Multithreading in IDL
The IDL Thread Pool

On computer systems that have more than one central processing unit, multi-
threading can be used to increase the speed of numeric calculations by using multiple
system processors to simultaneously carry out different parts of the computation. In a
multithreaded environment, each thread handles a portion of the overall task; if
several threads can run in parallel, the computation can often be completed more
quickly than if the different portions of the task ran in series.

IDL’s thread pool — a pool of computation threads that are used as helpers to
accelerate numerical computations — allows for multithreading when multiple CPUs
are present. IDL automatically evaluates all computations performed by routines that
may benefit from multithreading to determine whether or not to use the thread pool in
the current computation. This decision is based on attributes such as the number of
data elements involved, the availability of multiple CPUs, and the availability of a
multithreaded implementation of the algorithm in use. You can alter the parameters
used by IDL to make this decision, either on a global basis for the duration of a single
IDL session, or for an individual computation.

Note
Multithreading does not offer the possibility of increased execution speed for all
IDL routines. For a list of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 401.

Benefits of the IDL Thread Pool

The IDL thread pool will increase processing performance on certain computations.
When not involved in a calculation, the threads in the thread pool are inactive and
consume little in the way of system resources. When IDL encounters a computation
that can use the thread pool and which would benefit from parallel execution, it
divides the task into sub-parts for each thread, enables the thread pool to do the
computation, waits until the thread pool completes, and then continues. Other than
the improved performance, the end result is virtually indistinguishable when
compared to the same computation performed in the standard single-threaded
manner.
The IDL Thread Pool Building IDL Applications

Chapter 15: Multithreading in IDL 393
Possible Drawbacks to the Use of the
IDL Thread Pool

There are instances when allowing IDL to use its default thread pool settings can lead
to undesired results. In some instances, a multithreaded implementation using the
thread pool may actually take longer to complete a given job than a single-threaded
implementation. If a computation uses the thread pool in an inappropriate situation,
there may be other undesirable effects. The following are some situations in which
the default thread pool settings may provide less than optimal results.

Computation of a Relatively Small Number of Data Elements

Use of the IDL thread pool requires a small fixed overhead when compared to a non-
threaded version of the same computation. Normally, computational speed increases
when multiple CPUs work in parallel, and the speed-up is much larger than the loss
due to thread pool overhead. However, if the computation does not include a large
enough number of data elements (each element being a data value of a particular data
type), the loss due to thread pool overhead can exceed the benefit and the overall
computation speed can be slower.

To prevent the use of the thread pool for computations that involve too few data
elements, IDL supports a minimum threshold value for thread pool computations.
The minimum threshold value is contained in the TPOOL_MIN_ELTS field of the
!CPU system variable. See the following sections for details on modifying this value.

Large Computation that Requires Virtual Memory Use

If a computation is too large to fit into physical memory, the threads in the thread pool
may cause page faults that will activate the virtual memory system. If more than one
thread encounters this situation simultaneously, the threads will compete with each
other for access to memory and performance will fall below that of a single-threaded
approach to the computation.

To prevent the use of the thread pool for computations that involve too many data
elements, IDL supports a maximum threshold value for thread pool computations.
The maximum threshold value is contained in the TPOOL_MAX_ELTS field of the
!CPU system variable. See the following sections for details on modifying this value.
Building IDL Applications The IDL Thread Pool

394 Chapter 15: Multithreading in IDL
Multiple Users Competing for CPU Resources

On a large multi-user system, an IDL application that uses the thread pool may
consume all available CPUs, thus affecting other users of the system by reducing
overall performance.

To prevent the use of all system processors by routines that use the thread pool, IDL
allows you to specify explicitly the number of CPUs that should be used in
calculations that involve the thread pool. The number of processors to be used for
thread pool operations is contained in the TPOOL_NTHREADS field of the !CPU
system variable. See the following sections for details on modifying this value.

Note
To change the default number of threads used by IDL, set the
IDL_CPU_TPOOL_NTHREADS environment variable prior to starting IDL. See
“IDL_CPU_TPOOL_NTHREADS” in Chapter 1 of the Using IDL manual.

Sensitivity to Numerical Precision

Algorithms that are sensitive to the order of operations may produce different results
when performed by the thread pool. Such results are due to the use of finite precision
floating point types, and are equally correct within the precision of the data type.
The IDL Thread Pool Building IDL Applications

Chapter 15: Multithreading in IDL 395
Controlling the IDL Thread Pool

IDL allows you to programmatically control the use of thread pool. This section
discusses the following aspects of thread pool use:

• Viewing the Current Thread Pool Settings

• Using the Default Thread Pool Settings

• Changing Global Thread Pool Settings

• Changing Thread Pool Settings for a Specific Computation

• Disabling the Thread Pool

Note
Multithreading does not offer the possibility of increased execution speed for all
IDL routines. For a list of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 401.

Viewing the Current Thread Pool Settings

The current values of the parameters that control IDL’s use of the thread pool for
computations are always available in the read-only !CPU system variable. !CPU is
initialized by IDL at startup with default values for the number of CPUs (threads) to
use, as well as the minimum and maximum number of data elements. To view the
settings, use the following command:

HELP, /STRUCTURE, !CPU

The values of the fields in the !CPU system variable are explained in “!CPU” in the
IDL Reference Guide manual.

Using the Default Thread Pool Settings

If you have more than one processor on your system, if the routine you are using is
able to use the thread pool, and if the number of data elements in your computation
falls into the allowed range (neither too few nor too many), then IDL will employ the
thread pool in that calculation.

If the above requirements are met, IDL will automatically use the thread pool for the
computation. You do not need to do anything special to enable IDL’s multithreading
capabilities.
Building IDL Applications Controlling the IDL Thread Pool

396 Chapter 15: Multithreading in IDL
Changing Global Thread Pool Settings

Unless they are overridden by thread pool keywords supplied at the time of execution,
the values contained in the !CPU system variable control IDL’s use of the thread pool.
!CPU is a “read-only” system variable, which means that you cannot assign values to
its structure fields directly, either at the command line or within a program. However,
you can set the default number of threads prior to starting IDL by using the
IDL_CPU_TPOOL_NTHREADS environment variable. See “Setting Environment
Variables” in Chapter 1 of the Using IDL manual for details. You can also change the
values of the !CPU system variable for the duration of the current IDL session by
using the CPU procedure.

The CPU procedure accepts the following keywords:

TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword changes the value returned by !CPU.TPOOL_MAX_ELTS.

TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit from it.

This keyword changes the value returned by !CPU.TPOOL_MIN_ELTS.

TPOOL_NTHREADS

Set this keyword to the number of threads IDL should use when performing
computations that take advantage of the thread pool. By default, IDL will use
!CPU.HW_NCPU threads, so that each thread will have the potential to run in
parallel with the others. Set this keyword equal to 0 (zero) to ensure that
!CPU.HW_NCPU threads will be used. Set this keyword equal to 1 (one) to disable
use of the thread pool.

This keyword changes the value returned by !CPU.TPOOL.NTHREADS.
Controlling the IDL Thread Pool Building IDL Applications

Chapter 15: Multithreading in IDL 397
Note
For numerical computation, there is no benefit to using more threads than your
system has CPUs. However, depending on the size of the problem and the number
of other programs running on the system, there may be a performance advantage to
using fewer CPUs. See “Possible Drawbacks to the Use of the IDL Thread Pool” on
page 393 for a discussion of the circumstances under which using fewer than the
maximum number of CPUs makes sense.

For more information on the CPU procedure, see “CPU” in the IDL Reference Guide
manual.

Examples

The following examples illustrate use of the CPU procedure to modify IDL’s global
thread pool settings.

Note
The following examples are designed for systems with more than one processor.
The examples will generate correct results on single-processor systems, but may run
more slowly than the same operations performed without the thread pool.

Example 1

As a first example, imagine that we want to ensure that the thread pool is not used
unless there are at least 50,000 data elements. We set the minimum to 50,000 since
we know, for our system, that at least 50,000 floating point data elements are required
before the use of the thread pool will exceed the overhead required to use it.

In addition, we want to ensure that the thread pool is not used if a calculation involves
more than 1,000,000 data elements. We set the maximum to 1,000,000 since we know
that 1,000,000 floating point data elements will exceed the maximum amount of
memory available for the computation, requiring the use of virtual memory.

The following IDL statements use the CPU procedure to modify the minimum and
maximum number of elements used in thread pool computations, create an array of
floating-point values, and perform a computation on the array:

; Modify the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

; Perform computation
sineSquared = 1. - (COS(!DTOR*theta))^2
Building IDL Applications Controlling the IDL Thread Pool

398 Chapter 15: Multithreading in IDL
In this example, the thread pool will be used since we are performing a computation
on an array of 361 x 181 = 65,341 data elements, which falls between the minimum
and maximum thresholds. Note that we altered the global thread pool parameters in
such a way that the computation was allowed. The values set by the CPU procedure
will remain in effect, either until they are changed again by another call to CPU or
until the end of the IDL session. An alternative approach that does not change the
global defaults in shown in “Changing Thread Pool Settings for a Specific
Computation” on page 399.

Example 2

In this example, we will:

1. Save the current thread pool settings from the !CPU system environment
variable.

2. Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a floating point computation.

3. Perform several floating point computations.

4. Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a double precision computation.

5. Perform several double precision computations.

6. Restore the thread pool settings to their original values.

The first computation will use the thread pool since it does not exceed any of the
specified parameters. The second computation, since it exceeds the maximum
number of data elements, will not use the thread pool.

; Retrieve the current thread pool settings
threadpool = !CPU

; Modify the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000, $

TPOOL_NTHREADS = 2

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

; Perform computations, using 2 threads
sineSquared = 1. - (COS(!DTOR*theta))^2
next computation
next computation
etc.

; Modify thread pool settings for new data type
Controlling the IDL Thread Pool Building IDL Applications

Chapter 15: Multithreading in IDL 399
CPU, TPOOL_MAX_ELTS = 50000, TPOOL_MIN_ELTS = 10000

; Create 65,341 elements of double precision data
theta = DINDGEN(361, 181)

; Perform computation
sineSquared = 1. - (COS(!DTOR*theta))^2
next computation
next computation
etc.

;Return thread pool settings to their initial values
CPU, TPOOL_MAX_ELTS = threadpool.TPOOL_MAX_ELTS, $

TPOOL_MIN_ELTS = threadpool.TPOOL_MIN_ELTS, $
TPOOL_NTHREADS = threadpool.HW_NCPU

Again, in this example we altered the global thread pool parameters. In cases where
you plan to perform multiple computations that take advantage of the same thread
pool configuration, changing the global thread pool parameters is convenient. In
cases where only a single computation uses the specified thread pool configuration, it
is easier to use the thread pool keywords to the routine that performs the computation,
as described in the following section.

Changing Thread Pool Settings for a Specific
Computation

All routines that have been implemented to use the thread pool accept keywords that
allow you to override the thread pool settings stored in !CPU for a single invocation
of the routine. This allows you to modify the settings for a particular computation
without affecting the global default settings of your session. For a list of the routines
that have been implemented to use multithreading when possible, see “Routines that
Use the Thread Pool” on page 401. In the IDL Reference Guide, documentation for
routines that use the thread pool includes a section titled “Thread Pool Keywords.”

The thread pool keywords are:

TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on the maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword overrides the default value, given by !CPU.TPOOL_MAX_ELTS.
Building IDL Applications Controlling the IDL Thread Pool

400 Chapter 15: Multithreading in IDL
TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elements in the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit from it.

This keyword overrides the default value, given by !CPU.TPOOL_MIN_ELTS.

TPOOL_NOTHREAD

Set this keyword to explicitly prevent IDL from using the thread pool for the current
computation. If this keyword is set, IDL will use the non-threaded implementation of
the routine even if the current settings of the !CPU system variable would allow use
of the threaded implementation.

Example

We can use the TPOOL_MIN_ELTS and TPOOL_MAX_ELTS keywords to the COS
function to modify the example used in the previous section so that our changes to the
thread pool settings do not alter the global default.

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

; Perform computation and override session settings for maximum
; and minimum number of elements
sineSquared = 1. - (COS(!DTOR*theta, TPOOL_MAX_ELTS = 1000000, $

TPOOL_MIN_ELTS = 50000))^2

Disabling the Thread Pool

There are two ways to disable the thread pool in IDL:

• Use the CPU procedure to alter the global thread pool parameters.

• Use the TPOOL_NOTHREAD keyword to a routine to disable the thread pool
for a specific single computation.

In the first example, we will disable the thread pool for the session by setting the
number of threads to use to one:

CPU, TPOOL_NTHREADS = 1

In the next example, we will disable the thread pool for a specific computation using
the TPOOL_NOTHREAD keyword:

sineSquared = 1. - (COS(!DTOR*theta, /TPOOL_NOTHREAD))^2
Controlling the IDL Thread Pool Building IDL Applications

Chapter 15: Multithreading in IDL 401
Routines that Use the Thread Pool

Multithreading does not offer the possibility of increased execution speed for all IDL
routines. The operators and routines currently using the thread pool in IDL are listed
below, grouped by functional category.

Binary and Unary Operators:

Note
If an operator uses the thread pool, any compound assignment operator based on
that operator (+=, *=, etc.) also uses the thread pool.

– –- +

++ NOT AND

/ * EQ

NE GE LE

GT LT >

< OR XOR

^ MOD #

Building IDL Applications Routines that Use the Thread Pool

402 Chapter 15: Multithreading in IDL
Mathematical Routines:

Image Processing Routines:

Array Creation Routines:

• ABS • ERRORF • MATRIX_MULTIPLY

• ACOS • EXP • PRODUCT

• ALOG • EXPINT • ROUND

• ALOG10 • FINITE • SIN

• ASIN • FLOOR • SINH

• ATAN • GAMMA • SQRT

• CEIL • GAUSSINT • TAN

• CONJ • IMAGINARY • TANH

• COS • ISHFT • VOIGT

• COSH • LNGAMMA

• BYTSCL • INTERPOLATE

• CONVOL • POLY_2D

• FFT • TVSCL

• BINDGEN • LINDGEN

• BYTARR • L64INDGEN

• CINDGEN • MAKE_ARRAY

• DCINDGEN • REPLICATE

• DCOMPLEXARR • UINDGEN

• DINDGEN • ULINDGEN

• FINDGEN • UL64INDGEN

• INDGEN
Routines that Use the Thread Pool Building IDL Applications

Chapter 15: Multithreading in IDL 403
Non-string Data Type Conversion Routines:

Array Manipulation Routines:

Programming and IDL Control Routines:

• BYTE • LONG

• COMPLEX • LONG64

• DCOMPLEX • UINT

• DOUBLE • ULONG

• FIX • ULONG64

• FLOAT

• MAX • TOTAL

• MIN • WHERE

• REPLICATE_INPLACE

• BYTEORDER • LOGICAL_OR

• LOGICAL_AND • LOGICAL_TRUE
Building IDL Applications Routines that Use the Thread Pool

404 Chapter 15: Multithreading in IDL
Routines that Use the Thread Pool Building IDL Applications

Chapter 16:

Solutions to Common
IDL Tasks
There are various programming tasks that are often used in IDL programs. This chapter describes
how to do some of the things you will commonly need to do in an IDL program. The tasks
discussed in this chapter include:
Determining Variable Scope 406
Determining if a Keyword is Set 407
Determining the Number of Array Elements in
an Expression or Variable 408
Determining if a Variable is Defined 409
Supplying Values for Missing Keywords . 410

Supplying Values for Missing Arguments 411
Determining the Size/Type of an Array . . 412
Determining if a Variable Contains a Scalar or
Array Value . 415
Calling Functions/Procedures Indirectly . 416
Executing Dynamically-Created IDL Code . . .
417
Building IDL Applications 405

406 Chapter 16: Solutions to Common IDL Tasks
Determining Variable Scope

The ARG_PRESENT function returns TRUE if its parameter will be passed back to
the caller. This function is useful in user-written procedures to determine if a created
value remains within the scope of the calling routine. ARG_PRESENT helps the
caller avoid expensive computations and prevents heap leaks. For example, assume
that a procedure exists which depends upon an argument passed by the caller:

PRO pass_it, i

If the caller does not specify i, the program may not function properly. You can check
to make sure that an argument was specified by using the following statement:

IF ARG_PRESENT(i) THEN BEGIN
Determining Variable Scope Building IDL Applications

Chapter 16: Solutions to Common IDL Tasks 407
Determining if a Keyword is Set

The KEYWORD_SET function returns a 1 (true), if its parameter is defined and
nonzero; otherwise, it returns zero (false). For example, assume that a procedure is
written which performs and returns the result of a computation. If the keyword PLOT
is present and nonzero, the procedure also plots its result as follows:

;Procedure definition.
PRO XYZ, result, PLOT = plot

;Compute result.
...

;Plot result if keyword parameter is set.
IF KEYWORD_SET(PLOT) THEN PLOT, result

END

A call to this procedure that produces a plot is shown in the following statement.

XYZ, R, /PLOT
Building IDL Applications Determining if a Keyword is Set

408 Chapter 16: Solutions to Common IDL Tasks
Determining the Number of Array Elements in
an Expression or Variable

The N_ELEMENTS function returns the number of elements contained in any
expression or variable. Scalars always have one element. The number of elements in
arrays or vectors is equal to the product of the dimensions. The N_ELEMENTS
function returns zero if its parameter is an undefined variable. The result is always a
longword scalar.

For example, the following expression is equal to the mean of a numeric vector or
array.

TOTAL(arr) / N_ELEMENTS(arr)
Determining the Number of Array Elements in an Expression or Variable Building IDL Applications

Chapter 16: Solutions to Common IDL Tasks 409
Determining if a Variable is Defined

The N_ELEMENTS function provides a convenient method of determining if a
variable is defined. The following statement sets the variable abc to zero if it is
undefined; otherwise, the variable is not changed.

IF N_ELEMENTS(abc) EQ 0 THEN abc = 0
Building IDL Applications Determining if a Variable is Defined

410 Chapter 16: Solutions to Common IDL Tasks
Supplying Values for Missing Keywords

N_ELEMENTS is frequently used to check for omitted plain and keyword
arguments. N_PARAMS cannot be used to check for the number of keyword
arguments because it returns only the number of plain arguments. An example of
using N_ELEMENTS to check for a keyword parameter is as follows:

;Display an image with a given zoom factor. If factor is omitted,
;use 4.
PRO ZOOM, image, FACTOR = factor

;Supply default for missing keyword parameter.
IF N_ELEMENTS(factor) EQ 0 THEN factor = 4

Note
If you use this method, the variable factor is defined has having the value 4, even
though no value was supplied by the user. If the ZOOM procedure were called
within another routine, the variable factor would be defined for that routine and for
any other routines also called by the routine that called ZOOM. This can lead to
unexpected behavior if you pass arguments from one routine to another.

You can avoid this problem by using different variable names inside the routine
than are used in calling the routine. For example, if you wanted to supply a default
zoom factor in the example above, but did not want to change the value of factor,
you could use an approach similar to the following:

IF N_ELEMENTS(factor) EQ 0 THEN zoomfactor = 4 $
ELSE zoomfactor = factor

You would then set the zoom factor internally using the zoomfactor variable,
leaving factor itself unchanged.
Supplying Values for Missing Keywords Building IDL Applications

Chapter 16: Solutions to Common IDL Tasks 411
Supplying Values for Missing Arguments

The N_PARAMS function returns the number of positional arguments (not keyword
arguments) present in a procedure or function call. A frequent use is to call
N_PARAMS to determine if all arguments are present and if not, to supply default
values for missing parameters. For example:

;Print values of XX and YY. If XX is omitted, print values of YY
;versus element number.
PRO XPRINT, XX, YY

;Check number of arguments.
CASE N_PARAMS() OF

;Single-argument case.
1: BEGIN

;First argument is y values.
Y = XX

;Create vector of subscript indices.
X = INDGEN(N_ELEMENTS(Y))

END

;Two-argument case.
2: BEGIN

;Copy parameters to local arguments.
Y = YY & X = XX

END

;Print error message.
ELSE: MESSAGE, 'Wrong number of arguments'

ENDCASE

;Remainder of procedure.
...

END
Building IDL Applications Supplying Values for Missing Arguments

412 Chapter 16: Solutions to Common IDL Tasks
Determining the Size/Type of an Array

The SIZE function returns a vector that contains information indicating the size and
type of the parameter. The returned vector is always of longword type.

• The first element is equal to the number of dimensions of the parameter and is
zero if the parameter is a scalar.

• The next elements contain the size of each dimension.

• After the dimension sizes, the last two elements indicate the data type and the
total number of elements, respectively. The data type is encoded as follows:

Type Code Data Type

0 Undefined

1 Byte

2 Integer (16-bit)

3 Longword integer (32-bit)

4 Floating point

5 Double-precision floating

6 Complex floating

7 String

8 Structure

9 Double-precision complex floating

10 Pointer

11 Object reference

12 Unsigned integer (16-bit)

13 Unsigned longword integer (32-bit)

14 64-bit integer

15 Unsigned 64-bit integer

Table 16-1: Type Codes Returned by the SIZE Function
Determining the Size/Type of an Array Building IDL Applications

Chapter 16: Solutions to Common IDL Tasks 413
The data type can also be returned by setting the TYPE keyword to SIZE. In this case,
the return value of the SIZE function is the data type code of the given expression.

Examples

Example 1

Assume A is an integer array with dimensions of (3,4,5). The statements:

arr = INDGEN(3,4,5)
S = SIZE(arr)

assign to the variable S a six-element vector containing:

The following code segment checks to see if the variable arr is two-dimensional and
extracts the dimensions:

;Create a variable.
arr = [[1,2,3],[4,5,6]]

;Get size vector.
S = SIZE(arr)

;Check if two dimensional.
IF S[0] NE 2 THEN $

;Print error message.
MESSAGE, 'Variable a is not two dimensional.'

;Get number of columns and rows.
NX = S[1] & NY = S[2]

PRINT, 'Array is ', NX, ' columns by ', NY, ' rows.'

Element Value Description

S0 3 Three dimensions

S1 3 First dimension

S2 4 Second dimension

S3 5 Third dimension

S4 2 Integer type

S5 60 Number of elements = 3*4*5

Table 16-2: SIZE Values
Building IDL Applications Determining the Size/Type of an Array

414 Chapter 16: Solutions to Common IDL Tasks
IDL prints:

Array is 3 columns by 2 rows.

Example 2

The following example illustrates two ways in which to determine the type code of
the input expression.

The first method requires you to access the correct element of the array returned by
the SIZE function (the second to last element). For example:

array = [[1,2,3], [4,5,6], [7,8,9]]

sz = SIZE(array)
type = sz[3]

;A more flexible method:
sz = SIZE(array)
n = N_ELEMENTS(sz)
type = sz[n-2]

The second method involves using the TYPE keyword to SIZE. In this case, the value
returned by the SIZE function contains only the type code of the input expression:

type = SIZE(array, /TYPE)
Determining the Size/Type of an Array Building IDL Applications

Chapter 16: Solutions to Common IDL Tasks 415
Determining if a Variable Contains a Scalar or
Array Value

The SIZE function can also be used to determine whether a variable holds a scalar
value or an array. Setting the DIMENSIONS keyword causes the SIZE function to
return a 0 if the variable is a scalar, or the dimensions if the variable is an array, as
shown in the following example:

A = 1
B = [1]
C = [1,2,3]
D = [[1,2],[3,4]]

PRINT, SIZE(A, /DIMENSIONS)
PRINT, SIZE(B, /DIMENSIONS)
PRINT, SIZE(C, /DIMENSIONS)
PRINT, SIZE(D, /DIMENSIONS)

IDL Prints:

0
1
3
2 2
Building IDL Applications Determining if a Variable Contains a Scalar or Array Value

416 Chapter 16: Solutions to Common IDL Tasks
Calling Functions/Procedures Indirectly

The CALL_FUNCTION and CALL_PROCEDURE routines are used to indirectly
call functions and procedures whose names are contained in strings. Although not as
flexible as the EXECUTE function (see the following page), CALL_FUNCTION and
CALL_PROCEDURE are much faster, and should be used in preference to
EXECUTE whenever possible.

Example

This example code fragment, taken from the routine SVDFIT, calls a function whose
name is passed to SVDFIT via a keyword parameter as a string. If the keyword
parameter is omitted, the function POLY is called.

;Function declaration.
FUNCTION SVDFIT,..., FUNCT = funct

...

;Use default name, POLY, for function if not specified.
IF N_ELEMENTS(FUNCT) EQ 0 THEN FUNCT = 'POLY'

;Make a string of the form "a = funct(x,m)", and execute it.
Z = EXECUTE('A = '+FUNCT+'(X,M)')

...

The above example is easily made more efficient by replacing the call to EXECUTE
with the following line:

A = CALL_FUNCTION(FUNCT, X, M)
Calling Functions/Procedures Indirectly Building IDL Applications

Chapter 16: Solutions to Common IDL Tasks 417
Executing Dynamically-Created IDL Code

The EXECUTE function compiles and executes one or more IDL statements
contained in its string parameter during runtime. EXECUTE is limited by two
factors:

• Calls to EXECUTE cannot be nested, so a routine called by EXECUTE cannot
use EXECUTE itself.

• The need to compile the string at runtime makes EXECUTE inefficient in
terms of speed.

The CALL_FUNCTION and CALL_PROCEDURE routines provide much of the
functionality of EXECUTE without imposing these limitations and should be used in
preference to EXECUTE when possible.

The result of the EXECUTE function is true (1) if the string was successfully
compiled and executed. If an error occurred during either phase, the result is false (0).
If an error occurs, an error message is printed.

Multiple statements in the string should be separated with the “&” character. GOTO
statements and labels are not allowed.
Building IDL Applications Executing Dynamically-Created IDL Code

418 Chapter 16: Solutions to Common IDL Tasks
Executing Dynamically-Created IDL Code Building IDL Applications

Chapter 17:

Building Cross-
Platform Applications
The following topics are covered in this chapter:
Overview . 420
Which Operating System is Running? . . . 421
File and Path Specifications 422
Environment Variables 424
Files and I/O . 425
Math Exceptions . 428
Operating System Access 429

Display Characteristics and Palettes 430
Fonts . 431
Printing . 432
SAVE and RESTORE 433
Widgets . 434
Using External Code 437
IDL DataMiner Issues 438
Building IDL Applications 419

420 Chapter 17: Building Cross-Platform Applications
Overview

IDL is designed as a platform-independent environment for data analysis and
programming. Because of this, the vast majority of IDL’s routines operate the same
way no matter what type of computer system you are using. IDL’s cross-platform
development environment makes it easy to develop an application on one type of
system for use on any system IDL supports.

Despite IDL’s cross-platform nature, there are differences between the computers that
make up a multi-platform environment. Operating systems supply resources in
different ways. While IDL attempts to abstract these differences and provide a
common environment for all Windows and UNIX machines, there are some cases
where the discrepancies cannot be overcome. This chapter discusses aspects of IDL
that you may wish to consider when developing an application that will run on
multiple types of computer.

Note
This chapter is not an exhaustive list of differences between versions of IDL for
different platforms. Rather, it covers issues you may encounter when writing cross-
platform applications in IDL.
Overview Building IDL Applications

Chapter 17: Building Cross-Platform Applications 421
Which Operating System is Running?

In some cases, in order to effectively take platform differences into account, your
application will need to execute different code segments on different systems.
Operating system and IDL version information is contained in the IDL system
variable !VERSION. For example, you could use an IDL CASE statement that looks
something like the following to execute code that pertains to a particular operating
system family:

CASE !VERSION.OS_FAMILY OF
'unix' : Code for Unix
'Windows' : Code for Windows

ENDCASE

Writing conditional IDL code based on platform information should be a last resort,
used only if you cannot accomplish the same task in a platform-independent manner.
Building IDL Applications Which Operating System is Running?

422 Chapter 17: Building Cross-Platform Applications
File and Path Specifications

Different operating systems use different path specification syntax and directory
separation characters. The following table summarizes the different characters used
by different operating systems; see “!PATH” in the IDL Reference Guide manual for
further details on path specification.

As a result of these differences, specifying filenames and paths explicitly in your IDL
application can cause problems when moving your application to a different platform.
You can effectively isolate your IDL programs from platform-specific file and path
specification issues by using the FILEPATH and DIALOG_PICKFILE functions.

Choosing Files at Runtime

To allow users of your application to choose a file at runtime, use the
DIALOG_PICKFILE function. DIALOG_PICKFILE will always return the file path
with the correct syntax for the current platform. Other methods (such as reading a file
name from a text field in a widget program) may or may not provide a proper file
path.

Selecting Files Programmatically

To give your application access to a file you know to be installed on the host, use the
FILEPATH function. By default, FILEPATH allows you to select files that are included
in the IDL distribution tree. Chances are, however, that a file you supply as part of your
own application is not included in the IDL tree. You can still use FILEPATH by
explicitly specifying the root of the directory tree to be searched.

Operating
System

Directory
Separator

Path Element
Separator

UNIX / (forward slash) : (colon)

Windows \ (backward slash) ; (semicolon)

Table 17-1: Directory and Path Element Separator Characters
File and Path Specifications Building IDL Applications

Chapter 17: Building Cross-Platform Applications 423
For example, suppose your application is installed in a subdirectory named MYAPP
of the root directory of the filesystem that contains the IDL distribution. You could
use the FILEPATH function and set the ROOT_DIR keyword to the root directory of
the filesystem, and use the SUBDIRECTORY keyword to select the MYAPP
directory. If you are looking for a file named myapp.dat, the FILEPATH command
looks like this:

file = FILEPATH('myapp.dat', ROOT_DIR=root, SUBDIR='MYAPP')

The problem that remains is how to specify the value of root properly on each
platform. This is one case where it is very difficult to avoid writing some platform-
specific code. We could write an IDL CASE statement each time the FILEPATH
function is used. Instead, the following code segment sets an IDL variable to the
string value of the root of the filesystem, and passes that variable to the ROOT_DIR
keyword. The CASE statement looks like this:

CASE !VERSION.OS_FAMILY OF
'unix' : rootdir = '/'
'Windows' : rootdir = STRMID(!DIR, 0, 2)

ENDCASE
file = FILEPATH('myapp.dat', ROOT=rootdir, SUBDIR='MYAPP')

Note that the root directory under Unix is well defined, whereas the root directory on
a machine running Microsoft Windows must be determined by parsing the IDL
system variable !DIR. Under Windows, the root is assumed to be the drive letter of
the hard drive and the following colon — usually “C:”.

Figure 17-1: A Possible Directory Hierarchy for an IDL Application
Building IDL Applications File and Path Specifications

424 Chapter 17: Building Cross-Platform Applications
Environment Variables

UNIX versions of IDL have the ability to use environment variables to store
information about the environment in which IDL is running. Typically, environment
variables are used to store information like the path to the main IDL directory, or to a
batch file to be read and executed when IDL starts up. See “Environment Variables
Used by IDL” in Chapter 1 of the Using IDL manual for details.

Microsoft Windows systems also have the ability to use environment variables to
store information, but this form of information storage is much less common under
Windows.

Rather than using environment variables, the IDL Development Environment stores
information in preferences; the mechanisms used to store preferences is different
between platforms, but is generally transparent to you. Configuration settings you
specify in the preferences dialogs of the IDL Development Environment are saved
and are available to the IDE the next time it is started.

What does this all mean in the context of writing IDL applications for multiple
platforms? Simply this: don’t rely on environment variables in your programs unless
you know that:

1. the target platform supports environment variables, and

2. the appropriate environment variables are defined as you wish them to be on
the target platform.
Environment Variables Building IDL Applications

Chapter 17: Building Cross-Platform Applications 425
Files and I/O

IDL’s file input and file output routines are designed to work identically on all
platforms, where possible. In the case of basic operations, such as opening a text file
and reading its contents, importing an image format file into an IDL array, or writing
ASCII data to a file on a hard disk, IDL’s I/O routines work the same way on all
platforms. In more complicated cases, however, such as reading data stored in binary
data format files, different operating systems may use files that are structured
differently, and extra care may be necessary to ensure that IDL reads or writes files in
the proper way.

Before attempting to write a cross-platform IDL application that uses more than basic
file I/O, you should read and understand the sections in Chapter 11, “Files and
Input/Output” that apply to the platforms your application will support. The
following are a few topics to think about when writing IDL applications that do
input/output.

Byte Order Issues

Computer systems on which IDL runs support two ways of ordering the bytes that
make up an arbitrary scalar: big endian, in which multiple byte numbers are stored in
memory beginning with the most significant byte, and little endian, in which numbers
are stored beginning with the least significant byte. The following table lists the
processor types and operating systems IDL supports and their byte ordering schemes:

Processor Type Operating System Byte Ordering

Digital Alpha AXP Tru64 UNIX little-endian

Hewlett Packard PA-RISC HP-UX big-endian

IBM RS/6000 AIX big-endian

Intel x86 Linux little-endian

Solaris x86 little-endian

Windows little-endian

Motorola PowerPC Macintosh OS X and later big-endian

SGI R4000 and up Irix big-endian

Table 17-2: Byte ordering schemes used by platforms that support IDL
Building IDL Applications Files and I/O

426 Chapter 17: Building Cross-Platform Applications
The IDL routines BYTEORDER and SWAP_ENDIAN allow you to convert numbers
from big endian format to little endian format and vice versa. It is often easier,
however, to use the XDR (for eXternal Data Representation) format to store data that
you know will be used by multiple platforms. XDR files write binary data in a
standard “canonical” representation; as a result, the files are slightly larger than pure
binary data files. XDR files can be read and written on any platform that supports
IDL. XDR is discussed in detail in “Portable Unformatted Input/Output” on
page 301.

Logical Unit Numbers

Logical Unit Numbers (LUNs) are assigned to individual files when the files are
opened by the IDL OPENR/OPENU/OPENW commands, and are used to specify
which file IDL should read from or write to. There are a total of 128 LUNs available
for assignment to files. While it is possible to assign any of the integers between 1-99
to a given file, when writing applications for others it is good programming practice
to let IDL assign and manage the LUNs itself. By using the GET_LUN keyword to
the OPEN routines, you can ask IDL to assign a free Logical Unit Number between
100-128 to the specified file. Letting IDL assign the LUN from the list of free unit
numbers ensures that your application does not attempt to use a LUN already in use
by someone else’s application. See the description of the GET_LUN keyword to
“OPEN” in the IDL Reference Guide manual and “Logical Unit Numbers (LUNs)”
on page 243.

Naming of IDL .pro Files

When naming IDL .pro files used in cross-platform applications, be aware of the
various platforms’ file naming conventions and limitations. For example, the “:”
character is not allowed in a filename under Microsoft Windows.

Be careful with case when naming files. For example, while Microsoft Windows
systems present file names using mixed case, file names are in fact case-insensitive.
Under Unix, file names are case sensitive—file.pro is different from File.pro.

Sun SPARC SunOS big-endian

Solaris big-endian

Processor Type Operating System Byte Ordering

Table 17-2: Byte ordering schemes used by platforms that support IDL
Files and I/O Building IDL Applications

Chapter 17: Building Cross-Platform Applications 427
When writing cross-platform applications, you should avoid using filenames that are
different only in case. The safest course is to use filenames that are all lower case.

Remember, too, that IDL commands are themselves case-insensitive. If entered at the
IDL command prompt, the following are equivalent:

IDL> command
IDL> COMMAND
IDL> CommanD

Automatic Compilation and Case Sensitivity

On UNIX platforms, where filename case matters, IDL looks for a lower-case
filename when you enter the name of a user-written routine at the IDL command
prompt. Thus, if you save your program file as myprogram.pro and enter the
following at the IDL command prompt:

IDL> MyProgram

IDL will compile the file myprogram.pro and attempt to execute a procedure
named myprogram.

If you save your program file as MyProgram.pro and enter the following at the IDL
command prompt:

IDL> MyProgram

IDL will not compile the file MyProgram.pro and will issue an error that looks like:

% Attempt to call undefined procedure/function: 'MYPROGRAM'.
% Execution halted at: $MAIN$

You can compile and run a program with a mixed- or upper-case file name on a UNIX
platform by using IDL’s .COMPILE or .RUN executive commands:

IDL> .COMPILE MyProgram
IDL> MyProgram

or, if MyProgram.pro contains a main-level program:

IDL> .RUN MyProgram

In general we recommend that you use lower-case file names on platforms where case
matters.
Building IDL Applications Files and I/O

428 Chapter 17: Building Cross-Platform Applications
Math Exceptions

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system dependent.
Some systems trap more errors than other systems. Beginning with version 5.1, IDL
uses the IEEE floating-point standard on all supported systems. As a result, IDL
always substitutes the special floating-point values NaN and Infinity when it detects a
math error. (See “Special Floating-Point Values” on page 468 for details on NaN and
Infinity.)
Math Exceptions Building IDL Applications

Chapter 17: Building Cross-Platform Applications 429
Operating System Access

While IDL provides ways to interact with each operating system under which it runs,
it is not generally useful to use operating-system native functions in a cross-platform
IDL program. If you find that you must use operating-system native features, be sure
to determine the current operating system (as described in “Which Operating System
is Running?” on page 421) and branch your code accordingly.
Building IDL Applications Operating System Access

430 Chapter 17: Building Cross-Platform Applications
Display Characteristics and Palettes

Finding Screen Size

Use the GET_SCREEN_SIZE function to determine the size of the screen on which
your application is displayed. Writing code that checks the screen size allows your
application to handle different screen sizes gracefully.

Number of Colors Available

Use the N_COLORS and TABLE_SIZE fields of the !D system variable to determine
the number of colors supported by the display and the number of color-table entries
available, respectively.

Make sure that your application handles relatively small numbers of colors (less than
256, say) gracefully. For example, Microsoft Windows reserves the first 20 colors out
of all the available colors for its own use. These colors are the ones used for title bars,
window frames, window backgrounds, scroll bars, etc. If your application is running
on a Windows machine with a 256-color display, it will have at most 236 colors
available to work with.

Similarly, make sure that your application handles TrueColor (24-bit or 32-bit color)
displays as well. If your application uses IDL’s color tables, for example, you will
need to force the application into 8-bit mode using the command

DEVICE, DECOMPOSED=0

to use indexed-color mode on a machine with a TrueColor display.
Display Characteristics and Palettes Building IDL Applications

Chapter 17: Building Cross-Platform Applications 431
Fonts

IDL uses three font systems for writing characters on the graphics device, whether
that device be a display monitor or a printer: Hershey (vector) fonts, TrueType
(outline) fonts, and device (hardware) fonts. Fonts are discussed in detail in Appendix
H, “Fonts” in the IDL Reference Guide manual.

Both TrueType and Vector fonts are displayed identically on all of the platforms that
support IDL. This means that if your cross-platform application uses either the
TrueType fonts supplied with IDL or the Vector fonts, there is no need for platform-
dependent code.
Building IDL Applications Fonts

432 Chapter 17: Building Cross-Platform Applications
Printing

IDL displays operating-system native dialogs using the DIALOG_PRINTJOB and
DIALOG_PRINTERSETUP functions. Since the dialogs that control printing and
printer setup differ between systems, so do the options and capabilities presented via
IDL’s print dialogs. If your IDL application uses IDL’s printing dialogs, make sure
that your interface calls the dialog your user will expect for the platform in question.
Printing Building IDL Applications

Chapter 17: Building Cross-Platform Applications 433
SAVE and RESTORE

If you distribute your application via IDL SAVE files, remember that files containing
IDL routines are not necessarily compatible between IDL releases. Always save your
original code and re-save when a new version of IDL is released. SAVE files
containing data are always compatible between releases of IDL.

Note also that if you are restoring a file created with VAX IDL version 1, you must
restore on a machine running VMS.
Building IDL Applications SAVE and RESTORE

434 Chapter 17: Building Cross-Platform Applications
Widgets

IDL’s user interface toolkit is designed to provide a “native” look and feel to widget-
based IDL applications. Where possible, widget toolkit elements are built around the
operating system’s native dialogs and controls; as a result, there are instances where
the toolkit behaves differently from operating system to operating system. This
section describes a number of platform-dependencies in the IDL widget toolkit.
Consult the descriptions of the individual DIALOG and WIDGET routines in the IDL
Reference Guide for complete details.

Dialog Routines

IDL’s DIALOG_ routines (DIALOG_PICKFILE, etc.) rely on operating system
native dialogs for most of their functionality. This means, for example, that when you
use DIALOG_PICKFILE in an IDL application, Windows users will see the
Windows-native file selection dialog and Motif users will see the Motif file selection
dialog. Consult the descriptions of the individual DIALOG routines in the IDL
Reference Guide for notes on the platform dependencies.

Base Widgets

Base widgets (created with the WIDGET_BASE routine) play an especially
important role in creating widget-based IDL applications because their behavior
controls the way the application and its components are iconized, layered, and
destroyed. See “Iconizing, Layering, and Destroying Groups of Top-Level Bases”
under “WIDGET_BASE” in the IDL Reference Guide manual for details about the
platform-dependent behavior.

Positioning Widgets within a Base Widget

The widget geometry management keywords to the WIDGET_BASE routine allow a
great deal of flexibility in positioning child widgets within a base widget. When
building cross-platform applications, however, making use of IDL’s explicit
positioning features can be counterproductive.

Because IDL attempts to provide a platform-native look on each platform, widgets
depend on the platform’s current settings for font, font size, and “window dressing”
(things like the thickness of borders and three-dimensional appearance of controls).
As a result of the platform-specific appearance of each widget, attempting to position
individual widgets manually within a base will seldom give satisfactory results on all
platforms.
Widgets Building IDL Applications

Chapter 17: Building Cross-Platform Applications 435
Instead, insert widgets inside base widgets that have the ROW or COLUMN
keywords set, and let IDL determine the correct geometry for the current platform
automatically. You can gain a finer degree of control over the layout by placing
groups of widgets within sub-base widgets (that is, base widgets that are the children
of other base widgets). This allows you to control the column or row layout of small
groups of widgets within the larger base widget.

In particular, refrain from using the X/YSIZE and X/YOFFSET keywords in cross-
platform applications. Using the COLUMN and ROW keywords instead will cause
IDL to calculate the proper (platform-specific) size for the base widget based on the
size and layout of the child widgets.

Fonts used in Widget Applications

You can specify the font used in a widget via the FONT keyword. In general, the
default fonts used by IDL widgets will most closely approximate the look of a
platform-native application. If you choose to specify the fonts used in your widget
application, however, note that the different platforms have different font-naming
schemes for device fonts. While device fonts will provide the best performance for
your application, specifying device fonts for your widgets requires that you write
platform-dependent code as described in “Which Operating System is Running?” on
page 421. You can avoid the need for platform-dependent code by using the TrueType
fonts supplied with IDL; there may be a performance penalty when the fonts are
initially rendered. See Appendix H, “Fonts” in the IDL Reference Guide manual for
details.

Motif Resources

Use the RESOURCE_NAME keyword to apply standard X Window System
resources to a widget on a Motif system. Resources specified via the
RESOURCE_NAME keyword will be quietly ignored on Windows systems. See
“RESOURCE_NAME” under “WIDGET_BASE” in the IDL Reference Guide
manual for details. In general, you should not expect to be able to duplicate the level
of control available via X Window System resources on other platforms.

WIDGET_STUB

On Motif platforms, you can use the WIDGET_STUB routine to include widgets
created outside IDL (that is, with the Motif widget toolkit) in your IDL applications.
The WIDGET_STUB mechanism is only available under Unix, and is thus not
suitable for use in cross-platform applications that will run under Microsoft
Windows. WIDGET_STUB is described in the External Development Guide.
Building IDL Applications Widgets

436 Chapter 17: Building Cross-Platform Applications
Widget Event Inconsistencies

Different windowing systems provide different types of events when graphical items
are displayed and manipulated. IDL attempts to provide consistent functionality on
all windowing systems, but is not always completely successful. For example,
enter/exit tracking events are not generated by some windowing systems. IDL
attempts to provide appropriate enter/exit events, but behaviors may differ on
different platforms.

Handle individual widget events carefully, and be sure to test your code on all
platforms supported by your application.
Widgets Building IDL Applications

Chapter 17: Building Cross-Platform Applications 437
Using External Code

The use of programs written in languages other than IDL—either by calling code
from an IDL program via CALL_EXTERNAL or LINKIMAGE or via the callable
IDL mechanism—is an inherently platform-dependent process. Writing a cross-
platform IDL program that uses CALL_EXTERNAL or LINKIMAGE requires that
you provide the appropriate programs or shared libraries for each platform your
application will support, and is beyond the scope of this chapter. Similarly, the
Callable IDL mechanism is necessarily different from platform to platform. See the
External Development Guide for details on writing and using external code along
with IDL.
Building IDL Applications Using External Code

438 Chapter 17: Building Cross-Platform Applications
IDL DataMiner Issues

The IDL DataMiner provides a platform-independent interface to IDL’s Open
Database Connectivity (ODBC) features. Note, however, that the ODBC drivers that
allow connection to different databases are platform-dependent, and may require
platform-dependent coding. In addition, the dialogs called by the
DIALOG_DBCONNECT function are provided by the specific ODBC driver in use,
and will be different from data source to data source.
IDL DataMiner Issues Building IDL Applications

Chapter 18:

Debugging an IDL
Program
The following topics are covered in this chapter:
Overview . 440
Debugging Commands 441

The Variable Watch Window 447
Building IDL Applications 439

440 Chapter 18: Debugging an IDL Program
Overview

There are several tools you can use to help you find errors in your IDL code. The Run
menu item in the IDL Development Environment provides several ways to access
IDL’s built-in debugging and executive commands. The Variable Watch Window
helps you keep track of the variables used in your program.

This chapter explains the debugging commands and contains short examples using
the IDLDE interface to debug a file.
Overview Building IDL Applications

Chapter 18: Debugging an IDL Program 441
Debugging Commands

When a file displayed in an IDL editor window has been compiled (by selecting
Compile or Memory Compile from the Run menu, or by entering .COMPILE,
.COMPILE -f, or .RUN at the IDL command prompt), a number of debugging
commands become available for selection. For more information on the Run menu,
see “Run Menu” in Chapter 2 of the Using IDL manual.

When execution is interrupted, a current-line indicator is placed next to the line that
will be executed when processing resumes. The routine being compiled need not
already be shown in an editor window. If a routine compiled with the .RUN, .RNEW,
or .COMPILE executive commands contains an error, IDLDE will display the file
automatically.

A Simple Example

A simple procedure, called BROKEN, has been included in the IDL distribution. An
error occurs when BROKEN is executed.

Start the IDLDE. Call the BROKEN procedure by entering:

BROKEN

at the IDL command line. An error is reported in the Output Log window and an
editor window containing the file BROKEN.PRO appears.

A “Variable is undefined” error has occurred. Since execution stopped at line 4, that
line is highlighted with an arrow.

There are several ways of fixing this error. We could edit the program file to explicitly
define the variable i, or we could change the program so that it accepts a parameter at
the command line. We can also define the variable i on the fly and continue execution
of the program without making any changes to the program file. We’ll do this first,
then go back and edit the program to accept a command-line parameter.

To define the variable i and assign it the value 10, click in the IDL command line and
enter:

i = 10
Building IDL Applications Debugging Commands

442 Chapter 18: Debugging an IDL Program
Step Through the Program

Select Step Into from the Run menu to execute line 4 with the new value of i and
step to the next program line.

The Output Log reports:

10

The current-line pointer advances to the next line in the window containing the file
BROKEN.PRO. You could continue stepping through the program by choosing Step
Into repeatedly (or by entering .STEP at the IDL command prompt).

The Trace Execution dialog offers an opportunity to automatically step through the
program. Select Trace... from the Run menu. The Trace Execution dialog appears.

Figure 18-1: Trace Execution Dialog (Windows)

Figure 18-2: Trace Execution Dialog (Unix)
Debugging Commands Building IDL Applications

Chapter 18: Debugging an IDL Program 443
Click Go or Run to automatically issue the .STEP command until the END statement
is encountered, or click Stop to halt trace execution. Moving the slider in the Trace
Execution dialog controls the length of the pauses between step commands. You can
also select whether to step into routines, executing successive .STEP commands at
each line (Windows only), or to step over routines, issuing successive .STEPOVER
commands. For more information, see “.STEP” and “.STEPOVER” in the IDL
Reference Guide manual. Click OK or Dismiss to dismiss the dialog.

You can also continue execution of the program without stepping through. Select
Run from the Run menu, noting that the Output Log shows that IDL calls broken.
Define the variable i in the Command Input Line. Select Run again. The Output Log
now shows that IDL calls .CONTINUE. IDL prints the resulting output to the Output
Log window:

10
20
30
40

When stepping through a main program, if the next line calls another IDL procedure
or function, you have three options with which to handle execution of the nested
program. Selecting Step Into executes statements in order by successive Step
commands. Selecting Step Over executes statements to the end of the called
function, without interactive capability. Select Step Out to continue processing until
the main program returns.

Fix the Program

To fix the program permanently, edit the first line of the program to read:

PRO BROKEN, i

Select Save from the File menu and Compile from the Run menu. IDL saves the
modified text file over the old version and compiles the modified routine. To call this
new version of BROKEN with an input argument of 10, enter:

BROKEN, 10

The Output Log window prints the result:

10
20
30
40
Building IDL Applications Debugging Commands

444 Chapter 18: Debugging an IDL Program
Breakpoints

You can suspend execution of a program temporarily by setting breakpoints in the
code. Set a breakpoint at the fifth line of BROKEN.PRO by placing the cursor in the
line that reads:

PRINT, i*2

and selecting Set Breakpoint from the Run menu. A breakpoint dot appears next to
the line. Now enter:

BROKEN, 10

The Output Log window displays the following:

10
% Breakpoint at: BROKEN 5

and a current line indicator arrow marks line 5. Select Run to resume execution. To
list the breakpoints, enter HELP,/BREAKPOINT at the command line.

Setting a breakpoint allows you to inspect (or change) variable definitions as the
program executes. Since our example does not set any variables, setting a breakpoint
in BROKEN.PRO is not very informative. Breakpoints can be extremely helpful,
though, when debugging complex programs, or programs that call other routines. For
more information on working with breakpoints, see the following section, “Working
with Breakpoints”.

Working with Breakpoints

You can select to edit, enable/disable, and change breakpoint properties using
Breakpoint Toolbar buttons. Additionally, through the Edit Breakpoints dialog,
breakpoints can be set for execution dependent upon a condition or enabled after the
breakpoint has been encountered a specific number of times.

The Breakpoint Toolbar Buttons

There are three buttons in the main menu bar. These are:

The Toggle Breakpoint button creates or deletes a breakpoint. Create a
breakpoint at the line where your cursor is positioned by clicking the
Toggle Breakpoint button. If a breakpoint already exists in the line where
your cursor is positioned, clicking this button removes the breakpoint.
Debugging Commands Building IDL Applications

Chapter 18: Debugging an IDL Program 445
The Enable/Disable Breakpoint button enables or disables a breakpoint.
If a breakpoint is enabled, a filled circle appears next to the line in the IDL
Editor window. If disabled, the circle is not filled. Disabled breakpoints are
ignored when you run the file.

The Edit Breakpoints button displays the Edit Breakpoints dialog. In
previous releases, this printed a listing of the current breakpoints. From
this dialog, you can list your current breakpoints, create new breakpoints,
enable or disable breakpoints, change breakpoint options, or delete
breakpoints.

The Windows Edit Breakpoints Dialog

The Edit Breakpoints dialog allows you to add, remove, and remove all breakpoints
in a file as well as the ability to move to the line in the source file that contains the
breakpoint. The following figure shows the Edit Breakpoints dialog:

To create a breakpoint using the Edit Breakpoints dialog, complete the following
steps:

1. Open the file you in which you want to set a breakpoint.

2. Display the Edit Breakpoints dialog by clicking the button in the IDLDE
Tool Bar or by selecting Run → Edit Breakpoints...

3. Place the cursor in the line in which you want to create the breakpoint in the
Editor window.

Figure 18-3: Edit Breakpoints Dialog
Building IDL Applications Debugging Commands

446 Chapter 18: Debugging an IDL Program
4. Select Add in the Edit Breakpoints dialog box. You will see a new entry
display in the dialog. The following table describes each property of a
breakpoint:

5. At this point, you can modify any of the items (except Module and Line) by
double-clicking in the entry.

When you run your program, execution halts at the breakpoints you have specified.

Item Description

E/D Specifies whether a breakpoint is enabled or disabled. If a
check mark is displayed, the breakpoint is enabled and
execution will stop when the all criteria for the breakpoint is
met.

Module Specifies the procedure or function where the breakpoint is
set.

Note - This item will not be displayed until the file has been
compiled with the new breakpoint.

Line Specifies the line number where the breakpoint occurs.

File Specifies the filename where the breakpoint occurs.

After Specifies how many times the execution must pass the
breakpoint before stopping execution. For example, if this
item is set to 0, execution will stop the first time this
breakpoint is encountered. If it is set to 9, execution will not
stop until the breakpoint has been encountered for the ninth
time.

Once The breakpoint is removed after it is encountered for the first
time.

Condition Specifies a condition to be met for the execution to stop. The
condition is a string containing an IDL expression. When a
breakpoint is encountered, the expression is evaluated. If the
expression is true (if it returns a non-zero value), program
execution is interrupted. The expression is evaluated in the
context of the program containing the breakpoint.

Table 18-1: Edit Breakpoints Description
Debugging Commands Building IDL Applications

Chapter 18: Debugging an IDL Program 447
The Variable Watch Window

The Variable Watch window displays current variable values after IDL has completed
execution. If the calling context changes during execution — as when stepping into a
procedure or function — the variable table is replaced with a table appropriate to the
new context. While IDL is at the main program level, the Watch window remains
active and displays any variables created.

Customizing Variable Watch Window Layout

To hide the Variable Watch window, select Window → Hide Variable Watch. Select
Show Variable Watch to make it reappear. Changing the Window menu will only
affect the current IDL session.

To apply your changes to future sessions, select File → Preferences and click the
Layout tab. In the section labeled Show Windows, select or clear check boxes
associated with the windows you want to appear. Click Apply to save your changes
for future IDL sessions and OK to exit.

Note
Selection or clearing of Window menu items reflects changes in the Layout
preferences and vice versa.

Figure 18-4: Variable Watch Window
Building IDL Applications The Variable Watch Window

448 Chapter 18: Debugging an IDL Program
The Variable Watch Interface Description

The Variable Watch window is refreshed after the IDLDE has completed execution.
Each Variable Watch window contains the following folders:

Locals — This tab contains descriptions of local variables. Local variables are
created from IDL’s main program level. For example, entering a=1 at the
Command Input Line lists the integer a in the Locals tab.

Params — This tab contains descriptions of parameters. The variables and
expressions passed to a function or procedure are parameters. For more
information, see “Parameters” on page 76.

Commons — This tab contains descriptions of variables contained in common
blocks. The name of each common block is shown in parentheses next to the
variable contained within it. For more information, see “Common Blocks” on
page 65.

System — This tab contains descriptions of system variables. System variables are a
special class of predefined variables available to all program units. For more
information about system variables, see Appendix D, “System Variables” in
the IDL Reference Guide manual.

Each tab contains a table listing the attributes of the variables included in the
category. You can size the columns by clicking on the line to the right of the title of
the column you wish to expand or shrink. Drag the mouse either left or right until you
are satisfied with the width of the column. For example, to change the width of the
Name column, click and drag on the line separating the Name field from the Type
field.

The following fields describe variable attributes:

Name — This field shows the name of the variable. This field is read-only, except for
array subscript descriptions (see example in Using the Variable Watch Window
below).

For compound variables such as arrays, structures, pointers, and objects, click
the “+” symbol to the left of the name to show the variables included in the
compound variable. Click the “-” symbol to collapse the description.

Type — This field shows the type of the variable. This field is read-only.

Value — This field shows the value of the variable. To edit a value in UNIX,
highlight the cell by clicking on it, press the function key F2 to enter editing
mode, and enter the new value. To edit a value in Windows, double click on the
cell to highlight it and enter the new value.
The Variable Watch Window Building IDL Applications

Chapter 18: Debugging an IDL Program 449
The Name, Type, and Value fields are displayed as when using the HELP procedure.
For more information about variables, see “Variables” on page 61.

The Variable Watch Window and Objects

Object references are expanded only if they reference non-null objects. Object data
are expanded only if the object method has finished running. Object data are read-
only and cannot be changed with the Variable Watch window.

Using the Variable Watch Window

Arrays are expanded to show one array element. Click on the “+” symbol next the
name of the array to display the initial array subscript. You can change this field to
display the characteristics of any other array element.

Note
To enter editing mode in Motif, press F2 after clicking on the cell to be edited. In
Windows, double click on the cell.

To edit the subscript, highlight the cell by clicking on it, and modify the name using
the arrow keys to maneuver. For example, enter the following:

;Create an array with 2 columns and 3 rows.
A=MAKE_ARRAY(2,3)

;Show the values of array A in the Output Log. They will all be
;zero.
PRINT, A

;Assign the value of 5 to the value in the array subscripted as 2.
;This is the same as entering A(0,1)=5.
A(2)=5

;Show the new values of array A.
PRINT, A

IDL prints:

0.00000 0.00000
5.00000 0.00000
0.00000 0.00000

It is easy to manipulate variables within the Watch window. Click on the “+”
expansion symbol next to the array A. The subscript [0,0] will be revealed beneath
the description of A. Enter editing mode and change [0,0] to [0,1].
Building IDL Applications The Variable Watch Window

450 Chapter 18: Debugging an IDL Program
Press Enter to effect the change. Notice that the value of the subscript is displayed as
5, as you entered from the command line. Press the Tab key to highlight the value of
the subscript [0,1]. You can change it to another number. Enter [1,0] in the subscript
name field. You can also change the value from 0.00000 to another number.

For more information about arrays, see Chapter 7, “Arrays”.
The Variable Watch Window Building IDL Applications

Chapter 19:

Controlling Errors
The following topics are covered in this chapter:
Overview . 452
Default Error-Handling Mechanism 453
Disappearing Variables 454
Controlling Errors Using CATCH 455
Controlling Errors Using ON_ERROR . . . 459

Controlling Input/Output Errors 460
Error Signaling . 462
Obtaining Traceback Information 464
Error Handling . 465
Math Errors . 467
Building IDL Applications 451

452 Chapter 19: Controlling Errors
Overview

This chapter discusses routines and methods used to check and handle errors that
occur in IDL programs. The routines covered here are rarely used interactively.

IDL divides possible execution errors into three categories: input/output, math, and
all others. There are three main error-handling routines: CATCH, ON_ERROR, and
ON_IOERROR. CATCH is a generalized mechanism for handling exceptions and
errors. The ON_ERROR routine handles regular errors when an error handler
established by the CATCH procedure is not present. The ON_IOERROR routine
allows you to change the default way in which input/output errors are handled. The
FINITE and CHECK_MATH routines provide control over math errors.
Overview Building IDL Applications

Chapter 19: Controlling Errors 453
Default Error-Handling Mechanism

In the default case, whenever an error is detected by IDL during the execution of a
program, program execution stops and an error message is printed. The execution
context is that of the program unit (procedure, function, or main program) in which
the error occurred.

Sometimes it is possible to recover from an error by manually entering statements to
correct the problem. Possibilities include setting the values of variables, closing files,
etc., and then entering the command .CONTINUE, which resumes execution of the
program unit at the beginning of the statement that caused the error.

As an example, if an error occurs because an undefined variable is referenced, you
can simply define the variable from the keyboard, then continue execution with
.CON. Of course, this is a temporary solution. You should still edit the program file to
fix the problem permanently.
Building IDL Applications Default Error-Handling Mechanism

454 Chapter 19: Controlling Errors
Disappearing Variables

IDL users may find that all their variables have seemingly disappeared after an error
occurs inside a procedure or function. The misunderstood subtlety is that after the
error occurs, IDL’s context is inside the called procedure, not in the main level. All
variables in procedures and functions, with the exception of parameters and common
variables, are local in scope. Typing RETURN or RETALL will make the lost
variables reappear.

RETALL is best suited for use when an error is detected in a procedure and it is
desired to return immediately to the main program level despite nested procedure
calls. RETALL issues RETURN commands until the main program level is reached.

The HELP command can be used to see the current call stack (i.e., which program
unit IDL is in and which program unit called it). For more information, see “HELP”
in the IDL Reference Guide manual.
Disappearing Variables Building IDL Applications

Chapter 19: Controlling Errors 455
Controlling Errors Using CATCH

The CATCH procedure provides a generalized mechanism for handling any type of
errors and exceptions within IDL. Calling CATCH establishes an error handler for the
current procedure that intercepts all errors that can be handled by IDL, with the
exception of non-fatal warnings such as math errors (e.g., floating-point underflow).
The CATCH mechanism is similar to C’s setjmp/longjmp facilities or C++’s
catch/throw facilities.

When an error occurs, each active procedure, beginning with the offending procedure
and proceeding up the call stack to the main program level, is examined for an error
handler (established by a call to CATCH). If an error handler is found, control
resumes at the statement after the call to CATCH. The index of the error is returned in
the argument to CATCH and is also stored in !ERROR_STATE.CODE. The
associated error message is stored in !ERROR_STATE.MSG. If no error handlers are
found, program execution stops, an error message is issued, and control reverts to the
interactive mode.

For more information, see “CATCH” and “!ERROR_STATE” in the IDL Reference
Guide manual.

Interaction of CATCH, ON_ERROR, and
ON_IOERROR

Error handlers established by calls to CATCH supersede calls to ON_ERROR.
However, calls to ON_IOERROR made in the procedure that causes an I/O error
supersede any error handling mechanisms created with CATCH and the program
branches to the label specified by ON_IOERROR.
Building IDL Applications Controlling Errors Using CATCH

456 Chapter 19: Controlling Errors
The following figure is a flow chart of how errors are handled in IDL.

Figure 19-1: Error Handling in IDL.

Error or Exception is Generated

Is it an I/O error?

Is ON_IOERROR
routine in use?

Handle error as
indicated by
ON_IOERROR setting.

Is there an error handler
defined by the CATCH
routine?

Handle error with
CATCH-defined error
handler and continue
program execution.

Handle error as
indicated by setting of
ON_ERROR routine or
use default error handling.

Yes

No

No

Yes

No

Yes
Controlling Errors Using CATCH Building IDL Applications

Chapter 19: Controlling Errors 457
Canceling an Error Handler

Call CATCH with the CANCEL keyword set to cancel a procedure’s error handler.
This cancellation does not effect other error handlers that may be established in other
active procedures.

Generating an Exception

To generate an exception and cause control to return to the error handler, use the
MESSAGE procedure. Calling MESSAGE generates an exception that sets the
!ERROR_STATE system variable. !ERROR_STATE.MSG is set to the string used as
an argument to MESSAGE. See “Error Signaling” on page 462.

Example Using CATCH

The following procedure illustrates the use of CATCH:

PRO ABC

;Define variable A.
A = FLTARR(10)

;Establish error handler. When errors occur, the index of the error
;is returned in the variable Error_status. Initially, this
;argument is set to zero.
CATCH, Error_status

;This statement begins the error handler.
IF Error_status NE 0 THEN BEGIN

PRINT, 'Error index: ', Error_status
PRINT, 'Error message:', !ERR_STRING

;Handle the error by extending A.
A=FLTARR(12)
CATCH, /CANCEL

ENDIF

A[11]=12 ;Cause an error.

;Even though an error occurs in the line above, program execution
;continues to this point because the event handler extended the
;definition of A so that the statement can be re-executed.
HELP, A

END
Building IDL Applications Controlling Errors Using CATCH

458 Chapter 19: Controlling Errors
Running the ABC procedure causes IDL to produce the following output and control
returns to the interactive prompt:

Error index: -101
Error message:
Attempt to subscript A with <INT (11)> is out of range.
A FLOAT = Array(12)
Controlling Errors Using CATCH Building IDL Applications

Chapter 19: Controlling Errors 459
Controlling Errors Using ON_ERROR

The ON_ERROR procedure determines the action taken when an error is detected
inside a user procedure or function and no error handlers established with the
CATCH procedure are found. The possible options for error recovery are shown in
the following table:

One useful option is to use ON_ERROR to cause control to be returned to the caller
of a procedure in the event of an error. The statement:

ON_ERROR, 2

placed at the beginning of a procedure will have this effect. Include this statement in
library procedures and other routines that will be used by others once the routines
have been debugged. This form of error recovery makes debugging a routine difficult
because the routine is exited as soon as an error occurs; therefore, it should be added
once the code is completely tested.

Note that error handlers established by CATCH supersede calls to ON_ERROR made
in the same procedure.

Value Action

0 Stop immediately in the context of the procedure or function that
caused the error. This is the default action.

1 Return to the main program level and stop.

2 Return to the caller of the program unit that called ON_ERROR
and stop.

3 Return to the program unit that called ON_ERROR and stop.

Table 19-1: Error Recovery Options
Building IDL Applications Controlling Errors Using ON_ERROR

460 Chapter 19: Controlling Errors
Controlling Input/Output Errors

The default action for handling input/output errors is to treat them exactly like regular
errors and follow the error handling strategy set by ON_ERROR. You can alter this
default by using the ON_IOERROR procedure to specify the label of a statement to
which execution should jump if an input/output error occurs. When IDL detects an
input/output error and an error-handling statement has been established, control
passes directly to the given statement without stopping program execution. In this
case, no error messages are printed.

Note that calls to ON_IOERROR made in the procedure that causes an I/O error
supersede any error handling mechanisms created with CATCH and the program
branches to the label specified by ON_IOERROR.

When writing procedures and functions that are to be used by others, it is good
practice to anticipate and handle errors caused by the user. For example, the following
procedure segment, which opens a file specified by the user, handles the case of a
nonexistent file or read error.

;Define a function to read, and return a 100-element,
;floating-point array.
FUNCTION READ_DATA, FILE_NAME

;Declare error label.
ON_IOERROR, BAD

;Use the GET_LUN keyword to allocate a logical file unit.
OPENR, UNIT, FILE NAME, /GET_LUN

A = FLTARR(100) ;Define data array.

READU, UNIT, A ;Read the data array.

;Clean up and return.
GOTO, DONE

;Exception label. Print the error message.
BAD: PRINT, !ERR_STRING

;Close and free the input/output unit.
DONE: FREE_LUN, UNIT

;Return the result. This will be undefined if an error occurred.
RETURN, A

END
Controlling Input/Output Errors Building IDL Applications

Chapter 19: Controlling Errors 461
The important things to note in this example are that the FREE_LUN procedure is
always called, even in the event of an error, and that this procedure always returns to
its caller. It returns an undefined value if an error occurs, causing its caller to
encounter the error.
Building IDL Applications Controlling Input/Output Errors

462 Chapter 19: Controlling Errors
Error Signaling

The MESSAGE procedure is used by user procedures and functions to issue errors. It
has the form:

MESSAGE, Text

where Text is a scalar string that contains the text of the error message.

The MESSAGE procedure issues error and informational messages using the same
mechanism employed by built-in IDL routines. By default, the message is issued as
an error, the message is output, and IDL takes the action specified by the
ON_ERROR procedure.

As a side effect of issuing the error, appropriate fields of the system variable
!ERROR_STATE are set; the text of the error message is placed in
!ERROR_STATE.MSG, or in !ERROR_STATE.SYS_MSG for the operating
system’s component of the error message. See “Error Handling” on page 465 or
“!ERROR_STATE” in the IDL Reference Guide manual for more information.

As an example, assume the statement:

MESSAGE, 'Unexpected value encountered.'

is executed in a procedure named CALC. IDL would print:

% CALC: Unexpected value encountered.

and execution would halt.

The MESSAGE procedure accepts several keywords that modify its behavior. See
“MESSAGE” in the IDL Reference Guide manual for additional details.

Another use of MESSAGE involves re-signaling trapped errors. For example, the
following code uses ON_IOERROR to read from a file until an error (presumably
end-of-file) occurs. It then closes the file and reissues the error.

;Open the data file.
OPENR, UNIT, 'DATA.DAT', /GET_LUN

;Arrange for jump to label EOD when an input/output error occurs.
ON_IOERROR, EOD

;Read every line of the file.
WHILE 1 DO READF, UNIT, LINE

;An error has occurred. Cancel the input/output error trap.
EOD: ON_IOERROR, NULL
Error Signaling Building IDL Applications

Chapter 19: Controlling Errors 463
;Close the file.
FREE_LUN, UNIT

; Reissue the error. !ERROR_STATE.MSG contains the appropriate
; text. The IOERROR keyword causes it to be issued as an
; input/output error. Use of NONAME prevents MESSAGE from tacking
; the name of the current routine to the beginning of the message
; string since !ERROR_STATE.MSG already contains it.
MESSAGE, !ERROR_STATE.MSG, /NONAME, /IOERROR

Message Blocks

IDL messages include text and formatting information which, when combined with
text supplied in the call to MESSAGE, provide information to the program’s user
about the error that occurred. For example, entering

MESSAGE, 'Howdy, folks'

at the IDL command line produces the following output:

% $MAIN$: Howdy, folks
% Execution halted at: $MAIN$

indicating that the message was issued from within the IDL $MAIN$ program.
Everything displayed, except for the word “test,” is part of the IDL message
definition.

A message block is a collection of messages that are loaded into IDL as a single unit.
At startup, IDL contains a single internal message block named IDL_MBLK_CORE,
which contains the standard messages required by the IDL system. By default,
MESSAGE throws the IDL_M_USER_ERR message from the IDL_MBLK_CORE
message block, producing output similar to that shown above.

Dynamically loadable modules (DLMs) usually define additional message blocks for
their own needs when they are loaded. In addition, if you wish to provide something
other than the default error message for your own IDL programs, you can define your
own message blocks and error messages. See “DEFINE_MSGBLK” and
“DEFINE_MSGBLK_FROM_FILE” in the IDL Reference Guide manual for
additional details. Specify the BLOCK and NAME keywords to the MESSAGE
procedure to issue a message from a message block you have defined.
Building IDL Applications Error Signaling

464 Chapter 19: Controlling Errors
Obtaining Traceback Information

It is sometimes useful for a procedure or function to obtain information about its
caller(s). The HELP procedure returns, in a string array, the contents of the procedure
stack when the CALLS keyword parameter is specified. The first element of the
resulting array contains the module name, source filename, and line number of the
current level. The second element contains the same information for the caller of the
current level, and so on, back to the level of the main program.

For example, the following code fragment prints the name of its caller, followed by
the source filename and line number of the call:

HELP, CALLS = A

;print 2nd element
PRINT, 'called from:', A[1]

This results in a message of the following form:

Called from: DIST </usr2/idl/lib/dist.pro (27)>

Programs can readily parse the traceback information to extract the source file name
and line number.
Obtaining Traceback Information Building IDL Applications

Chapter 19: Controlling Errors 465
Error Handling

IDL contains a system variable that is updated when errors occur. This system
variable is described below.

!ERROR_STATE

This system variable is a structure. Whenever an error occurs, IDL sets the fields in
this system variable according to the nature of the field. An IDL error is always
comprised of an IDL-generated component, and may also contain an operating
system-generated component.

The fields for the !ERROR_STATE system variable are described below:

• NAME — A read-only string variable containing the error name of the IDL-
generated component of the last error message. Although the error code—as
defined below in CODE—may change between IDL sessions, the name will
always remain the same. If an error has not occurred in the current IDL
session, this field is set to IDL_M_SUCCESS.

• BLOCK — A read-only string variable containing the name of the message
block for the IDL-generated component of the last error message. If an error
has not occurred in the current IDL session, this field is set to
IDL_MBLK_CORE.

• CODE — The error code of the IDL-generated component of the last error in
IDL. Whenever an error occurs, IDL sets this system variable to the error code
(a negative integer number) of the error. Although the error code may change
between IDL sessions, the name—as defined above in NAME—will always
remain the same. If an error has not occurred in the current IDL session, this
field is set to 0.

• SYS_CODE — The error code of the operating system-generated component,
if it exists, of the last error. IDL sets this system variable to the OS-defined
error code.

For historical reasons, SYS_CODE is a two-element longword array. The first
element of the array (that is, SYS_CODE[0]) contains the OS-defined error
code. The second element of the array is not used, and always contains zero.
Either !ERROR_STATE.SYS_CODE or !ERROR_STATE.SYS_CODE[0]
will return the relevant error code.
Building IDL Applications Error Handling

466 Chapter 19: Controlling Errors
• SYS_CODE_TYPE: A string describing the type of system code contained in
SYS_CODE. A null string in this field indicates that there is no system code
corresponding to the current error. The possible non-NULL values are:

• MSG — The error message of the IDL-generated component of the last error.
Whenever an error occurs, IDL sets this field to the error message (a scalar
string) that corresponds to the error code. If an error has not occurred in the
current IDL session, this field is set to the null string, ' '.

• SYS_MSG — The error message of the operating system-generated
component, if it exists of the last error. When an operating system error occurs,
IDL sets this field to the OS-defined error message string. If an error has not
occurred in the current IDL session, this field is set to the null string, ' '.

• MSG_PREFIX — A string variable containing the prefix string used for the
IDL-generated component of error messages.

Using !ERROR_STATE

At the beginning of an IDL session, !ERROR_STATE contains default information.
To see this information, you can either view !ERROR_STATE from the System field
of the Variable Watch Window (see “The Variable Watch Window” on page 447) or
you can enter PRINT, !ERROR_STATE at the Command Input Line. After an error
has occurred, all of the fields of !ERROR_STATE display their updated status.

You can use MESSAGE, /RESET_ERROR STATE to reset all the fields in
!ERROR_STATE to their default values.

Value Meaning

errno Unix/Posix system error

win32 Microsoft Windows Win32 system error

winsock Microsoft Windows sockets library error

Table 19-2: System error code types.
Error Handling Building IDL Applications

Chapter 19: Controlling Errors 467
Math Errors

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system dependent.
Some systems trap more errors than other systems. On systems that implement the
IEEE floating-point standard, IDL substitutes the special floating-point values NaN
and Infinity when it detects a floating point math error. (See “Special Floating-Point
Values” on page 468.) Integer overflow and underflow is not detected. Integer divide
by zero is detected on all platforms.

A Note on Floating-Point Underflow Errors

Floating-point underflow errors occur when a non-zero result is so close to zero that it
cannot be expressed as a normalized floating-point number. In the vast majority of
cases, floating-point underflow errors are harmless and can be ignored. For more
information on floating-point numbers, see “Accuracy & Floating-Point Operations”
in Chapter 22 of the Using IDL manual

Accumulated Math Error Status

IDL handles math errors by keeping an accumulated math error status. This status,
which is implemented as a longword, contains a bit for each type of math error that is
detected by the hardware. When IDL automatically checks and clears this indicator
depends on the value of the system variable !EXCEPT. The CHECK_MATH
function also allows you to check and clear the accumulated math error status when
desired.

!EXCEPT has three possible values:

!EXCEPT=0

Do not report exceptions.

!EXCEPT=1

The default. Report exceptions when the IDL interpreter returns to an interactive
prompt. Any math errors that occurred since the last interactive prompt (or call to
CHECK_MATH) are printed in the IDL command log. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0
Building IDL Applications Math Errors

468 Chapter 19: Controlling Errors
!EXCEPT=2

Report exceptions after each IDL statement is executed. This setting also allows IDL
to report on the program context in which the error occurred, along with the line
number in the procedure. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0
% Detected at JUNK 3 junk.pro

Special Floating-Point Values

Machines which implement the IEEE standard for binary floating-point arithmetic
have two special values for undefined results: NaN (Not A Number) and Infinity.
Infinity results when a result is larger than the largest representation. NaN is the result
of an undefined computation such as zero divided by zero, taking the square-root of a
negative number, or the logarithm of a non-positive number. In many cases, when
IDL encounters the value NaN in a data set, it treats it as “missing data.” The special
values NaN and Infinity are also accessible in the read-only system variable
!VALUES. These special operands propagate throughout the evaluation process—the
result of any term involving these operands is one of these two special values. For
example:

;Multiply NaN by 3
PRINT, 3 * !VALUES.F_NAN

IDL prints:

NaN

It is important to remember that the value NaN is literally not a number, and as such
cannot be compared with a number. For example, suppose you have an array that
contains the value NaN:

A = [1.0, 2.0, !VALUES.F_NAN]
PRINT, A

IDL prints:

1.00000 2.00000 NaN

If you try to select elements of this array by comparing them with a number (using
the WHERE function, for example), IDL will generate an error:

;Print the indices of the elements of A with a value greater than
;one.
PRINT, WHERE(A GT 1.0)

IDL prints:

1

Math Errors Building IDL Applications

Chapter 19: Controlling Errors 469
% Program caused arithmetic error: Floating illegal operand

To avoid this problem, use the FINITE function to make sure arguments to be
compared are in fact valid floating-point numbers:

PRINT, WHERE(FINITE(A) EQ 1)

IDL prints the indices of the finite elements of A:

0 1

To then print the indices of the elements of A that are both finite and greater than 1.0,
you could use the command:

PRINT, WHERE(A[WHERE(FINITE(A) EQ 1)] GT 1.0)

IDL prints:

1

Similarly, if you wanted to find out which elements of an array were not valid
floating-point numbers, you could use a command like:

;Print the indices of the elements of A that are not valid
;floating-point numbers.
PRINT, WHERE(FINITE(A) EQ 0)

IDL prints:

2

Note that the special value Infinity can be compared to a floating point number. Thus,
if:

B = [1.0, 2.0, !VALUES.F_INFINITY]
PRINT, B

IDL prints:

1.00000 2.00000 Inf

and

PRINT, WHERE(B GT 1.0)

IDL prints:

1 2

You can also compare numbers directly with the special value Infinity:

PRINT, WHERE(B EQ !VALUES.F_INFINITY)

IDL prints:

2

Building IDL Applications Math Errors

470 Chapter 19: Controlling Errors
Note
On Windows, using relational operators such as EQ and NE with the values infinity
or NaN (Not a Number) causes an “illegal operand” error. The FINITE function’s
INFINITY and NAN keywords can be used to perform comparisons involving
infinity and NaN values. For more information, see “FINITE” on page 727.

The FINITE Function

Use the FINITE function to explicitly check the validity of floating-point or double-
precision operands on machines which use the IEEE floating-point standard. For
example, to check the result of the EXP function for validity, use the following
statement:

;Perform exponentiation.
A = EXP(EXPRESSION)

;Print error message.
IF ~ FINITE(A) THEN PRINT, 'Overflow occurred'

If A is an array, use the statement:

IF TOTAL(FINITE(A)) NE N_ELEMENTS(A) THEN

Integer Conversions

It must be stressed that when converting from floating to any of the integer types
(byte, signed or unsigned short integer, signed or unsigned longword integer, or
signed or unsigned 64-bit integer) if overflow is important, you must explicitly check
to be sure the operands are in range. Conversions to the above types from floating
point, double precision, complex, and string types do not check for overflow—they
simply convert the operand to the target integer type, discarding any significant bits
of information that do not fit.

When run on a Sun workstation, the program:

A = 2.0 ^ 31 + 2
PRINT, LONG(A), LONG(-A), FIX(A), FIX(-A), BYTE(A), BYTE(-A)

(which creates a floating-point number 2 larger than the largest positive longword
integer), prints the following:

2147483647 -2147483648 -1 0 255 0
% Program caused arithmetic error: Floating illegal operand

This result is incorrect.
Math Errors Building IDL Applications

Chapter 19: Controlling Errors 471
Warning
No error message will appear if you attempt to convert a floating number whose
absolute value is between 215 and 231 - 1 to short integer even though the result is
incorrect. Similarly, converting a number in the range of 256 to 231 - 1 from
floating, complex, or double to byte type produces an incorrect result, but no error
message. Furthermore, integer overflow is usually not detected. Your programs
must guard explicitly against it.
Building IDL Applications Math Errors

472 Chapter 19: Controlling Errors
Math Errors Building IDL Applications

Chapter 20:

Providing Online Help
For Your Application
The following topics are covered in this chapter:
Overview . 474
Providing Help Within the User Interface . 475
Displaying Text Files 478

Using an External Viewer 479
About IDL’s Online Help System 480
Using IDL’s Online Help Viewers 484
Building IDL Applications 473

474 Chapter 20: Providing Online Help For Your Application
Overview

IDL gives you the ability to display help information for your applications, routines,
etc. using a variety of mechanisms:

• Using tooltips, status bars, and text widgets to display small amounts of help
information within an application’s interface.

• Using the XDISPLAYFILE procedure to display text files in an IDL window
separate from your application.

• Using the SPAWN procedure to display a file in an external editor or viewer.

• Using IDL’s own online help facilities, via the ONLINE_HELP procedure, to
display Windows Help files, Adobe Portable Document Format files, or
HTML files.

These techniques vary in complexity, cost, and level of integration with IDL and your
own application. The following sections describe each option in detail.
Overview Building IDL Applications

Chapter 20: Providing Online Help For Your Application 475
Providing Help Within the User Interface

There are numerous ways to supply help and feedback to users of a widget
application without the need to display a help file in an external window. The
following techniques can augment, if not necessarily replace, a more complete online
help file.

Tooltips

Tooltips are short text strings that appear when the mouse cursor is positioned over a
button or draw widget for a few seconds. Often a tooltip is enough to remind a user of
the function of a button, eliminating the need for the user to consult more extensive
documentation.

Tooltips are created by specifying a text string as the value of the TOOLTIP keyword
to the WIDGET_BUTTON function:

DoneButton = WIDGET_BUTTON(base, VALUE='Done', $
TOOLTIP='Click here to close the application')

Note
Draw widgets can also display tooltips.

Figure 20-1: A Tooltip
Building IDL Applications Providing Help Within the User Interface

476 Chapter 20: Providing Online Help For Your Application
Status Lines

You can give users feedback about the status of an operation or the function of an
interface element by updating a status line included in your widget interface. Status
lines are generally located at the bottom of the interface, and can be updated as the
user moves the mouse cursor over interface elements or as the status of the
application changes.

The following example demonstrates how a status line can be updated as the mouse
cursor moves over a set of buttons. Similar code could update the value of the label
widget as other events occur. To view the results, paste the code into an IDL editor
window and save it as label_update.pro, then compile and run.

; Event-handler routine
PRO label_update_event, ev

; If the event is a tracking event, update the label widget.
IF (TAG_NAMES(ev, /STRUCTURE) EQ 'WIDGET_TRACKING') THEN BEGIN

WIDGET_CONTROL, ev.TOP, GET_UVALUE=label
WIDGET_CONTROL, ev.ID, GET_VALUE=val, GET_UVALUE=uval
WIDGET_CONTROL, label, SET_VALUE=uval
WIDGET_CONTROL, label, SET_VALUE=uval

ENDIF

; If the event is a button event, and comes from Button 2,
; then destroy the application.
IF (TAG_NAMES(ev, /STRUCTURE) EQ 'WIDGET_BUTTON') THEN BEGIN

WIDGET_CONTROL, ev.ID, GET_VALUE=val
IF (val EQ 'Button 2') THEN WIDGET_CONTROL, ev.TOP, /DESTROY

ENDIF

END

; Widget creation routine
PRO label_update

Figure 20-2: A status line.
Providing Help Within the User Interface Building IDL Applications

Chapter 20: Providing Online Help For Your Application 477
base=WIDGET_BASE(/COLUMN, XSIZE=200)

; Set the button widgets to generate tracking events, so we
; know when the mouse cursor is over them.
b1 = WIDGET_BUTTON(base, VALUE='Button 1', $

UVALUE='Button One does nothing', /TRACKING_EVENTS)
b2 = WIDGET_BUTTON(base, VALUE='Button 2', $

UVALUE='Button Two closes the application', /TRACKING_EVENTS)
label = WIDGET_LABEL(base, XSIZE=190, /SUNKEN_FRAME)

; Set the user value of the base widget equal to the widget ID
; of the label widget.
WIDGET_CONTROL, base, SET_UVALUE=label

; Realise the widgets and call XMANAGER.
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'label_update', base

END

Text Widgets

To display larger amounts of text than will fit conveniently in a status line, you can
include a text widget in your application’s interface. The process of updating the text
widget’s value depending on user actions is similar to the process described in the
status line example, above.

To display larger blocks of text that would not fit conveniently within the body of
your application’s interface, consider using the XDISPLAYFILE procedure as
described in “Displaying Text Files” on page 478.
Building IDL Applications Providing Help Within the User Interface

478 Chapter 20: Providing Online Help For Your Application
Displaying Text Files

The IDL XDISPLAYFILE procedure displays an ASCII text file using a predefined
widget interface. To see an example, enter the following statement at the IDL
command prompt:

XDISPLAYFILE, FILEPATH('relnotes.txt')

This command displays the current release notes file for your IDL installation in a
widget interface.

To display your own text file, create a “Help” button of some sort in your widget
interface and configure the button’s event handling procedure to call
XDISPLAYFILE with the full path to the text file.

See “XDISPLAYFILE” in the IDL Reference Guide manual for more details.

Note
By default, the XDISPLAYFILE window exists separately from your application,
and will not be closed when your application exits. To ensure that the
XDISPLAYFILE window closes when your application exits, set the value of the
GROUP keyword equal to the widget ID of your application’s top-level base. See
“Using Multiple Widget Hierarchies” on page 873 for a discussion of widget
grouping.
Displaying Text Files Building IDL Applications

Chapter 20: Providing Online Help For Your Application 479
Using an External Viewer

If you are certain that a specific viewing application is present on the system on
which your application will run, you can use the IDL SPAWN procedure to display a
help file using that application.

Note that you must have some fairly explicit information about the system on which
your application will run to use this technique. You must know:

• that the application you wish to use is installed on the system, and

• the full path to the application’s executable file.

(If your application is complex enough to have an installation program or procedure,
you might be able to query the user for the path to the external viewer at installation
time.)

Note
If you want to display HTML or Portable Document Format (PDF) files, see “Using
IDL’s Online Help Viewers” on page 484.

For example, suppose you know that your application will run on a Windows system,
you could open a text file in the Notepad application, which is always located in the
Windows system directory and can be invoked without specifying a full path:

SPAWN, 'notepad.exe D:/myapp/myfile.txt', /NOSHELL, /NOWAIT

For more information, see “SPAWN” in the IDL Reference Guide manual.
Building IDL Applications Using an External Viewer

480 Chapter 20: Providing Online Help For Your Application
About IDL’s Online Help System

IDL uses different online help systems on UNIX and Windows platforms; the
differences are described in detail below. All versions of IDL include the complete
IDL documentation set in Adobe Portable Document Format (PDF).

The Full IDL Documentation Set in PDF

The complete IDL documentation set is available in a set of Adobe Portable
Document Format (PDF) files. Adobe Systems Inc. created the Portable Document
Format in the early 1990s, basing it on their PostScript language. PDF is intended to
allow documents to be displayed in exactly the same manner on a wide variety of
computing platforms.

The IDL PDF files are electronic representations of the individual books in the
documentation set, and can be either viewed on screen or printed (in full or in part) on
a local printer. When viewed on-screen, the PDF books provide hyperlinked cross-
references, tables of contents, and indices, allowing for speedy navigation through the
set. In addition, some versions of the Adobe Acrobat software provide a fast full-text
search capability, using a pre-compiled full-text index of the entire document set.

Viewing PDF files requires a separate application, not included in the IDL
installation. Various versions of the Adobe Acrobat application are in wide use, and
may already be installed on your system. The Adobe Acrobat Reader application is
available free of charge from Adobe at http://www.adobe.com. In addition, the
most current version of Acrobat Reader available for each platform supported by IDL
at the time of IDL’s release is included on the IDL CD-ROM.

Note
Other third-party PDF viewers (notably GhostScript) are available, but UNIX
versions of IDL require that a version of Acrobat Reader be installed in order for
integration with the ? command and ONLINE_HELP procedure to work. See
“UNIX Online Help” on page 481 for details.

The PDF version of the documentation set is available on all platforms, in the Help
subdirectory of the IDL distribution.
About IDL’s Online Help System Building IDL Applications

Chapter 20: Providing Online Help For Your Application 481
Microsoft Windows Help

On Microsoft Windows systems, IDL uses the Windows native HTML Help system
to display context-sensitive help and most documentation for IDL language features
and routines. In addition, the HTML Help files in the IDL online help system contain
hypertext links to the full IDL documentation set in PDF format.

Note
In order to display the PDF version of the documentation set, the Adobe Acrobat
plug-in for Microsoft Internet Explorer must be installed on the system. The plug-
in, along with the full Acrobat Reader application, is available at no charge directly
from Adobe at http://www.adobe.com.

Note
Viewing PDF files within the HTML Help viewer (or any other Web browser
Acrobat plug-in) disables the full-text-search mechanism in the Adobe Acrobat
software. If you wish to use this feature of the PDF documentation set, you must
open the IDL documentation files in a stand-alone version of Acrobat, such as the
free Acrobat Reader. See “Portable Document Format Files” on page 486 for
information on launching a stand-alone copy of Acrobat from within IDL.

UNIX Online Help

On UNIX systems, IDL’s online help system launches a copy of the Adobe Acrobat
software to display help information. As a result, using IDL’s online help system on a
UNIX system requires that a version of Adobe Acrobat be installed on the system,
and that the corresponding acroread command be available in a directory included
in your UNIX PATH environment variable. See the Installing and Licensing IDL
manual for details on installing and configuring Acrobat for use with IDL.

In addition, on most UNIX platforms, IDL uses an Adobe Acrobat plug-in that
handles communication between IDL and Acrobat. The plug-in allows you to control
some Acrobat functions from within IDL, most notably specifying a search term
along with the IDL ? command — see “IDL’s Acrobat Plug-In” below for details.

On platforms where the IDL Acrobat plug-in is not available, the ? command (with or
without a search term) will cause IDL to launch Acrobat and open the PDF
documentation set to a default page. You can then use the navigation facilities of the
PDF documents and Acrobat itself to locate the appropriate topic.
Building IDL Applications About IDL’s Online Help System

482 Chapter 20: Providing Online Help For Your Application
IDL’s Acrobat Plug-In

The IDL Acrobat plug-in is a piece of software provided by RSI that handles
communication between IDL and the version of Acrobat installed on the system. On
platforms that support the plug-in, it is installed along with IDL and launched
automatically when you use either the ? command or the ONLINE_HELP procedure.
The plug-in provides the following features:

• It allows you to specify a search topic to the ? command or ONLINE_HELP
procedure. If the specified topic exists, it will be displayed in Acrobat. If the
topic does not exist, a default topic is displayed instead.

For example, specifying

? FFT

at the IDL command line on a UNIX system that supports the plug-in will
cause Acrobat to display the entry for the FFT function from the IDL
Reference Guide.

• It allows IDL to remain in communication with a single instance of Acrobat,
changing the displayed page based on input from IDL (via either the ?
command or the ONLINE_HELP procedure).

• It allows IDL to close the Acrobat application, either via the QUIT keyword to
the ONLINE_HELP procedure or when IDL itself exits.

For a variety of reasons, some IDL platforms do not support the IDL Acrobat plug-in.
On these platforms, IDL will launch a copy of Acrobat if one is available, optionally
passing the name of a PDF file for Acrobat to open. IDL has no avenue of
communication with the Acrobat process after it has been launched, however, and
none of the above-listed features are available. For example, specifying

? FFT

at the IDL command line on a UNIX system that does not support the plug-in will
cause IDL to display an error message and Acrobat to display the first page of the
IDL Reference Guide.

Note
On UNIX platforms, Acrobat is launched by either the ? command or the
ONLINE_HELP procedure. Under Microsoft Windows, Acrobat is only launched if
the ONLINE_HELP procedure is called with the name of a PDF file as the value of
the BOOK keyword.
About IDL’s Online Help System Building IDL Applications

Chapter 20: Providing Online Help For Your Application 483
As of IDL 6.1, the IDL Acrobat plug-in is not available for the following platforms:

• AIX

• Mac OS X

• Microsoft Windows

For additional information on the IDL Acrobat plug-in, see the
idl_acrobat_plugin.README file located in the help subdirectory of the IDL
distribution.
Building IDL Applications About IDL’s Online Help System

484 Chapter 20: Providing Online Help For Your Application
Using IDL’s Online Help Viewers

You can use IDL’s online help system to display help files of your own creation. The
type of help file or files you choose to create will depend on the platforms on which
your IDL application will be used, and on your own preferences.

• Microsoft Windows Help

• Portable Document Format Files

• HTML Files

Microsoft Windows Help

There are currently two Windows online help formats in wide use: WinHelp and
HTML Help. WinHelp is the older of the two, and many applications still provide
help in this format, which can be distinguished by the file extension “.hlp”.
HTML Help is the newer format, and provides (among other things) the ability to
include links to documents in various formats, both local and network-based.
HTML Help files use the file extension “.chm”. Viewers for both types of online help
are included in all relatively current versions of Windows, and IDL’s ONLINE_HELP
procedure will invoke the correct viewer for either type of file.

Creating Windows Help Files

Microsoft Windows help files are relatively easy to create. Files in a specified format
(the Rich Text Format (RTF) for WinHelp, or a wider variety of formats for HTML
Help) are compiled with a help compiler from Microsoft. The help compiler is part of
the Windows Software Developer’s Kit, and is now included in several Microsoft
programming products, including the Visual C++ development environment. The
help compiler may also be available from the Microsoft Web site or other Microsoft
online software libraries at little or no cost.

It is beyond the scope of this manual to discuss the preparation and compilation of
Windows help files. Microsoft provides useful information about its help-system
products as part of the Microsoft Developer’s Network; try searching the MSDN site
at http://msdn.microsoft.com with the search term “HTML Help” or
“WinHelp”. There are also numerous third-party books on creating Windows help
systems available.
Using IDL’s Online Help Viewers Building IDL Applications

Chapter 20: Providing Online Help For Your Application 485
Calling Windows Help Files

To call a Windows help file of either type from within IDL, use the ONLINE_HELP
procedure. Specify the name of your help file using the BOOK keyword, and
optionally specify a search term in the Value argument. Alternatively, you can specify
a context number in the Value argument and include the CONTEXT keyword. See
“ONLINE_HELP” in the IDL Reference Guide manual for details.

Depending on where your application and its help files are installed, you may also
need to specify the full path to the file and the FULL_PATH keyword.

Example 1

Suppose you have created an HTML Help file named myapp.chm to accompany
your IDL application. Use the following call to open the HTML Help viewer and load
the search term “controls” into the Index dialog:

ONLINE_HELP, 'controls', BOOK='path\myapp.chm', /FULL_PATH

where path is the full path to the file myapp.chm.

Example 2

Suppose you have created a WinHelp file named myapp.hlp and placed it in the
Help subdirectory of your IDL installation. If you know that the context number of
the topic you wish to display is 250, use the following call to open the WinHelp
viewer to the correct topic:

ONLINE_HELP, 250, BOOK='myapp', /CONTEXT

If no file extension is included in the value of the BOOK keyword, IDL will search
each directory in !HELP_PATH until it finds a matching file with one of the
following file extensions, in this order: .chm (Windows only), .hlp (Windows only),
.pdf, .html, .htm.

Cross-Platform Issues

Windows help files (of either format) are viewable only on Microsoft Windows
platforms. If your IDL application will be available on UNIX platforms as well as
Microsoft Windows platforms, you have several options:

• Create separate help files (one in Windows Help format, one in PDF or HTML
format) and issue the appropriate call to ONLINE_HELP based on the current
platform. If you name the files with the same base name (but with different file
extensions), IDL will automatically select the correct file for the platform.
Building IDL Applications Using IDL’s Online Help Viewers

486 Chapter 20: Providing Online Help For Your Application
• Create a single help file in PDF format, and caution your Windows users that
they must have a PDF-viewing application installed in order to use your help
file.

• Create a single help file in HTML format, and caution all of your users that
they must have a Web browser installed to use your help system. In addition,
UNIX users must ensure that the browser is properly configured for use by
IDL, as described in “Displaying HTML Files under UNIX” under
“ONLINE_HELP” in the IDL Reference Guide manual.

Portable Document Format Files

You can use the ONLINE_HELP procedure to display a PDF file on any system that
has a PDF-display application installed. Note that while UNIX versions of IDL
require some version of Adobe Acrobat Reader, Windows versions of IDL will
launch whatever application is associated with PDF files when ONLINE_HELP is
called with a PDF file as the value of the BOOK keyword.

Note
On all platforms, IDL launches a stand-alone version of the PDF viewing
application. Files are not displayed in the Windows help viewer or any other
browser application.

Creating PDF Files

To create PDF files for use with IDL’s online help system, you will need an
application that allows you to author PDF files or convert files in other formats to
PDF. Most commonly, source files are created with a text-editor, word-processor, or
other document-production program, printed to a PostScript file, and run through a
program that distills the PostScript into PDF. Adobe’s commercial Acrobat package
includes the Acrobat Distiller, which provides a convenient GUI interface to the
distillation process. Other third-party software to distill PostScript files into PDF is
also available; GhostScript (www.ghostscript.com) is one freely available
alternative.

It is beyond the scope of this manual to discuss creation of PDF files in detail; consult
the documentation for your PDF authoring system or distilling software for details.
Using IDL’s Online Help Viewers Building IDL Applications

Chapter 20: Providing Online Help For Your Application 487
Note on PDF Named Destinations

In a Windows Help system, a specific topic within a help file can be displayed by
specifying its context number in the call to ONLINE_HELP. In a PDF file, named
destinations play a similar role. If you have created named destinations in your PDF
file, IDL can take advantage of them — provided the IDL Acrobat plug-in is installed.
(See “IDL’s Acrobat Plug-In” on page 482 for additional information on the plug-in.)
Depending on the status of the plug-in and the named destination specified, IDL will
behave in one of the following ways:

• If the plug-in is installed and a valid named destination is supplied via the
Value argument to ONLINE_HELP, the specified topic will be displayed
immediately.

• If the plug-in is installed and an invalid named destination is supplied via the
Value argument to ONLINE_HELP, the first page of the file will be displayed.

• If the plug-in is not installed, the first page of the file will be displayed
regardless of the Value argument.

Calling PDF Files

To call a PDF help file from within IDL, use the ONLINE_HELP procedure. Specify
the name of your PDF file using the BOOK keyword, and optionally specify a named
destination in the Value argument. Depending on where your application and its help
files are installed, you may also need to specify the full path to the file and the
FULL_PATH keyword.

See “ONLINE_HELP” in the IDL Reference Guide manual for details.

Example 1

Suppose you have created a PDF file named myapp.pdf to accompany your IDL
application. Use the following call to open the PDF viewer and display the named
destination “controls”:

ONLINE_HELP, 'controls', BOOK='path\myapp.pdf', /FULL_PATH

where path is the full path to the file myapp.pdf. Note that on platforms that do not
support the IDL Acrobat plug-in, the PDF viewer will display the first page of
myapp.pdf.
Building IDL Applications Using IDL’s Online Help Viewers

488 Chapter 20: Providing Online Help For Your Application
Example 2

If the myapp.pdf file is located in one of the directories included in IDL’s
!HELP_PATH system variable, you do not need to include either the .pdf extension
or the FULL_PATH keyword:

ONLINE_HELP, BOOK='myapp'

If no file extension is included in the value of the BOOK keyword, IDL will search
each directory in !HELP_PATH until it finds a matching file with one of the
following file extensions, in this order: .chm (Windows only), .hlp (Windows only),
.pdf, .html, .htm.

Cross-Platform Issues

If you intend to use PDF files to supply online help for your cross-platform
application, keep the following things in mind:

• Windows installations of IDL do not require that Acrobat or any other PDF-
viewing application be installed. Warn your users that they will need a PDF
viewer to use your online help.

• Not all IDL platforms support the IDL Acrobat plug-in. On platforms that do
not support the plug-in, IDL will not be able to automatically display named
destinations specified as the Value argument to ONLINE_HELP. In addition,
you will not be able to close the PDF viewer launched by IDL
programmatically from within IDL.

HTML Files

You can use the ONLINE_HELP procedure to display an HTML file on any system
that has a Web-browser installed. On UNIX systems, the browser’s executable file
must also be in a directory included in the PATH environment variable.

Creating HTML Files

It is beyond the scope of this manual to discuss HTML authoring in detail. Use any
technique you are comfortable with to create HTML files for display in a normal Web
browser.

Note
You can use the MK_HTML_HELP procedure to create HTML-formatted
documentation for your application from standard IDL documentation headers. See
“MK_HTML_HELP” in the IDL Reference Guide manual for details.
Using IDL’s Online Help Viewers Building IDL Applications

Chapter 20: Providing Online Help For Your Application 489
Calling HTML Files

To call an HTML file from within IDL, use the ONLINE_HELP procedure. Specify
the name of your HTML file using the BOOK keyword. Depending on where your
application and its help files are installed, you may also need to specify the full path
to the file and the FULL_PATH keyword.

See “ONLINE_HELP” in the IDL Reference Guide manual for details.

Example 1

Suppose you have created an HTML file named myapp.html to accompany your
IDL application. Use the following call to open the default Web browser and display
the file:

ONLINE_HELP, BOOK='path\myapp.html', /FULL_PATH

where path is the full path to the file myapp.html.

Example 2

If the myapp.html file is located in one of the directories included in IDL’s
!HELP_PATH system variable, you do not need to include the .html extension or
the FULL_PATH keyword:

ONLINE_HELP, BOOK='myapp'

If no file extension is included in the value of the BOOK keyword, IDL will search
each directory in !HELP_PATH until it finds a matching file with one of the
following file extensions, in this order: .chm (Windows only), .hlp (Windows only),
.pdf, .html, .htm.

Cross-Platform Issues

If you intend to use HTML files to supply online help for your cross-platform
application, keep the following things in mind:

• IDL does not require that a Web browser be installed. While it is unlikely that
you will encounter systems that do not include a Web browser, you may wish
to inform your users in advance that your application uses a Web browser to
supply help.

• On UNIX systems, it may be necessary to modify IDL’s default HTML
browser configuration script to use a locally-preferred browser. See
“Displaying HTML Files under UNIX” under “ONLINE_HELP” in the IDL
Reference Guide manual for details.
Building IDL Applications Using IDL’s Online Help Viewers

490 Chapter 20: Providing Online Help For Your Application
• Different browsers contain different display engines, and may display HTML
in different ways. This is especially true if you use features that have only
recently been added to the HTML specification. Check for display issues using
as many browsers as you reasonably can.

Paths for Help Files

You can specify the search path for help files via the !HELP_PATH system variable.
Placing your help files in a directory included in the Help path means that you do not
need to include the full path in your call to the ONLINE_HELP procedure; supplying
the name of the help file is enough.

Note
IDL searches the directories specified by !HELP_PATH and chooses the first
instance of a file that matches the name you specify via the BOOK keyword to
ONLINE_HELP. If no file extension is included in the value of the BOOK
keyword, IDL will search each directory in !HELP_PATH until it finds a matching
file with one of the following file extensions, in this order: .chm (Windows only),
.hlp (Windows only), .pdf, .html, .htm. You can override this behavior by
explicitly specifying the desired file extension.

By default, !HELP_PATH contains the help subdirectory of the main IDL directory.
To change the default value of !HELP_PATH, set the IDL_HELP_PATH environment
variable using one of the following procedures:

• Under UNIX, set the IDL_HELP_PATH environment variable using a normal
shell command.

• Under Windows, set the IDL_HELP_PATH environment variable using the
System control panel.

To change the value of !HELP_PATH during a single IDL session, simply assign a
new value to the system variable. For example, to add a directory of your choice to
the end of the default Help path, you could use the following command:

!HELP_PATH=!HELP_PATH+'mypath'

where mypath is a valid path string, including the appropriate path element separator
character for your platform.
Using IDL’s Online Help Viewers Building IDL Applications

Part III: Creating
Applications in IDL

Chapter 21:

Creating IDL Projects
This chapter describes the following topics.
Overview . 494
Where to Store the Files for a Project 498
Creating a Project 500
Opening, Closing, and Saving Projects . . . 502
Modifying Project Groups 503
Adding, Moving, and Removing Files . . . 505
Working with Files in a Project 509

Setting the Options for a Project 514
Selecting the Build Order 517
Compiling an Application from a Project 519
Building a Project 520
Running an Application from a Project . . 522
Exporting a Project 523
Building IDL Applications 493

494 Chapter 21: Creating IDL Projects
Overview

IDL Project allows you to easily develop applications in IDL for distribution among
other developers, colleagues, or users who have IDL. If you want to develop
applications for users who do not have IDL previously installed on their computer,
contact your Research System sales representatives for more information on how you
can distribute an IDL Runtime version.

Working with an IDL Project allows you to easily prepare your IDL application for
distribution among other developers, colleagues, or users. You can organize, manage,
compile, run, and create distributions of all of your application files from within the
IDL Project interface. An IDL Project simplifies the process of preparing your
application for distribution by offering a visual interface to application files and by
automatically creating the script necessary for distributing a Runtime version of IDL.
Whether you have existing files that you want to package as an application or you are
building an application from the ground up, IDL Project offers the flexibility and
functionality you need in a development environment.

Access to all Files in Your Application

An IDL Project has an easy to use visual interface that allows clear organization to all
of the required files you need for your IDL application. This includes source files,
data files, image files, or any other files your application will need to run. By default,
an IDL Project contains the following categories for your files:

• IDL source code files (.pro)

• GUI files (.prc) created with IDL GUIBuilder

• Data files

• Image files

• Other files (help files, .sav files, etc.)

You can also create your own folders or rename existing folders to customize your
IDL Project.
Overview Building IDL Applications

Chapter 21: Creating IDL Projects 495
Working with an IDL Project

An IDL Project makes it easy to add, remove, move, edit, compile, and run your
application. Additionally, Project saves all of your workspace information including
breakpoints set in source code. Since breakpoints are saved when you save your
project, this alleviates the need to reset them every time you open a source code file in
your project. If you save and exit your project with open files, those same files will be
automatically opened when you re-open the project.

You can easily access files in your project by simply double-clicking on them. Source
(.pro) files are opened in the IDL Editor and .prc (IDL GUIBuilder) files are
opened in the IDL GUIBuilder. By holding down CTRL and left-clicking or by
holding down SHIFT and left-clicking, you can select multiple files in the IDL
Project window. You can then edit, move, compile, delete, or set the properties of
multiple files at one time.

Compiling and Running Your Application

Compiling and running applications is fast and easy. Through the Project menu, you
can compile all of your source files or just the files that you have modified before
running your application.

Build Your Application

This feature allows you to quickly test your application. Building your application
creates an IDL .sav file that contains all of the programs in your application. If you
have .prc (IDL GUIBuilder) files in your project, they will also be compiled and the
generated source (.pro) and the event (*_eventcb.pro) files will be automatically
added to your IDL Project.

Exporting Your Applications

Once you have completed your application, you can quickly and easily create a
distribution for your application so that you can distribute it to colleagues or
customers. There are options for exporting either compiled code or source code. All
your source code or compiled code (.sav files), IDL GUIBuilder files, data files, and
image files are copied to a directory you specify.

You can also create an IDL Runtime distribution to include with your application. If
you are interested in sharing your application with users who do not have IDL, please
contact your RSI sales representative to discuss the options available to you.
Building IDL Applications Overview

496 Chapter 21: Creating IDL Projects
The IDL Project Interface

The IDL Project window displays the contents of your current project and allows you
to manipulate your project.

Note
If you are not using your IDL Project, you can hide the IDL Project window by
selecting File → Preferences and then clicking the Layout tab. Under the Show
Windows section, deselect the Project checkbox. When you open or create an IDL
Project, the Project window will automatically be displayed and this preference will
be reset to selected.

If you click the plus sign to expand your project, you will see the groups in your
project. If you click the plus sign on a folder, you will see the individual files that are
grouped in that folder.

If you have added a file to a project and then either removed or renamed it on your
system, your IDL Project will display an icon with a red X through it to denote that it
can no longer be found. For information on how to change the path of a missing file,
see “Setting the Properties of a File” on page 511.

Figure 21-1: The Project Window

Project
Window

Project
Toolbar
Overview Building IDL Applications

Chapter 21: Creating IDL Projects 497
The IDL Project toolbar offers shortcuts to frequently used menu items. When you
have a project open, the toolbar is available to help you manage your project’s
properties.

Example of a Project

A working example of a project, demo_proj.prj, has been included in the
examples directory.

Figure 21-2: Project Toolbar

Project Options
Add/Remove Files

Compile All Files

Build
Run

Display File Properties
Building IDL Applications Overview

498 Chapter 21: Creating IDL Projects
Where to Store the Files for a Project

The directory structure you use for your application files is an important
consideration when you plan to export your application. It is important to create a
directory structure which allows all files to be relative to the main project (.prj) file.
Even though you can add any file from any path to your project, the following
guidelines ensure that the application files will be found after you export your
project.

1. Create an organized directory structure containing all of your application
files. For example, you might create a directory structure similar to the
following:

Note
This example uses the same names as the default directory names displayed in the
Project window. See “Modifying Project Groups” on page 503 for more
information on the types of files stored in these groups. You do not have to name
your directories in this manner. It is more important that all application files that
you plan on exporting are organized in your local project directory.

2. Keep the project file (.prj) at the root level of all the other files and
directories in your project. As shown in the previous figure, the project file
myproject.prj is in the root level directory myproject.

Figure 21-3: Example Directory Structure
Where to Store the Files for a Project Building IDL Applications

Chapter 21: Creating IDL Projects 499
When a project’s files are exported, the files will be placed according to where they
are in relation to the .prj file, keeping the directory structure intact whenever
possible. All of the directories that are in the same directory as the .prj file will be
recreated when an IDL Project is exported.

If you have files that are stored outside of this hierarchy, they will be exported to the
top-level directory. If, for example, one of your files, intertemp.dat, exists in
D:\otherproj\data, when you export your project it will be placed in the
project’s top-level directory as follows, C:\myproject\intertemp.dat. This
may result in “File not found” errors when attempting to run your application after
exporting it.

For more information on exporting a project, see “Exporting a Project” on page 523.
Building IDL Applications Where to Store the Files for a Project

500 Chapter 21: Creating IDL Projects
Creating a Project

To create a Project, complete the following steps:

1. Select File → New → Project. The New Project dialog is displayed.

2. Select the path and name of the project file. Click Open to create your project.
A .prj extension will automatically be appended to the name you enter. You
will see that your project appears in the Project Window

3. Save your new project. Select File → Save Project.

Note
You can only have one project open at a time. Before creating a new project, you
must close any open projects.

After you have created your project, you’ll see your project displayed in the Project
Window. You will see that 5 groups have been automatically created when you
created your project.

The following table describes the purpose for each group:

Figure 21-4: IDL Project Window

Group Description

Source Stores IDL source code files (.pro).

GUI Stores GUI files (.prc) created using the IDL GUIBuilder.

Table 21-1: Project Group Descriptions
Creating a Project Building IDL Applications

Chapter 21: Creating IDL Projects 501
Data Stores any data files.

Images Stores image files.

Other Stores any other files that do not apply to the other groups.

Group Description

Table 21-1: Project Group Descriptions (Continued)
Building IDL Applications Creating a Project

502 Chapter 21: Creating IDL Projects
Opening, Closing, and Saving Projects

After you have created a project, you can open, save, or close a project.

Opening a Project

To open a project, complete the following steps:

1. Select File → Open Project.

2. Select the path and name of your project file.

Tip
IDL keeps track of the most recently opened projects. You can use the File →
Recent Projects menu to select a project to open.

Saving a Project

To save a project, select File → Save Project.

Closing a Project

To close a project, select File → Close Project.
Opening, Closing, and Saving Projects Building IDL Applications

Chapter 21: Creating IDL Projects 503
Modifying Project Groups

After you have created your project, you can edit the groups for that project. You can
create a new group or rename, remove, move up or down, or set to filter specific file
types for the default groups.

Modifying Project Groups

To edit the groups in your project, complete the following steps:

1. Select Project → Groups. The Project Groups dialog is displayed:

2. Through the Project Groups dialog, you can make the following changes:

• Create a New Group — Enter a name into the Name text field and enter
the desired file filter extensions, separated by commas, into the File Filters
field. Click New to create the new group.

• Rename a Group — Select the group that you want to rename. Edit the
group name in the Name field and then click Modify.

• Move a Group — Select a group listed in the Groups list and click Move
Up or Move Down.

• Remove a Group — Select the group you want to remove from the
Groups list and click Remove.

Figure 21-5: Project Groups Dialog
Building IDL Applications Modifying Project Groups

504 Chapter 21: Creating IDL Projects
• Change the File Filter for a Group — Enter file filter extension in the
form *.extension. If you want more than one file type to be included in this
group, separate each extension with a comma. For example, to include
JPEG and PNG files, you would enter “*.jpg, *.png”.

Note
When a file is added to a project, it is placed in the first group that meets the file
extension criteria that is specified, with the first group being the uppermost group in
the Groups list. If you have an all-inclusive filter (*), such as the “Other” group,
you must place it at the bottom of the Groups list.

3. After you have completed making your changes, click OK to exit the Project
Groups dialog.
Modifying Project Groups Building IDL Applications

Chapter 21: Creating IDL Projects 505
Adding, Moving, and Removing Files

After you have created a project, you can easily add, move, and remove application
files.

Adding Files

To add files to your project, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Click Project → Add/Remove Files... The Add/Remove Files dialog is
displayed.

3. Select the path and name of the file you want to add to your project. From the
dropdown list, select the group you want to add the file to and click the Add
button. You will see the file added to the list of current files in your project.

• If your application contains an object that is defined in a .pro file, you
must add the .pro file to your project list before building your project. If
the object has any inherited properties from its superclass, you must also
include the .pro file for the superclass if the superclass is a .pro file.

Figure 21-6: Add/Remove Dialog

Current directory

Folder/File list in the

File to add/remove

Filter for listing different

Current Files in project

file types

Select to add a file to
a specific group

current directory
Building IDL Applications Adding, Moving, and Removing Files

506 Chapter 21: Creating IDL Projects
Objects using a .pro extension typically exist in the IDL distribution’s
lib subdirectory and its subdirectories. The IDL Reference Guide
identifies object superclasses and gives the location of the object’s source
code.

For example, if you have defined an object in the file
myobject__define.pro, and this object uses the methods of
IDLgrLegend, you must include both myobject__define.pro and a
copy of IDLgrLegend’s source code, idlgrlegend__define.pro, in
your project list.

If your object files call any other routines defined in .pro files, you must
include these .pro files in your project list as well.

• If your application calls any routines via quoted strings, such as in
CALL_PROCEDURE, CALL_FUNCTION, CALL_METHOD,
EXECUTE, or in keywords that can contain procedure names such as
TICKFORMAT or EVENT_PRO, you must include the .pro files for
these routines in your project list.

• If your application uses IDL variables, such as a custom ASCII template,
or if you want to distribute other procedures and functions that are not
included in your main .sav file, you will need to create .sav files using
the SAVE procedure. You must save variables and procedures in separate
.sav files. These .sav files can be restored by using the RESTORE
procedure in your main procedure, or can be restored automatically by IDL
when resolving a routine with the same name as the .sav file.

Tip
You can also add files to your project by dragging and dropping the files from any
file manager. (On some Motif platforms, dragging and dropping is not supported. In
this case, use the Add/Remove... dialog.) If the file you want to add to your project
is already open in an IDL editor window, right click in the editor window and select
Add to Current Project from the shortcut menu.

4. Continue to add the files you want to include in your project. Then click OK.

5. You can expand the listings in the Project window to see the files you have
added.

6. Save your project file by selecting File → Save Project.
Adding, Moving, and Removing Files Building IDL Applications

Chapter 21: Creating IDL Projects 507
Moving Files

When you add a file to your project, it will be added to the appropriate group (based
on the groups’ file filters). If you want the file to exist in a different group, you can
move it to that group. To move a file, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Click on the plus sign to expand the listing of the project files until you see the
file you want to move.

3. To move the file, select the file and then drag it to a different group or right
click over the file you want to move and select Move To... from the shortcut
menu and then select the different group.

Note
On some Motif platforms, dragging and dropping is not supported. In this case, use
the Move To... menu item on the shortcut menu.

4. Save your project file by selecting File → Save Project.

Note
When moving a file in your project, it does not change the actual path of the file, it
only changes the group in which the file appears within your project.

Removing Files

When you no longer want a file to be in your project, you can remove it. When you
remove a file from your project, it does not delete the file on your disk, it only deletes
the reference to the file from your project.

To remove files from your project, complete the following steps:

1. Open your project. Select File → Open Project and select the path and name
of your project file.

2. Click Project → Add/Remove Files... The Add/Remove Files dialog is
displayed.

3. Click on the file you want to remove from your project in the current files
listing. Click Remove.
Building IDL Applications Adding, Moving, and Removing Files

508 Chapter 21: Creating IDL Projects
Tip
You can use the shortcut menu to remove a file. Right click over the file and then
select Remove. On Windows, you can also use the Delete key to remove files.
Select the file by left-clicking over the file and then press the Delete key. On Motif,
you can also highlight the file you want to remove, and press Ctrl+A to remove the
file.

4. Save your project file by selecting File → Save Project.
Adding, Moving, and Removing Files Building IDL Applications

Chapter 21: Creating IDL Projects 509
Working with Files in a Project

Once you have added all of the files in your application to a project, you can access
those files through the project window.

Editing a Source File

All source files that can be opened in IDL, .pro and .prc files (IDL GUIBuilder
files can be opened on Windows only), can be opened directly through the project
windows. To open a file for editing, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Access the shortcut menu by right-clicking over the file you want to open.
Select Edit from the shortcut menu. Source files (.pro) are opened in the IDL
editor and GUIBuilder files (.prc) are opened in the IDL GUIBuilder

Tip
You can also edit a .pro or .prc file by double-clicking on the filename. On
Windows you can also drag the file from the Project window to the IDL Editor
window to open the file.

Compiling a File

All source files can be compiled through the project window. To compile a file,
complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Access the shortcut menu by right-clicking over the file you want to compile.
Select Compile from the shortcut menu. The file is compiled.

For more information on how to compile all the files in your project or just the files
that have been recently modified, see “Compiling an Application from a Project” on
page 519.
Building IDL Applications Working with Files in a Project

510 Chapter 21: Creating IDL Projects
Testing a File

All IDL GUIBuilder files (.prc) can be run under test mode directly through a
project. To run a .prc file in test mode, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Access the shortcut menu by right-clicking over the file you want to test. Select
Test from the shortcut menu. The file is run in test mode.

For more information on running .prc files in test mode, see “Running the
Application in Test Mode” on page 681.

Tip
You can also compile and run IDL GUIBuilder files on any platform by building
your project. For more information, see “Building a Project” on page 520.
Working with Files in a Project Building IDL Applications

Chapter 21: Creating IDL Projects 511
Setting the Properties of a File

Each file in a project has properties. To view the properties of a file, access the
shortcut menu by right-clicking over the file you want to test. Select Properties from
the shortcut menu. Alternatively, you can select the file and click the File Properties
toolbar button. The File Properties dialog appears as shown in the following figure.

The following table describes each property in detail:

Figure 21-7: File Properties Dialog

Property Description

File name The name of the file. (This field is read only.)

Group The name of the group in which the file resides. (This field is
read only.)

Path The path of the file. (This field is read only.)

File Found This box appears grayed out when a file is found. If the file is
not found, clicking on this checkbox displays a dialog so that
you can specify the path of the file.

Table 21-2: File Properties
Building IDL Applications Working with Files in a Project

512 Chapter 21: Creating IDL Projects
To set the properties for a file, complete the following steps:

Note
To set the properties of multiple files at a single time, see “Modifying Properties of
Multiple Files” on page 513.

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Click on the plus sign to expand the listing of the project files until you see the
file you want to change.

3. Access the shortcut menu by right-clicking over the file for which you want to
change the properties. Select Properties from the menu. The File Properties
dialog is displayed.

4. Select whether to compile the file. Check the Compile File checkbox to mark
the file for compiling when running or building an application.

5. Select whether to export the file. You may select to export files such as data
files if they are a necessary component of your application. Other data files
which you have used for development but that aren’t necessary need not be
selected. Check the Export checkbox to export the file with your distribution.
For information on arranging files for successful exporting, see“Where to
Store the Files for a Project” on page 498.

6. Click OK.

Compile File Indicates whether or not to compile the file when running or
building. For example, you may have included files for your
main program that you do not want compiled. Leaving this
check box blank indicates that you do not want this file
compiled.

Note - Non-source files such as data files and image files will
be automatically excluded from compilation.

Export Indicates whether or not to export the file when exporting a
project. Some files, such as data files that you need to use
when creating your application, are files that you do not want
to export. When checked, this file will be exported.

Property Description

Table 21-2: File Properties (Continued)
Working with Files in a Project Building IDL Applications

Chapter 21: Creating IDL Projects 513
7. Save your project file by selecting File → Save Project.

Modifying Properties of Multiple Files

To set the properties of a number of files at a single time, hold down CTRL and right-
click to select multiple files in the Project window. Click the File Properties toolbar
button. In the dialog which appears, you can select the Compile File or Export
properties of “Multiple Files.”

In addition to setting file properties, you can also set the properties of your project.
Through the Project Options dialog, you can control run and compile commands as
well as selecting the type of project to create. See “Setting the Options for a Project”
on page 514 for instructions.

Figure 21-8: Multiple File Properties Dialog
Building IDL Applications Working with Files in a Project

514 Chapter 21: Creating IDL Projects
Setting the Options for a Project

The options for a project describe how to run, compile, and build the project. To set
the options for your project, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Click Project → Options... The Project Options dialog is displayed.

3. Set the options based upon the information in the following table:

Figure 21-9: Project Options Dialog

Option Description

Name Specifies the project name. (This field is read only.)

Path Specifies the path of the project. (This field is read only.)

Table 21-3: Project Options
Setting the Options for a Project Building IDL Applications

Chapter 21: Creating IDL Projects 515
Project Type Specifies how the project will run or build. The available
formats are:

• Source File (.pro).

• Save File (.sav).

• Licensed Save File (.sav)

Note - The Licensed Save File option is grayed out if you do
not have an Unlimited Right to Distribute license. For more
information on how to distribute IDL Runtime with your
application, contact your RSI sales representative.

For more information on building and running projects, see
“Building a Project” on page 520 or “Running an Application
from a Project” on page 522.

Run Command Specifies the IDL command to run your application. The
default is the name of the project. This can be any valid IDL
command including .sav or .pro files (these can be files that
are included or not included in your project.) Typically this is
the main program in your application.

Tip - You can use the %? command stream substitution to call
a dialog to enter a value or values to pass to the called
program. For example, if you have a program named “main”
and it requires the argument “x” to be passed to it, then you
can enter the following for the Run Command:

main, %?(Enter the value for x, x)

For more information on how to run your application, see
“Running an Application from a Project” on page 522.

Option Description

Table 21-3: Project Options (Continued)
Building IDL Applications Setting the Options for a Project

516 Chapter 21: Creating IDL Projects
4. After completing any changes, click OK.

5. Save your project file by selecting File → Save Project.

Note
In addition to setting options for a project, you can also set an individual file’s
properties. For more information, see “Setting the Properties of a File” on page 511.

Build Command Specifies the IDL command to build the application. If left
blank, the files in the project are built according to the Project
Type specified and are compiled (if applicable) in the order
specified under Build Order. For more information, see
“Selecting the Build Order” on page 517.

You can enter any valid IDL command including .sav or
.pro files. You can also enter a batch file using @filename in
order to perform other operations (for example, running a Perl
script on your source or data files before compiling). For more
information on batch scripts, see the Using IDL manual.

Save File Specifies the name of the .sav file to create when building
your project. For more information on building a project, see
“Building a Project” on page 520.

Note - This field is grayed out if you have selected the Source
File (.pro) Project Type.

Option Description

Table 21-3: Project Options (Continued)
Setting the Options for a Project Building IDL Applications

Chapter 21: Creating IDL Projects 517
Selecting the Build Order

The build order of a project determines the order in which the files will be compiled.
In some cases, you might not be able to run all the files in your project because of
dependencies on the order in which they are compiled. For example, if the file
main.pro contains:

Pro main
x=1
y=AddTen(x)
Print, x

End

and file AddTen.pro contains:

Function AddTen, x
x=x+10

End

IDL can’t tell if the statement y=AddTen(x) is referring to a variable named AddTen
or a function named AddTen. Unless AddTen is compiled before main, you will get a
“Variable undefined” error message.

To select the build order for the files in your project, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Click the Build Order tab in the Project window.

3. Move the files to the order in which you want to compile them. The topmost
file listed in the Build Order window will be compiled first. On Windows,
move a file by dragging and dropping it to the desired location. On Motif, first
select a file by left-clicking it, then change the order by using the up and down
arrows located in the bottom left corner of the Project window.
Building IDL Applications Selecting the Build Order

518 Chapter 21: Creating IDL Projects
4. For example, using the scenario stated previously, the Build Order would look
like the following:

5. Save your project file by selecting File → Save Project.

Note
If the Compile File option is deselected, the file will not show in the Build Order
window. For more information on file properties, see “Setting the Properties of a
File” on page 511.

Figure 21-10: Build Order Window
Selecting the Build Order Building IDL Applications

Chapter 21: Creating IDL Projects 519
Compiling an Application from a Project

You can compile all of the source files in your project, or just the files that you have
recently modified. A modified file is one that has been modified and then saved. If
you have included GUIBuilder files in your project, see the following section, “About
IDL GUIBuilder Files”.

Note
If you have dependencies on the order in which your files are compiled, see
“Selecting the Build Order” on page 517.

To Compile All Files in Your Project

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. To compile all the files in your project, select Project → Compile → All
Files.

To Compile Only Modified Files in Your Project

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. To compile just the files that have been modified since the last compilation,
select Project → Compile → Modified Files.

Note
If you have dependencies on the order in which your files are compiled, see
“Selecting the Build Order” on page 517.
Building IDL Applications Compiling an Application from a Project

520 Chapter 21: Creating IDL Projects
Building a Project

Building a project creates a .sav file of your project or compiles your project based
upon the options you have set for your project. If you have specified:

• Source File — The IDL session is reset (all procedures, functions, main level
variables, and common blocks are deleted from memory), all files in the
project are compiled, and all undefined but referenced functions and
procedures are resolved.

For more information on resetting an IDL session, see
“.FULL_RESET_SESSION” in the IDL Reference Guide manual. For more
information on resolving undefined but referenced functions, see
“RESOLVE_ALL” in the IDL Reference Guide manual.

• Save File — The IDL session is reset (all procedures, functions, main level
variables, and common blocks are deleted from memory so that unwanted
items are not included in your .sav file), all files in the project are compiled,
all undefined but referenced functions and procedures are resolved, and all the
functions and procedures are saved into the file you specified in the project’s
options.

The save file is created using the XDR and COMPRESS options. For more
information, see “SAVE” in the IDL Reference Guide manual.

• Licensed Save File — The IDL session is reset (all procedures, functions,
main level variables, and common blocks are deleted from memory so that
unwanted items are not included in your .sav file), all files in the project are
compiled, all undefined but referenced functions and procedures are resolved,
all the functions and procedures are saved into the file specified in the project’s
options, and embedded license information is added to the save file.

For more information on how to create a licensed save file and distribute IDL
Runtime with your application, contact your RSI sales representative.

Note
For more information on project options, see “Setting the Options for a Project” on
page 514.
Building a Project Building IDL Applications

Chapter 21: Creating IDL Projects 521
To build your project, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Select Project → Build. A dialog appears, confirming that you want to reset
your session.

This will delete all procedures, functions, main level variables and common
blocks from memory. If you have the save file option selected for your project,
this will ensure that these items will not be included in your .sav file. If you
have the source file option selected for your project, this will ensure that you
have a clean environment in which to run and test your application.

3. Click OK.

Your project has been built.

About IDL GUIBuilder Files

When you build your IDL Project, the IDL GUIBuilder (.prc) files are
automatically compiled and the resulting source (.pro) and event
(*_eventcb.pro) files are automatically added to your project.

For more information on the IDL GUIBuilder, see Chapter 27, “Using the
IDL GUIBuilder”.
Building IDL Applications Building a Project

522 Chapter 21: Creating IDL Projects
Running an Application from a Project

After compiling your project, you can run your application. What happens when you
run your project depends upon the project options you have selected:

• If you have selected your execution file format as source file, each file in your
project is compiled and then run using the command you specified as the run
command.

• If you have selected your execution file format as a .sav file, the most
recently compiled version is run using the command you specified as the run
command.

Note
You must have compiled or built your application before running it.

For more information on setting options for your project, see “Setting the Options for
a Project” on page 514.

To run your application, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Select Project → Run.
Running an Application from a Project Building IDL Applications

Chapter 21: Creating IDL Projects 523
Exporting a Project

Once you have completed your application, you can quickly and easily create an IDL
Runtime distribution or you can easily move your application to another platform or
distribute your source code to colleagues by exporting your project. All your source
code or compiled code (.sav files), IDL GUIBuilder files, data files, and image files
are copied to a directory you specify.

What is exported is dependent upon the options you have selected for the project
from the Project → Options dialog. If you have selected:

• Source File — Your project’s source, IDL GuiBuilder, data, bitmaps, and any
other files listed in your project will be exported along with your IDL Project
file to a directory you specify so that you can move them to another platform.
For information on how to set up a directory structure so that your IDL Project
can find the source files after exporting, see “Where to Store the Files for a
Project” on page 498.

• Save File — The .sav file for your project as well as data, bitmaps, and any
other .sav files included in your project will be exported. You will also be
given the option of exporting an IDL Runtime distribution for the platform to
which you are exporting. Contact your sales person for options if you want to
include an IDL Runtime distribution with your application. For information on
how to set up a directory structure so that all files will retain their relative paths
after exporting, see “Where to Store the Files for a Project” on page 498.

• Licensed Save File — The .sav file (with an embedded license) for your
project as well as data, images, and any other .sav files included in your
project will be exported. You will also be given the option of exporting an IDL
Runtime distribution for the platform you are exporting on. For information on
how to set up a directory structure so that all files will retain their relative paths
after exporting, see “Where to Store the Files for a Project” on page 498.

For more information on how to create a licensed save file and distribute IDL
Runtime with your application, contact your RSI sales representative.

For more information on the options for a project, see “Setting the Options for a
Project” on page 514.
Building IDL Applications Exporting a Project

524 Chapter 21: Creating IDL Projects
Exporting Your Project’s Source Files

To export your project’s source files, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Select “Source File (.pro)” or from the Project → Options dialog.

3. Select Project → Export. The Browse for Folder or Export Directory dialog
is displayed.

4. Select the folder to which you want to export the project and click OK.

Your project is exported to the selected directory. When moving a project and its
source files from one platform to another, there are a few items to be aware of:

• Project workspace information such as which files are open, etc. will not move
from platform to platform.

• Problems with paths can occur if they are not relative paths. If you open a
project and find that it cannot find the source file, you can fix this by changing
the properties of the file. For more information, see “Where to Store the Files
for a Project” on page 498 and “Setting the Properties of a File” on page 511.

Exporting Your Project to a Save File

To export your project to a save file, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Select “Save File (.sav)” or “Licensed Save File (.sav)” from the Project →
Options dialog.

3. Select Project → Export. The Browse for Folder or Export Directory dialog
is displayed.

4. Select the folder to which you want to export the project and click OK.

5. A dialog is displayed asking if you want to export an IDL Runtime distribution
with your .sav file. Select No to not include the distribution.

Your project is exported to the selected directory.
Exporting a Project Building IDL Applications

Chapter 21: Creating IDL Projects 525
Exporting a Runtime Distribution

The process for exporting an IDL Runtime distribution of your project is slightly
different depending on whether you run IDL on a Windows or UNIX platform.

Note
While a project exported with a Runtime distribution includes all of the support files
necessary for a Runtime application, it does not include a Runtime license. If you
are interested in including a Runtime version of IDL with your application, contact
your RSI sales representatives for more information.

Under Microsoft Windows

Under Microsoft Windows, you can use the Project Export feature to create a
complete runtime IDL distribution tree. To create a runtime distribution, do the
following:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Select “Save File (.sav)” or “Licensed Save File (.sav)” from the Project →
Options dialog.

3. Select Project → Export. The Browse for Folder dialog is displayed.

4. Select the folder to which you want to export the project and click OK. If the
directory does not exist, you will need to create it: the Project editor will not
create it for you.

5. A dialog is displayed asking if you want to export an IDL Runtime distribution
with your .sav file. Select Yes.
Building IDL Applications Exporting a Project

526 Chapter 21: Creating IDL Projects
6. The Export Files dialog appears, allowing you to select files to be included in
the distribution.

The Export Files dialog lists directories and files. Check marks indicate that a file is
to be exported. The first time a project is exported, the files included in the
manifest_rt.txt and manifest_aux.txt files are listed in the Export Files
dialog. Only the files from manifest_rt.txt are checked for export.

• Click Add to select files to be added to the export list. Whether or not the
files are actually exported depends on whether you check the checkbox
next to the file’s name.

• Click Remove to remove a file from the distribution to be exported.

• Click Default to restore the list of files to that are exported by default. By
default, the files listed in the manifest_rt.txt file from the
\bin\make_rt subdirectory of the IDL distribution are selected for
export, and the files in the manifest_aux.txt file are displayed, but not
selected for export.

• Click Export to export the files to the directory you specified step 4.

• Click Close to close the Export Files dialog without exporting the files.
Your changes to the export list will be saved when you save the project file.

• Click Cancel to close the Export Files dialog, discarding any changes.

Figure 21-11: The Export Files dialog (Microsoft Windows only).
Exporting a Project Building IDL Applications

Chapter 21: Creating IDL Projects 527
Your project, all of the selected IDL Runtime support files, and any other files you
specified in the export list are exported to the directory you selected.

If an error is encountered during export, an Export Log detailing the export and the
error is displayed in the bottom pane of the Export Files dialog.

Using the Export Feature without a Project (Windows Only)

On Microsoft Windows platforms, you can also use the Export feature without
creating an IDL project file:

1. Select Project → Export. The Browse for Folder dialog is displayed.

2. Select the folder to which you want to export the project and click OK.

3. The Export Files dialog appears, allowing you to select files to be included in
the distribution.

• Click Add to select files to be added to the export list. Whether or not the
files are actually exported depends on whether you check the checkbox
next to the file’s name.

• Click Remove to remove a file from the distribution to be exported.

• Click Default to restore the list of files to that are exported by default. By
default, the files listed in the manifest_rt.txt file from the
\bin\make_rt subdirectory of the IDL distribution are selected for
export, and the files in the manifest_aux.txt file are displayed, but not
selected for export.

• Click Export to export the files to the directory you specified in step 2.

• Click Close to close the Export Files dialog without exporting the files.
Your changes to the export list will be saved when you save the project file.

• Click Cancel to close the Export Files dialog, discarding any changes.

The files specified in the export list are exported to the directory you selected.

Under Unix

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Select “Save File (.sav)” or “Licensed Save File (.sav)” from the Project →
Options dialog.

3. Select Project → Export. The Export Directory dialog is displayed.

4. Select the directory to which you want to export the project and click OK.
Building IDL Applications Exporting a Project

528 Chapter 21: Creating IDL Projects
5. A dialog is displayed asking if you want to export an IDL Runtime distribution
with your .sav file. Select Yes. A complete list of the runtime distribution
files that will be copied to your distribution directory is provided in the
manifest_rt.txt text file. See Modifying the Manifest File for details on
this file.

Your project is exported to the directory you selected.

Note
The Project → Export feature copies IDL binaries only for the platform from
which you are currently running IDL. If you wish to create a distribution that
supports multiple UNIX platforms, you must use the Project → Export feature to
export a distribution for each platform you wish to support. You can specify the
same destination directory each time you use the Project → Export feature,
thereby creating a distribution with a bin.platform directory for each supported
platform.

Modifying the Manifest File

The manifest file is located in idl-dir/bin/manifest_rt.txt, where idl-dir
is the main IDL directory.

To modify the manifest file to include other files, complete the following steps:

1. Open manifest_rt.txt in any text editor.

2. For an application that uses IDL DataMiner, copy the appropriate DataMiner
files from manifest_aux.txt, (located in the same directory as
manifest_rt.txt) to manifest_rt.txt.

3. Add the path and filename of any other files in the IDL distribution that you
want to include to the list of files to export. Make sure that the path is relative
to the idl-dir. Note that only IDL files can be added to the manifest.

4. Make sure that you have not included any blank lines in the file.

5. Save the file.
Exporting a Project Building IDL Applications

Chapter 22:

Distributing IDL
Applications
This chapter describes the following aspects of creating IDL applications for distribution:
What is a Stand-Alone IDL Application? . 530
Building a Native IDL Application 533
Licensing Options for IDL Applications . . 535
The IDL Virtual Machine 537
Embedded Licensing 543
Runtime Licensing 550

Building Your Application 559
Preparing a Windows Distribution 568
Preparing a UNIX Distribution 574
Distributing Your Application on a CD . . 578
Installing Your Application 584
Incorporating the IDL Data Miner 585
Building IDL Applications 529

530 Chapter 22: Distributing IDL Applications
What is a Stand-Alone IDL Application?

A stand-alone IDL application is a program or set of programs written to use IDL’s
data analysis and display capabilities in a stand-alone mode, without access to IDL or
the IDL Development Environment. All code written in IDL must be pre-compiled
and provided in the binary .sav file format; no .pro files can be compiled by a
stand-alone IDL application.

Note
If a stand-alone IDL application presents a user interface, it must be exposed via the
IDL widget toolkit, since no access to the IDL command line or command output
log is provided to the user.

Types of IDL Applications

IDL applications can either be written in IDL itself and distributed in IDL .sav files,
or they can be written in another programming language and distributed in a
compiled binary format. IDL applications fall into the following three broad
categories:

• Native IDL applications. A native IDL application is written entirely in IDL
and saved in a .sav file or series of .sav files that can be restored an run by
an IDL distribution. While SAVE file applications can be run by fully-licensed
copy of IDL, this chapter focuses on applications intended to be run as stand-
alone applications by an IDL distribution in one of three more restricted
modes:

• in the IDL Virtual Machine.

• with a runtime license.

• with an embedded license.

The process of creating applications written in IDL is the topic of this manual.
This chapter describes the steps necessary to enable your application to run in
one of the above modes when a full IDL license is not available.
What is a Stand-Alone IDL Application? Building IDL Applications

Chapter 22: Distributing IDL Applications 531
• Callable IDL applications. An application that uses Callable IDL is an
application written in another programming language, such as C or C++, that
calls IDL as a subroutine. Callable IDL applications are run as standalone
applications in one of the following modes:

• with a runtime license.

• with an embedded license.

The process of creating Callable IDL applications is covered in the External
Development Guide.This chapter describes the steps necessary to enable your
application to run in one of the above modes when a full IDL license is not
available.

• IDL ActiveX Control applications. The IDL ActiveX control can be used to
access IDL functionality in applications written in other languages that support
ActiveX, such as C++ or Visual Basic. IDL ActiveX applications are run as
standalone applications in one of the following modes:

• with a runtime license.

• with an embedded license.

The process of creating IDL ActiveX control applications is covered in the
External Development Guide. This chapter describes the steps necessary to
enable your application to run in one of the above modes when a full IDL
license is not available.

Limitations of IDL Applications

IDL applications that run without a full IDL license — whether native IDL, Callable,
or ActiveX — do not have access to the IDL compiler and have access to the IDL
interpreter only in a restricted mode in which the provided commands are executed
and the interpreter exits immediately. As a result, operations that require the compiler
or that force the interpreter into an idle state will not execute when a full license is not
present. In practice, this means that if you are writing an IDL application to be
distributed to users who do not have a full IDL license, you should be aware of the
following limitations:

Error Handling

Because the ON_ERROR procedure has the potential to force the IDL interpreter into
an idle state when an error is encountered, it should not be used in IDL applications
that will be distributed to users without a full IDL license. Use the CATCH procedure
instead.
Building IDL Applications What is a Stand-Alone IDL Application?

532 Chapter 22: Distributing IDL Applications
Blocking in Widget Applications

Similarly, blocking in the IDL widget event loop forces the IDL interpreter into an
idle state. Because blocking behavior is the default in widget applications, be sure to
use the NO_BLOCK keyword to XMANAGER if your IDL application includes a
user interface built from the IDL widget toolkit. See “XMANAGER and Blocking” in
Chapter 29 for additional details.
What is a Stand-Alone IDL Application? Building IDL Applications

Chapter 22: Distributing IDL Applications 533
Building a Native IDL Application

A native IDL application contains only IDL code — it does not contain code written
in other programming languages such as C or Visual Basic — and can be exported as
a .sav file for distribution to other IDL users. This section describes the process of
packaging an application written entirely in IDL for distribution.

Example Native IDL Application

The following example illustrates how native IDL applications are developed and
distributed.

1. Create a .pro file

Enter the following in the IDL Editor, and save it as myApp.pro:

PRO done_event, ev
; When the 'Done' button is pressed, exit
; the application.

WIDGET_CONTROL, ev.TOP, /DESTROY

END

PRO myApp

; Read an image file.
READ_JPEG, (FILEPATH('endocell.jpg', SUBDIRECTORY = $

['examples', 'data'])), image

; Find the dimensions of the image.
info = SIZE(image,/DIMENSIONS)
xdim = info[0]
ydim = info[1]

; Create a base widget containing a draw widget
; and a 'Done' button.
wBase = WIDGET_BASE(/COLUMN)
wDraw = WIDGET_DRAW(wBase, XSIZE=xdim, YSIZE=ydim)
wButton = WIDGET_BUTTON(wBase, VALUE='Done',
EVENT_PRO='done_event')

; Realize the widgets.
WIDGET_CONTROL, wBase, /REALIZE

; Retrieve the widget ID of the draw widget.
Building IDL Applications Building a Native IDL Application

534 Chapter 22: Distributing IDL Applications
WIDGET_CONTROL, wDraw, GET_VALUE=index

; Set the current drawable area to the draw widget.
WSET, index

; Display some data.
TV, image

; Call XMANAGER to manage the event loop.
XMANAGER, 'myApp', wBase, /NO_BLOCK

END

2. Compile the Application

Select Compile from the Run menu to compile the .pro file.

3. RESOLVE_ALL

At the command line, enter the following to resolve all procedures and functions that
are called in the application:

RESOLVE_ALL

4. SAVE

At the command line, enter the following to save the compiled application as a .sav
file:

SAVE, /ROUTINES, FILENAME = 'myApp.sav'

The resulting .sav file is a stand-alone IDL application that can be run on any
Windows, UNIX or Mac OS X computer containing the IDL Virtual Machine or a
licensed copy of IDL. If you want your customers to run this application on a
computer without IDL, you will need to include a runtime version of IDL with a
runtime or embedded license in your application distribution.
Building a Native IDL Application Building IDL Applications

Chapter 22: Distributing IDL Applications 535
Licensing Options for IDL Applications

When you have an application that uses IDL, and you want to distribute it to users
who do not already have IDL installed and licensed, you have two choices:

• Ask your users to install the free IDL Virtual Machine and run your application
in the Virtual Machine.

• Purchase a runtime or embedded license from RSI that enables you to bundle
IDL with your application.

Free Runtime License (IDL Virtual Machine)

The IDL Virtual Machine is a runtime version of IDL that can execute IDL .sav files
without an IDL license. Users install the IDL Virtual Machine with the IDL Installer
available on an IDL distribution CD-ROM or from the IDL Download Web site. See
“The IDL Virtual Machine” on page 537 for additional details.

Purchased Licenses

When you purchase a license from RSI, you can include a licensed IDL installation
with your IDL application, Callable IDL application, or IDL ActiveX Control
application. There are two types of licenses available: runtime licenses and embedded
licenses.

When you distribute a licensed version of IDL with your application, you provide
your users with IDL functionality, but do not provide access to the IDL command
line, the IDL Development Environment (IDLDE), or the ability to compile IDL
.pro files. Runtime and embedded licenses are appropriate for:

• Vertical-market packages developed in IDL but which appear to the user as
stand-alone applications.

• Software designed for use by operators or technicians who do not need
programmatic access to IDL’s full range of analytical tools.

• Situations in which the you do not want end users to be able to modify
functions written in the IDL language.

• Organizations with existing investments in IDL code, where some mixture of
distributable and development IDL licenses may be cost effective.
Building IDL Applications Licensing Options for IDL Applications

536 Chapter 22: Distributing IDL Applications
If your users need access to the full scope of IDL’s features or advanced analytical
tools outside the scope of your application, you may choose to distribute your
application with a fully-licensed copy of IDL. Contact your sales representative to
purchase copies that you can distribute.

Embedded Licenses

Embedded licenses must be purchased from RSI. Purchasing an embedded license
enables you to build runtime license information into IDL .sav files, callable IDL
applications, or IDL ActiveX applications.

Runtime Licenses

Runtime licenses must also be purchased from RSI. A runtime license enables a
single user to run IDL .sav files, callable IDL applications, or IDL ActiveX
applications. Runtime licenses come in two varieties:

• node-locked FlexLM licenses that can be installed only on a single machine,

• licenses that can be installed on any machine of a specified platform.

Note
Licenses that are not node-locked are more expensive than node-locked licenses.
Licensing Options for IDL Applications Building IDL Applications

Chapter 22: Distributing IDL Applications 537
The IDL Virtual Machine

The IDL Virtual Machine is designed to provide IDL users with a simple, no-cost
method for distributing IDL applications. It runs on all IDL supported platforms, and
does not require a license to run. This utility allows you to easily distribute IDL .sav
files to your colleagues or your customers, without requiring them to own an IDL
runtime license.

Beginning with IDL 6.0, the IDL Virtual Machine is included with all IDL
distributions. During installation, you can choose to install just the IDL Virtual
Machine or a full installation of IDL (which includes the IDL Virtual Machine). For
the benefit of developers who need to debug applications designed to run in this
environment, the IDL Virtual Machine can be started explicitly. Otherwise, if a .sav
file program is run without an IDL license, IDL defaults to the IDL Virtual Machine
mode.

To distribute an application for the IDL Virtual Machine, follow these steps:

1. Build your IDL application. See “Building an Application that Runs in the IDL
Virtual Machine” on page 538.

2. Provide your users with instructions for installing the IDL Virtual Machine.
See the Installing and Licensing IDL 6.1 manual.

3. Provide your users with instructions for running your IDL application in the
IDL Virtual Machine. See “Running a .sav File in the IDL Virtual Machine” on
page 539.

4. Distribute your application.

Limitations of Applications that Run
in the IDL Virtual Machine

The IDL Virtual Machine will run a compiled IDL .sav file even if no IDL license is
present. RSI’s aim with the IDL Virtual Machine is to facilitate IDL code
collaboration and application distribution. However, a few restrictions exist:

• The IDL Virtual Machine displays a splash screen on startup.

• .sav files must be created using IDL version 6.0 or later.

• No access to the IDL command line or IDL compiler is provided.
Building IDL Applications The IDL Virtual Machine

538 Chapter 22: Distributing IDL Applications
• The use of the IDL EXECUTE function is disabled. (In most cases, calls to the
EXECUTE function can be replaced with calls to the CALL_FUNCTION and
CALL_PROCEDURE routines.)

• Callable IDL applications and applications that use the IDL ActiveX control
will not run in the IDL Virtual Machine.

• The IDL Virtual Machine must be installed via the installation program
provided by RSI. You are prohibited from modifying the IDL Virtual Machine
distribution.

Note
The IDL Virtual Machine installation program does not install the IDL DataMiner,
IDLffDicomEX feature, IDL-Java bridge, or high resolution maps. If your
application uses any of these features, users must install the full version of IDL
(including the desired optional features) rather than the default IDL Virtual
Machine installation. Although an IDL license will not be required to run in IDL
Virtual Machine mode, certain features may require a special license.

Building an Application that Runs
in the IDL Virtual Machine

An IDL program compiled in IDL 6.0 or later that does not use the EXECUTE
function can be saved as a .sav file that will run in the IDL Virtual Machine. If a
program is to be run in the IDL Virtual Machine, it is not necessary to include an IDL
distribution with the .sav file because IDL Virtual Machine is installed on the user’s
machine. The .sav file need only include your own code, creating a smaller file that
is easier to distribute.

To create .sav files to run in the IDL Virtual Machine, do one of the following:

• Create .sav files from one or more compiled .pro files with the SAVE
procedure. For instructions, see“Using SAVE and RESTORE” on page 559.
Refer to “Saving Compiled IDL Programs and Data” in Chapter 10 for details,
and refer to “SAVE” in the IDL Reference Guide manual.

• Create .sav files from a project by selecting Project → Export with the Save
File (.sav) option specified. For instructions, see “Using Project Æ Export”
on page 561, and refer to Chapter 21, “Creating IDL Projects” for details.

• (UNIX only) Create a distribution with the make_rt script. For instructions,
see “Using the make_rt Script (UNIX only)” on page 564.
The IDL Virtual Machine Building IDL Applications

Chapter 22: Distributing IDL Applications 539
Note
Creating .sav files of object-oriented programs requires the use of
RESOLVE_ALL with the CLASS keyword.

Version Compatibility of .sav Files

The IDL Virtual Machine will execute IDL routines stored in .sav files created with
IDL version 6.0 and later. Any .sav files created with previous versions of IDL
must be recompiled using IDL 6.0 or later for them to run with the Virtual Machine.

Running a .sav File in the IDL Virtual Machine

Note
When a .sav file is executed in the IDL Virtual Machine, the current working
directory will be the directory that contains the .sav file.

How you run a .sav file in the IDL Virtual Machine depends on your operating
system:

Windows

Windows users can drag and drop the .sav file onto the IDL Virtual Machine
desktop icon, launch the IDL Virtual Machine and open the .sav file, or launch
the.sav file in the IDL Virtual Machine from the command line.

To use drag and drop:

1. Locate and select the .sav file in Windows Explorer.

2. Drag the file icon from the Windows Explorer list and drop it onto the IDL
Virtual Machine 6.1 icon that has been created for you on the desktop.

3. Click anywhere in the window to dismiss the IDL Virtual Machine splash
screen and run the .sav file.

To open a .sav file from the IDL Virtual Machine:

1. Do either of the following to launch the IDL Virtual Machine and display the
IDL Virtual Machine window:

• Select Start → Programs → RSI IDL 6.1 → IDL Virtual Machine or
Start → Programs → RSI IDL Virtual Machine 6.1 → IDL

• Double-click the IDL Virtual Machine 6.1 desktop icon.
Building IDL Applications The IDL Virtual Machine

540 Chapter 22: Distributing IDL Applications
2. Click anywhere in the window to dismiss the IDL Virtual Machine splash
screen and display the file selection menu.

3. Locate and select the .sav file, and double-click or click Open to run it.
The IDL Virtual Machine Building IDL Applications

Chapter 22: Distributing IDL Applications 541
To run a .sav file from the command line prompt:

1. Open a command line prompt. Select Run from the Start menu, and enter
cmd.

2. Change directories to the RSI-DIR\bin\bin.x86 directory

3. Enter the following at the command line prompt:

idlrt -vm=<path><filename>

where <path> is the path to the .sav file, and <filename> is the name of the
.sav file. If you omit the path and filename (leaving only the -vm flag), IDL
will open a file selection dialog allowing you to select the .sav file.

Note
If a license is available on the machine running the .sav file, double-
clicking the .sav file will run it in the licensed version of IDL. To force the
.sav file to run in the Virtual Machine, either drag and drop the .sav file on
the IDL Virtual Machine icon or run it from the command line with the -vm
argument.

UNIX and Mac OS X

UNIX and Mac OS X users must launch the IDL Virtual Machine from the UNIX
command line.

To run a .sav file in the IDL Virtual Machine:

1. Enter the following at the UNIX command line:

idl -vm=<path><filename>.sav

where <path> is the complete path to the .sav file and <filename> is the name
of the .sav file. The IDL Virtual Machine window is displayed.

2. Click anywhere in the window to dismiss the IDL Virtual Machine splash
screen and run the .sav file.

To launch the IDL Virtual Machine and use the file selection menu to locate the .sav
file to run:

1. Enter the following at the UNIX command line:

idl -vm

The IDL Virtual Machine window is displayed.
Building IDL Applications The IDL Virtual Machine

542 Chapter 22: Distributing IDL Applications
2. Click anywhere in the IDL Virtual Machine window to dismiss the IDL Virtual
Machine splash screen and display the file selection menu.

3. Locate and select the .sav file, and click Open.

Example

To distribute the example IDL application as a .sav file to be run in the IDL Virtual
Machine:

1. Build the application and create the myApp.sav file. See “Example Native
IDL Application” on page 533.

2. Distribute the myApp.sav file to your users, providing instructions for them to
install the IDL Virtual Machine and run myApp.sav in the Virtual Machine.
The IDL Virtual Machine Building IDL Applications

Chapter 22: Distributing IDL Applications 543
Embedded Licensing

An Embedded license allows you to distribute copies of IDL licensed to run only your
application to multiple users. Licensing an IDL application with an embedded license
is the simplest form of licensing. When you purchase an embedded license, your
version of IDL is enabled with the ability to automatically embed a license in your
application .sav file when you build your project by selecting the Licensed Save
File option from the IDLDE Project → Options dialog.

To distribute an application with an embedded licence, follow these steps:

1. Obtain and install your embedded license. How you do this depends on the
type of application you are licensing. See “Licensing a Native IDL
Application” on page 544, “Licensing a Callable IDL Application” on
page 544, or “Licensing an IDL ActiveX Application” on page 546.

2. Build your application. See “Building Your Application” on page 559.

3. Prepare your distribution. See “Preparing a Windows Distribution” on
page 568.

4. Provide the means for installing your application. See “Installing Your
Application” on page 584.

5. Distribute your application.

Including License Information in your Application

How you include licensing information in your application depends on the type of
application you have created.

Tip
To ensure that your application will run with your embedded license and not in the
IDL Virtual Machine, add the following code to your application before preparing
your application distribution:

a = lmgr(/vm)
if a then begin

b = DIALOG_MESSAGE('Please contact the author for
licensing instructions')
return

endif
Building IDL Applications Embedded Licensing

544 Chapter 22: Distributing IDL Applications
Licensing a Native IDL Application

To license a native IDL application with an embedded license, do the following:

1. Obtain and Install an Embedded License. Contact RSI to purchase your
license. Use the Licensing Wizard to install your new license. This will enable
the Licensed Save File (.sav) option in the IDL Project Options dialog.

2. Create an IDL Distribution. Create an IDL distribution for your application
by following the steps described in “Building Your Application” on page 559.

Licensing a Callable IDL Application

Note
It is beyond the scope of this manual to discuss the creation of Callable IDL
applications. See Chapter 21, “Callable IDL” in the External Development Guide
for details. Note that applications using an embedded license must set the
IDL_INIT_EMBEDDED option when calling the IDL_Init() or
IDL_Win32Init() function, and must call IDL_RuntimeExec() rather than
IDL_Exec().

Licensing a Callable IDL application consists of embedding a license string along
with some initialization code into your application code before your initial call to
IDL. The license information will be provided to you by RSI.

1. Obtain Your Licensing Information. Contact RSI for your license
information. You will need to provide the following information:

• The license installation number for your embedded license. Note that this
number is different from the installation number for IDL itself.

• Your company name.

• Application title (e.g., My App).

• Name of the application executable (e.g., myapp).

• IDL interface being called (Callable IDL or ActiveX).

• Calling program language (i.e., VB, C++, C, Fortran).

You will receive a text file containing a function that IDL uses to retrieve the
licensing information.
Embedded Licensing Building IDL Applications

Chapter 22: Distributing IDL Applications 545
2. Modify Your Application Code. After you receive your license information,
make the following changes to your application code. These instructions
assume your code is written in C.

A. After you receive your license information, place the function that IDL
uses to retrieve licensing information in the module from which you are
initializing IDL. Although your licensing information is individualized, it
will resemble the following:

/* Callable Application license for: myapp, My App */
/* License built for IDL Version 6.1 */
char ** IDL_STDCALL callAppLicFunc() {
static char *initStr[] = {
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd",
"12345678abcdabcd" };

return (initStr);
}

B. Declare the following struct in the module from which you are initializing
IDL. This is used by both IDL and the callable application, but isn’t
exposed to the user:

typedef struct _callAppLicInfo{
unsigned long dwKey;
char ** (IDL_STDCALL *callAppLicFunc)();

} CALLAPPLICINFO;

C. Allocate the struct before the initializing IDL.

CALLAPPLICINFO callAppLicInfo;

D. Initialize the struct:

callAppLicInfo.dwKey = 0xCA00CA00;
callAppLicInfo.callAppLicFunc = callAppLicFunc;

E. Initialize IDL with one of the following statements:
Building IDL Applications Embedded Licensing

546 Chapter 22: Distributing IDL Applications
For UNIX and Macintosh:

if (IDL_Init_CallAppLicense(0, &callAppLicInfo))

For Windows:

if (!IDL_Win32Init(0, hInstance, hwnd, &callAppLicInfo))
return(IDL_FALSE);

3. Create an IDL Distribution. If you have not yet created an IDL distribution
for your application, do so now by following the steps described in “Building
Your Application” on page 559. If you have already created a distribution, add
your modified executable to the distribution. Note that if your Callable IDL
application uses a .sav file, it does not matter whether you choose the
Licensed Save File or Save File option in the Project Options dialog when
building your project because the licensing information is embedded in your
application code rather than the .sav file. See “Using Project Æ Export” on
page 561.

4. Your application can now be prepared for distribution by following the steps in
“Preparing a Windows Distribution” on page 568.

Licensing an IDL ActiveX Application

Licensing an IDL ActiveX control application consists of embedding an IDL
initialization string into your application code before your initial call to IDL. The
license information will be provided to you by RSI.

1. Obtain Your Licensing Information. Contact RSI for your license
information. You will need to provide the following information:

• The license installation number for your embedded license. Note that this
is different from the installation number for IDL itself.

• Your company name.

• Application title (e.g., My App).

• Name of the application executable (e.g., myapp).

• IDL interface being called (Callable IDL or ActiveX).

• Calling program language (i.e., VB, C++, C, Fortran).

You will receive a text file containing an initialization string.
Embedded Licensing Building IDL Applications

Chapter 22: Distributing IDL Applications 547
2. Modify Your Application Code. After you receive your license information,
insert the initialization string into your code prior to calling IDL. Although the
licensing information you receive will be slightly different, it will resemble the
following:

' IDL ActiveX Control Application license for: myapp, My App
' License built for IDL Version 6.1
theApp.InitStringInfo("12345678abcdabcd, -

12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd, _
12345678abcdabcd")

Note
The InitStringInfo method must be called prior to ActiveX
initialization.

3. Create an IDL Distribution. If you have not yet created an IDL distribution
for your application, do so now by following the steps described in Chapter 22,
“Building Your Application”. If you have already created a distribution, add
your modified executable to the distribution. Note that if your ActiveX
application uses a .sav file, it does not matter whether you choose the
Licensed Save File or Save File option in the Project Options dialog when
building your project because the licensing information is embedded in your
application code rather than the .sav file. See “Using Project Æ Export” on
page 561.

Your application can now be prepared for distribution by following the steps in
Chapter 22, “Preparing a Windows Distribution”.
Building IDL Applications Embedded Licensing

548 Chapter 22: Distributing IDL Applications
Running a .sav File with an Embedded License

Note
When a .sav file with an embedded license executed, the current working directory
will be the directory that contains the .sav file.

How you run a .sav file with an embedded license depends on your operating
system:

Windows

Do either of the following:

• If your application was built in the IDL Project Editor, find the .exe file in the
distribution folder and double-click the filename. See “Describe How to Start
Your Application” on page 571

• From the command line prompt, change directories to the
RSI-DIR\bin\bin.x86 directory and enter the following:

idlrt -em=<path><filename>

where <path> is the path to the .sav file, and <filename> is the name of the
.sav file.

UNIX or Mac OS X

At the UNIX command prompt, enter the following:

idl -em=<path><filename>

where <path> is the path to the .sav file, and <filename> is the name of the .sav
file.

Note
If you set the IDL_DIR environment variable, you can simply execute the startup
script. See “Starting Your UNIX Application” on page 577.
Embedded Licensing Building IDL Applications

Chapter 22: Distributing IDL Applications 549
Example

To distribute the example IDL application with an embedded license:

1. Request your embedded license and install it on your development machine.

2. Build your application in the IDL Project Editor. Create a new project, add the
myApp.pro and imagefile.sav files (see “Example Native IDL
Application” on page 533) to the project, and Export your project with the
Licensed save file (.sav) project option selected (see “Using Project Æ
Export” on page 561 for details). The resulting myApp.sav file will include a
licensed runtime distribution of IDL.

3. Distribute myApp.sav and the runtime distribution files to your users,
providing instructions on how to run myApp.sav in the runtime distribution.
Building IDL Applications Embedded Licensing

550 Chapter 22: Distributing IDL Applications
Runtime Licensing

A Runtime license allows you to deliver a copy of IDL that is licensed to run only
your application on a single machine. This type of licensing offers developers who
have smaller customer bases the opportunity to buy single distribution licenses as
they are needed, paying a small fee for each license. The license is either a FLEXlm
license tied to the specific machine on which your application will run (so you will
need to obtain information about your customer’s machine), or a more costly but less
restricted license that will run on any machine of a given platform.

You can choose how to license your application:

• If you wish to distribute a licensed application to each customer, you can
perform the necessary licensing steps for each license you purchase and
distribute a ready-to-run application to each customer. This saves your
customers from having to perform the licensing themselves, but you must
create separate distributions for each customer.

• If you would rather create a single unlicensed distribution that you can
distribute to all your customers, you can purchase a license for each customer,
and provide that license along with the information necessary for the customer
to license your application.

To distribute an application with a runtime license, follow these steps:

1. Build your application. How you do this depends on the type of application
you are building. See “Building a Native IDL Application” on page 551,
“Building a Callable IDL Application” on page 551, or “Building an IDL
ActiveX Application” on page 552. For instructions on using the tools
available for building applications, see “Building Your Application” on
page 559

2. Obtain and install your runtime license. See “Obtaining and Installing a
Runtime License” on page 552.

3. Prepare your distribution. See “Preparing a Windows Distribution” on
page 568.

4. Provide the means for installing your application. See “Installing Your
Application” on page 584.

5. Distribute your application.
Runtime Licensing Building IDL Applications

Chapter 22: Distributing IDL Applications 551
Building a Runtime Application

The procedure for building an application to run with a runtime license depends on
the type of application.

Tip
To ensure that your application will run with your runtime license and not in the
IDL Virtual Machine, add the following code to your application before preparing
your application distribution:

isVM = LMGR(/VM)
IF isVM THEN BEGIN

void = DIALOG_MESSAGE('Please contact the author for $
licensing instructions')
RETURN

ENDIF

Building a Native IDL Application

To build a native IDL application with a runtime license, create an IDL distribution
for your application by following the steps described in “Building Your Application”
on page 559. Keep the following in mind when creating the distribution:

• If you use the Project → Export feature, make sure to select the Save File
(.sav) option in the Project Options dialog before building your project.
See “Build Your Project” on page 562.

• If you use the make_rt script, you will need to create your .sav file
manually, and make sure to specify “rt” for the mode parameter of the
make_rt command. See “Syntax of the make_rt Script” on page 566.

Building a Callable IDL Application

Note
It is beyond the scope of this manual to discuss the creation of Callable IDL
applications. See Chapter 21, “Callable IDL” in the External Development Guide
for details. Note that applications using a runtime license must set the
IDL_INIT_RUNTIME option when calling the IDL_Init() or IDL_Win32Init()
function, and must call IDL_RuntimeExec() rather than IDL_Exec().
Building IDL Applications Runtime Licensing

552 Chapter 22: Distributing IDL Applications
To license a Callable IDL application with a runtime license, create an IDL
distribution for your application by following the steps described in “Building Your
Application” on page 559. If your Callable IDL application uses a .sav file, keep the
following in mind when creating the distribution:

• If you use the Project → Export feature, make sure to select the Save File
(.sav) option in the Project Options dialog before building your project.
See “Build Your Project” on page 562.

• If you use the make_rt script, you will need to create your .sav file
manually, and make sure to set the savefile parameter to the name of
your application executable. See “Syntax of the make_rt Script” on
page 566.

Building an IDL ActiveX Application

To license an IDL ActiveX application with a runtime license, create an IDL
distribution for your application by following the steps described in “Preparing a
Windows Distribution” on page 568. If your ActiveX application uses a .sav file,
keep the following in mind when creating the distribution:

• If you are using the Project → Export feature, make sure you have
selected the Save File (.sav) option in the Project Options dialog when
building your project. See “Build Your Project” on page 562.

• If you are using the make_rt script, you will need to create your .sav file
manually, and make sure to set the savefile parameter to the name of
your application executable. See “Syntax of the make_rt Script” on
page 566.

Obtaining and Installing a Runtime License

Runtime applications that run on either Windows or UNIX platforms are licensed
using either node-locked (FLEXlm) licenses or non-node-locked single-user licenses.
Node-locked licenses are tied to the specific machine on which the application will
run, while non-node-locked licenses will run on any machine of a given type. The
following is an overview of the process you will follow to license your runtime
application on either Windows or UNIX:

1. Get information about the end user’s machine on which your application will
run.

2. Send this information to RSI. A license file will be generated and sent to you.
Runtime Licensing Building IDL Applications

Chapter 22: Distributing IDL Applications 553
3. Install the license file in your distribution to create a licensed distribution so
that the end user can install and run your application without the need for any
changes. Alternatively, if you have created a single unlicensed distribution that
you provide to all your end users, you can provide the end user with a separate
license file and instructions for installing the license file.

The following sections describe these steps in detail for each platform.

Windows

Obtaining a License

In order to obtain the information needed to generate a node-locked license file, your
end user must run the application lmtools.exe on the machine for which your
application is to be licensed. If your end user has already installed an unlicensed copy
of your application, he or she will have access to lmtools.exe. Otherwise, you will
need to provide the end user with a copy the lmtools.exe file, which can be found
in the bin/bin.x86 directory of your IDL distribution.

Note
If you are using a non-node-locked license, you only need to know which platform
(Windows, Unix) your end user will be using.

Provide the end user with the following instructions:

1. In order for lmtools.exe to be able to retrieve the correct information, your
system must have a configured network interface card.

2. Run the lmtools.exe application. The Lmtools dialog appears.

3. Click the Hostid button. Information similar to the following is displayed:

Hostd ID's-----------------------------------
HOSTNAME=myhost
USER=jdoe
DISPLAY=myhost
INTERNET=10.15.2.109
0030dcb86317
DISK_SERIAL_NUM=c5f8b462

4. Click the Save Text button. In the Save As dialog, enter a path a filename and
click Save.

5. Send the text file saved in the previous step to your application vendor.
Building IDL Applications Runtime Licensing

554 Chapter 22: Distributing IDL Applications
When your end user has provided you with the information obtained by
lmtools.exe, e-mail this information to register@RSInc.com or fax the
information to RSI at (303) 786-9909. If you did not purchase IDL directly from RSI,
send the file to your local distributor.

RSI will then send you a license file called license.dat.

Installing the License

Once you have received a license.dat file from RSI, perform the following steps
to provide your end user with a licensed copy of your application. If you have
provided an unlicensed copy of your application and want the end user to license the
application, provide the end user with the following instructions:

Note
If the LM_LICENSE_FILE environment variable has been set on the user’s system,
the location of the license file specified in the idl.ini file will be ignored. In this
case, the user will either need to add the license file path to the existing
LM_LICENSE_FILE value, or move the license file to the location specified by the
existing LM_LICENSE_FILE value.

1. Edit the idl.ini file using the instructions under “Edit the idl.ini File” on
page 569.

2. Place the license.dat file in the location specified by the idl.ini file. For
example, assume the application directory hierarchy of your distribution looks
like this:

MyApp
bin

bin.x86
resource

Assume the idl.ini file is located in the MyApp\bin\bin.x86 directory
along with your application executable, and the idl.ini file contains the
following line:

RSI Root=..\..\..

For this RSI Root value, you must create a license directory at the same
level as the MyApp directory, as shown below:

MyApp
bin

bin.x86
resource
license
Runtime Licensing Building IDL Applications

mailto:register@researchsystems.com

Chapter 22: Distributing IDL Applications 555
Then place the license file in the license directory.

Note
All directories specified in the idl.ini file should be relative to the
directory containing the .ini file. This ensures that, if the directory tree for
your application is moved to another location, it will still run.

3. You should now be able to run the application by double-clicking the
application .exe file, located in the bin\bin.x86 subdirectory of the
application distribution.

UNIX

Obtaining a License

In order to obtain the information needed to generate a node-locked license file, your
end user must run the application lmhostid on the machine for which your
application is to be licensed. If your end user has already installed an unlicensed copy
of your application, he or she will have access to lmhostid. Otherwise, you will
need to provide the end user with a copy the lmhostid file, which can be found in
the bin directory of your IDL distribution.

Note
If you are using a non-node-locked license, you only need to know which platform
(Windows or Unix) your end user will be using.

Provide the end user with the following instructions:

1. In the bin directory of the application distribution, execute the command
lmhostid. Text similar to the following will be displayed:

The FLEXlm host ID of this machine is "80598a67"

2. Provide the host ID returned by lmhostid, along with the hostname of the
machine to your application vendor. (To obtain the hostname, enter the
command hostname.)

When your end user has provided you with the information returned by lmhostid
and the hostname of the machine, e-mail this information to register@RSInc.com
or fax the information to RSI at (303) 786-9909. If you did not purchase IDL directly
from RSI, send the file to your local distributor.

RSI will then send you a license file called license.dat.
Building IDL Applications Runtime Licensing

mailto:register@researchsystems.com

556 Chapter 22: Distributing IDL Applications
Installing the License

Once you have received a license.dat file from RSI, perform the following steps
to provide your end user with a licensed copy of your application. If you have
provided an unlicensed copy of your application, and want the end user to license the
application, provide him or her with the following instructions:

1. Modify the LM_LICENSE_FILE environment variable on the machine on
which the application will run. This can be performed manually by the end
user, or can be performed automatically using an installation script. If there is
no LM_LICENSE_FILE environment variable defined, simply set the value of
LM_LICENSE_FILE to the desired directory, such as in the following
command:

setenv LM_LICENSE_FILE /myapp/license/license.dat

If there is already an existing value for LM_LICENSE_FILE, append the path
for the license directory of your application to the existing
LM_LICENSE_FILE value.Separate the new license path from the existing
one with a colon as follows:

For C shell:

setenv LM_LICENSE_FILE /home/otherapp/license.dat:
/myapp/license/license.dat

2. Place the license.dat file in directory specified by the
LM_LICENSE_FILE environment variable. For example, assume the
application directory hierarchy of your distribution looks like this:

myapp
bin

bin.sgi
license
resource

If the path /myapp/license has been appended to the end user’s
LM_LICENSE_FILE environment variable, IDL will look for the
license.dat file in the /myapp/license directory.
Runtime Licensing Building IDL Applications

Chapter 22: Distributing IDL Applications 557
Running a .sav File with a Runtime License

Note
When a .sav file with a runtime license is executed, the current working directory
will be the directory that contains the .sav file.

How you run a .sav file with a runtime license depends on your operating system:

Windows

Do one of the following:

• If your application was built in the IDL Project Editor, find the .exe file in the
distribution folder and double-click the filename. See “Describe How to Start
Your Application” on page 571

• From the command line prompt, change directories to the
RSI-DIR\bin\bin.x86 directory and enter the following:

idlrt <path><filename>

where <path> is the path to the .sav file, and <filename> is the name of the
.sav file.

UNIX or Mac OS X

At the UNIX command prompt, enter the following:

idl -rt=<path><filename>

where <path> is the path to the .sav file, and <filename> is the name of the .sav
file.

Note
If you set the IDL_DIR environment variable, you can simply execute the startup
script. See “Starting Your UNIX Application” on page 577.
Building IDL Applications Runtime Licensing

558 Chapter 22: Distributing IDL Applications
Example

To distribute the example IDL application with a runtime license:

1. Build the application and create the myApp.sav file. See “Example Native
IDL Application” on page 533.

2. Obtain licensing information from each of your customers by having them run
lmtools.exe (Windows) or lmhostid (UNIX), and send the information to
RSI to generate a license file for each customer.

3. When you receive the license files, do either of the following:

• Include a license file with each distribution of the application, send it to the
appropriate customer, and provide instructions for the customer to install
and license the application.

• Install a license file in the distribution, generate a separate licensed
distribution for that customer, and repeat for each subsequent license file.
Each customer receives a custom licensed distribution.

4. Distribute your application with the appropriate instructions.
Runtime Licensing Building IDL Applications

Chapter 22: Distributing IDL Applications 559
Building Your Application

This section discusses the process of creating an application distribution that includes
the files necessary to run IDL, thereby allowing you to distribute your application to
users who do not already have IDL installed. The following is an overview of the
process of creating an IDL distribution:

1. Decide whether you will use the SAVE and RESTORE procedures, the IDLDE
Project → Export feature, or the make_rt script to create the distribution. In
choosing which method you will use, consider the following guidelines:

• For IDL applications, as well as Callable IDL and ActiveX applications
that restore IDL .sav files, you may wish to use the Project → Export
feature to create the distribution. The IDL Projects interface automates the
process of creating the .sav file for your application.

• UNIX Users: For Callable IDL and ActiveX applications that do not use a
.sav file, you may wish to use the make_rt script to create your
distribution. Because the Project → Export feature requires you to create
a project and build a .sav file before you export an IDL distribution, it is
easier to use the make_rt script when your application does not use a
.sav file. (The make_rt script is not available in IDL for Windows.)

2. Create the distribution using SAVE, the Project → Export feature, or the
UNIX make_rt script. See Using SAVE and RESTORE, “Using Project Æ
Export” on page 561, or “Using the make_rt Script (UNIX only)” on page 564.

Using SAVE and RESTORE

The SAVE procedure allows you to save IDL variables, system variables, and IDL
functions and procedures as .sav files. This section explains when to use the SAVE
procedure to create .sav files, when to use the RESTORE procedure to restore these
.sav files in your application, and when it is or is not necessary to use RESTORE to
explicitly restore your .sav files. For instructions on using SAVE and RESTORE,
see “Saving Compiled IDL Programs and Data” in Chapter 10, and refer to “SAVE”
in the IDL Reference Guide manual for details.

When To Use SAVE

For distributable applications, IDL does not compile .pro files. Therefore, any
procedures or functions used by your application must be resolved and contained in a
.sav file. For IDL applications, these routines can be part of the main .sav file that
is restored when your application is started.
Building IDL Applications Building Your Application

560 Chapter 22: Distributing IDL Applications
If you use an IDL project to create your distribution and add the required .pro files
to your project before it is built, you do not need to manually create .sav files with
the SAVE and RESOLVE_ALL procedures. The following are examples of cases in
which you might use SAVE to create .sav files:

• To create .sav files for any procedures or functions that are not contained in
the main .sav file that is restored when a native IDL application is started.

• To create .sav files for any procedures or functions used by a Callable IDL or
ActiveX application.

• To create .sav files for any variables used by your application, such as custom
ASCII templates.

Note
A single.sav file cannot contain both routines and variables.

When To Use RESTORE

There are three ways to restore a .sav file:

• Explicitly restore the.sav file using RESTORE. This requires you to specify
the path to the .sav file.

• Call the procedure with the same name as the .sav file. IDL will search the
current directory then the path specified by !PATH for a .sav file with the
name of the called routine and, if it finds the .sav file, it restores it
automatically.

• Specify the filename of the .sav file as the argument to the IDL -vm command,
as follows:

UNIX: idl -vm =<filename>
Windows: idlrt -vm=<filename>

Because calling a procedure with the same name as a .sav file allows IDL to
automatically find and restore the .sav file, it isn’t always necessary to explicitly
restore a .sav file using RESTORE. Cases in which you must use RESTORE include
the following:

• When you are restoring a .sav file containing variable data.

• When your .sav file contains multiple routines, and you need to first call a
routine that uses a different name than the .sav file. For example, if you have
a .sav file named routines.sav that contains the ARROW and
BAR_PLOT procedures, you would need to restore routines.sav before
calling ARROW or BAR_PLOT.
Building Your Application Building IDL Applications

Chapter 22: Distributing IDL Applications 561
Single vs. Multiple .sav Files

There are several ways to include the necessary routines in your application:

• For a native IDL application, include all routines in the main .sav file that is
restored when your application is started. This makes all routines available
without having to restore any additional .sav files, and reduces the number of
.sav files used by your application. The easiest way to do this is to add all
.pro files to a project, and build the project.

• Create a separate .sav file containing all your routines. You might use this
method for a Callable or ActiveX application, if you want to keep certain
routines separate from your main .sav file in a native IDL application, or if
your application includes routines provided to you as a .sav file by another
developer. To run any routines included in this .sav file, you must restore the
.sav file by either calling a routine with the same name as the .sav file or
restore it explicitly using RESTORE.

• Create a separate .sav file for each routine used by your application.
Assuming each .sav file uses the same name as the procedure or function it
contains, this allows you to call each routine without having to explicitly
restore its .sav file because IDL will search the current directory and the
defined !PATH for the .sav file and restore it automatically when it
encounters the first call to the routine.

Examples

See “Example: Create a SAVE File of a Simple Routine” on page 216 and “Example:
Customize and Save an ASCII Template” on page 218 for examples.

Using Project → Export

This section describes how to export an IDL distribution using the Project → Export
option on the IDLDE menu. Exporting a project is essentially a three-step procedure:

1. Create your project. See “Before Building Your Project” on page 562 and “Add
Required Files to Your Project” on page 562.

2. Build your project. See “Build Your Project” on page 562.

3. Export your project. How you do this depends on your operating system. See
“Exporting Your Project in Windows” on page 564 or “Exporting Your Project
in UNIX” on page 564.

For complete information on building and exporting projects, see Chapter 21,
“Creating IDL Projects”.
Building IDL Applications Building Your Application

562 Chapter 22: Distributing IDL Applications
Before Building Your Project

Before building your project, check your application for the following:

1. Verify the procedure name in your main .sav file. The main .sav file to be
executed when IDL starts must have a procedure named main or a procedure
with the same name as the .sav file minus the extension. The main .sav file
is the file that is restored and run when you start your IDL application.

2. Make sure that any .pro files that you want to be included in your main .sav
file have been added to your project.

Add Required Files to Your Project

There may be files that are not part of the default IDL distribution that you need to
include with your application. If you add these files to your project, they will be
included in your distribution when you export your project. If you do not include
these files in your project before exporting the project, you can manually add the files
by copying them to your distribution:

1. If your application uses the IDL ActiveX control, IDL DataMiner, or the
Network License Server for Windows, add the necessary files to the manifest
using the instructions in “Modifying the Manifest File” on page 528.

2. If your application requires any other IDL files that are not part of the default
IDL distribution, such as high-resolution maps, add them to your project or
modify the manifest file. Note that only IDL files can be added to the manifest.

3. If your application requires any data files that are not in the IDL distribution,
including ASCII, binary, or image files, add them to your project.

Build Your Project

You must build a project before it can be exported. For more information on the
following steps, see “Setting the Options for a Project” and “Building a Project” in
Chapter 21:

1. Start the IDLDE and select File → Open Project. Navigate to and select your
project (.prj) file and click Open.
Building Your Application Building IDL Applications

Chapter 22: Distributing IDL Applications 563
2. Select Project → Options. In the Project Options dialog, select the desired
option in the Project Type group. The option you select depends on the type of
license you have purchased and the type of application:

• Source File (.pro) — If you are creating a Callable IDL or ActiveX
application that makes direct calls to an IDL .pro file using the
IDL_Execute() or IDL_ExecuteStr() functions (for Callable IDL
applications) or the ExecuteStr method (for ActiveX applications),
select this option.

• Save File (.sav) — If you have purchased a runtime license, and you are
creating a native IDL application, or a Callable IDL or ActiveX application
that uses a .sav file, select this option.

• Licensed Save File (.sav) — If you have purchased an embedded license,
and you are creating a native IDL application, select this option. Note that
this option is grayed out if you do not have an embedded license. If you
have purchased an embedded license, and you are creating a Callable IDL
or ActiveX application that uses a .sav file, it does not matter whether
you choose this option or the Save File option because the licensing
information is embedded in the application code rather than the .sav file
for these types of applications.

3. In the Run Command field, enter the name of the IDL command that is to be
called when your application is executed. By default, this is the name of your
project, minus the .prj extension. Typically, this is the main program in your
application.

4. In the Build Command field, specify the IDL command used to build the
application. If left blank, the files in the project are built according to the
Project Type specified and are compiled (if applicable) in the order specified
on the Build Order tab of the project window. You can enter any valid IDL
command including .sav or .pro files. You can also enter a batch file using
@filename in order to perform other operations, such as running a Perl script
on your source or data files before compiling.

5. In the Save File field, specify the name of the .sav file to create when
building your project.

6. Click OK.

7. Select Project → Build from the IDLDE menu.
Building IDL Applications Building Your Application

564 Chapter 22: Distributing IDL Applications
Exporting Your Project in Windows

See “Under Microsoft Windows” on page 525 in Chapter 21, “Exporting a Runtime
Distribution” for instructions.

Exporting Your Project in UNIX

See “Under Unix” on page 527 in Chapter 21, “Exporting a Runtime Distribution”
for instructions.

Using the make_rt Script (UNIX only)

The make_rt script is a UNIX command-line tool for creating an IDL
distribution.Because the Project → Export feature is designed for creating a project
and building a .sav file before you export an IDL distribution, it is easier to use the
make_rt script when your application does not use a .sav file.

Using the make_rt script is essentially a three-step process:

1. Modify the manifest_rt.txt file. See “1. Modify the Manifest” on
page 564.

2. Run make_rt. See “2. Run make_rt” on page 565.

• Create destination directory.

• Enter make_rt plus parameters at the UNIX command line.

3. Add any additional required files to the distribution. See “3. Add Required
Files to Your Distribution” on page 565.

Before Running make_rt

Before creating the distribution, verify the procedure name in your main .sav file.
The main .sav file to be executed when IDL starts must have a procedure named
main or a procedure with the same name as the .sav file minus the extension. The
main .sav file is the file that is restored and run when you start your IDL application.

1. Modify the Manifest

If your application uses IDL files that are not part of the IDL distribution, you can
include these files when you run make_rt by modifying the manifest file. If you do
not add these files to the manifest before running make_rt, you must manually copy
the required files to your distribution.

The manifest file is located in idl-dir/bin/manifest_rt.txt, where idl-dir
is the main IDL directory.
Building Your Application Building IDL Applications

Chapter 22: Distributing IDL Applications 565
To modify the manifest file to include other files, complete the following steps:

1. Open manifest_rt.txt in any text editor.

2. Add the path and filename of any other files in the IDL distribution that you
want to include to the list of files to export. Make sure that the path is relative
to the idl-dir. Note that only IDL files can be added to the manifest.

3. Make sure that you have not included any blank lines in the file.

4. Save the file.

2. Run make_rt

Run the make_rt script by performing the following steps:

1. Create a directory in which to locate your application distribution.

2. Open a command shell and change directories to the idl-dir/bin directory,
where idl-dir is the main IDL directory.

3. Enter the make_rt command using the syntax described in “Syntax of the
make_rt Script” on page 566.

4. The make_rt script copies IDL binaries only for the platform on which the
make_rt script is executed. If you wish to create a distribution that supports
multiple UNIX platforms, you must run the make_rt script on each platform
you wish to support. You can specify the same destination directory each time
you run the make_rt script, thereby creating a distribution with a
bin.platform directory for each supported platform.

3. Add Required Files to Your Distribution

After you have created a distribution using make_rt, any files that are not part of the
IDL distribution, as well as any required IDL files that you did not add to the
manifest, must be manually copied to your distribution. Add the following files to
your distribution. For instructions on using SAVE and RESOLVE_ALL to create
.sav files, see “Using SAVE and RESTORE” on page 559:

1. If your application requires any data files that are not in the IDL distribution,
including ASCII, binary, or image files, add them to your distribution.
Building IDL Applications Building Your Application

566 Chapter 22: Distributing IDL Applications
2. If your application contains an object defined in a .pro file, you must save the
.pro file as a .sav file and manually copy the .sav file to your distribution
tree. If the object has any inherited properties from its superclass, and the
superclass is a .pro file, you must also include the superclass .pro file in
your .sav file. Objects using a .pro extension typically exist in the IDL
distribution’s lib subdirectory and its subdirectories. The IDL Reference
Guide identifies object superclasses and gives the location of the object’s
source code.

For example, if you have defined an object in the file
myobject__define.pro, and this object uses the methods of IDLgrLegend,
you must save both myobject__define.pro and a copy of IDLgrLegend’s
source code, idlgrlegend__define.pro, in a .sav file and add the .sav
file to your distribution.

If your object files call any other routines defined in .pro files, you must
include these .pro files in a .sav file and add them to your distribution.

3. If your application calls any routines via quoted strings, such as in
CALL_PROCEDURE, CALL_FUNCTION, CALL_METHOD, EXECUTE,
or in keywords that can contain procedure names such as TICKFORMAT or
EVENT_PRO, you must include the .pro files for these routines in a .sav
file and add them to your distribution.

4. If your application uses IDL variables, such as a custom ASCII template, or if
you want to distribute other procedures and functions that are not included in
your main .sav file, you will need to create .sav files using the SAVE
procedure, and copy the .sav files to your distribution. You must save
variables and procedures in separate .sav files. These .sav files can be
restored by using the RESTORE procedure in your main procedure, or can be
restored automatically by IDL when resolving a routine with the same name as
the .sav file. See “Using SAVE and RESTORE” on page 559 for more
information.

Syntax of the make_rt Script

The make_rt script uses the following syntax:

make_rt [source] dest manifest savefile mode

Following are descriptions for each parameter of the make_rt command:

source — The path to the main IDL directory, such as /usr/local/rsi/idl_6.1.
If not specified, you will be prompted.

dest — The full path to the destination directory that will contain the distribution.
This directory must already exist—make_rt will not create this directory.
Building Your Application Building IDL Applications

Chapter 22: Distributing IDL Applications 567
manifest — The full path and filename containing the manifest file. This is the
manifest_rt.txt file in the idl-dir\bin directory.

savefile — The name of the executable used to start your application, without any
extension. For IDL applications, this is typically the name of your .sav file. For
Callable IDL applications, the IDL executable, located in the bin.platform
directory, is always named idl. The value specified for the savefile parameter
determines the name of your application startup script, located in the top-level
directory. For Callable IDL applications, this script must be edited.

mode — The type of .sav file your application uses. Valid values are:

• rt — Use this value if your application uses a .sav file that does not contain an
embedded license (i.e., you have purchased a runtime license). This value is
the equivalent of selecting the Save File (.sav) option in the
Project → Options dialog.

• em — Use this value if you have a licensed .sav file (.i.e., you have purchased
an embedded license). This value is the equivalent of selecting the Licensed
Save File (.sav) option in the Project → Options dialog.

If your application does not use a .sav file, it does not matter which value you use,
but you must specify a value.

Example: Callable IDL Application

Assume you have IDL installed in the /usr/local/rsi/idl_6.1 directory, and
you are creating a distribution in the /myapps directory. To create a distribution for a
Callable IDL application that does not use a .sav file, you would execute the
following command from the /usr/local/rsi/idl_6.1/bin directory:

make_rt /myapps /usr/local/rsi/idl_6.1/bin/manifest_rt.txt myapp rt

Note
The savefile and mode parameters are required, even if your application does not
use a .sav file. For Callable IDL applications, the savefile parameter specifies
the name of your application startup script in the top-level directory of your
application distribution.
Building IDL Applications Building Your Application

568 Chapter 22: Distributing IDL Applications
Preparing a Windows Distribution

The following sections describe the steps you must perform prior to distributing your
application on Microsoft Windows systems. For information on distributing your
application on UNIX systems, see “Preparing a UNIX Distribution” on page 574.

The method for preparing an IDL distribution varies depending on the type of IDL
application you are distributing:

• “Unlicensed Native IDL Applications” on page 568

• “Virtual Machine Applications” on page 568

• “Licensed IDL Applications” on page 569

• “ActiveX Applications” on page 573

Unlicensed Native IDL Applications

If your native IDL application is intended to be run in an existing fully-licensed IDL
installation, you do not need to create an IDL distribution. Simply package up your
application files (either .pro files or .sav files, and any necessary data files) and
distribute it to your users along with instructions describing how to install and launch
the application.

Virtual Machine Applications

If your IDL Virtual Machine application is intended to be run in an end-user’s
existing IDL installation or off of the IDL for Windows Installation CD-ROM, you do
not need to create an IDL distribution. Simply distribute the .sav files that make up
your application along with instructions on how to install and launch the application.
SAVE files created to be run in the IDL Virtual Machine can be placed anywhere on
the user’s system, and launched as described in “Running a .sav File in the IDL
Virtual Machine” on page 539.

Creating a Windows Distribution CD-ROM

Under Microsoft Windows, you can also allow your users to run your IDL Virtual
Machine application directly from a CD-ROM that you create. For instructions
describing how to create a Windows CD-ROM containing the IDL Virtual Machine
distribution and your application files, “Distributing Your Application on a CD” on
page 578.
Preparing a Windows Distribution Building IDL Applications

Chapter 22: Distributing IDL Applications 569
Licensed IDL Applications

If your application includes a license — either a runtime license or an embedded
license — you must perform the following steps:

1. Edit the idl.ini File

2. Rename idl.000 and Remove reg.dat

3. Describe How to Start Your Application

Note
These steps apply for licensed native IDL applications, Callable IDL applications,
and ActiveX applications, with either runtime or embedded licenses.

Edit the idl.ini File

IDL uses an initialization file called idl.ini to supply software licensing
information and program defaults. IDL reads the idl.ini file when it starts up for
the first time and automatically converts the file entries into Windows Registry
entries. Even if you choose to have your customer license IDL the first time your
application is run, you must supply an idl.ini file. The idl.ini file resides in the
bin\bin.x86 directory.

The idl.ini file is automatically created for you when you create an IDL
distribution. You might need to make some changes to this file to ensure that your
application starts correctly on the end user’s system. The following is an example of
the default idl.ini file that will be copied to the bin\bin.x86 directory of your
distribution:

[IDL 6.1]
HomeDir=..\..
PortSetId=0
RuntimeFile=..\..\myapp.sav
SearchPath=+..\..
RSI Root=..\..\..

Note
All directories specified in the idl.ini file should be relative to the directory
containing the .ini file. This ensures that if the directory tree for your application
is moved to another location, it will still run.

The general syntax of the .ini file is:

Field=Value
Building IDL Applications Preparing a Windows Distribution

570 Chapter 22: Distributing IDL Applications
There are additional fields available that are not included in the default .ini file. The
available fields in the .ini file are as follows:

• HomeDir — Specifies the directory that contains the bin directory.

• HelpPath — Specifies the directories in which IDL will search for help files.
The “+” symbol at the beginning of the string indicates that all subdirectories
of the specified directory should be searched. Separate multiple directories
with a semicolon. For example:

HelpPath=..\..;..\helpfiles

• RSI Root — Specifies the relative path from the bin.x86 directory to the
license directory. The default value is:

RSI Root=..\..\..

For example, if RSI Root contains the default value and your application
directory tree looks like this:

MyApp
bin

bin.x86
resource

license

IDL will look for the license file in the license directory.

• RuntimeFile — Specifies the name of the .sav file to be automatically
restored when IDL starts. If this field is left blank and no .sav file is specified
at the command line, IDL will attempt to restore a file named runtime.sav
in the directory specified by the HomeDir field.

• RuntimeIcon — Specifies the path and name of the application custom icon
(.ico file).

• SearchPath — Specifies the directories in which IDL will search for .sav
files when attempting to resolve routines. The “+” symbol at the beginning of
the string indicates that all subdirectories of the specified directory should be
searched. Separate multiple directories with a semicolon. For example:

SearchPath=..\..;..\savefiles
Preparing a Windows Distribution Building IDL Applications

Chapter 22: Distributing IDL Applications 571
Rename idl.000 and Remove reg.dat

If you have launched your application prior to distributing the application, then the
idl.ini file has been renamed idl.000 and a reg.dat file has been created.
Before you distribute your application, rename idl.000 back to idl.ini and
remove the reg.dat file from the bin\bin.x86 directory. Since reg.dat is a
hidden file, you may need to select View → Options → Show all files in Windows
Explorer and click OK to see it.

Describe How to Start Your Application

You must provide your end user with instructions on starting your application. You
can simply provide the end user with the name and location of your application
executable, or if you are using an installer for your application, you can create
shortcuts and/or Start menu items for your user.

In your application distribution, there is a bin\bin.x86 directory containing the
following:

• The executable for your application. For IDL applications, this is an executable
with the name specified in the Run Command field of the Project → Options
dialog (if you used the Project → Export feature), or the savefile
parameter (if you used the make_rt script). For example, if your .sav file is
called myapp.sav, an executable with the name myapp.exe will be created.
For Callable IDL or ActiveX applications, this is the executable you have
created.

• The IDL executable. For IDL applications, the IDL executable is the same file
as your application executable as described above. For Callable IDL or
ActiveX applications, the IDL executable is a separate file from your
application executable, and can be deleted.

• The idl.ini file. This file tells IDL where to find .sav files (if your
application uses any), and where to find the license file (for applications that
do not contain an embedded license).
Building IDL Applications Preparing a Windows Distribution

572 Chapter 22: Distributing IDL Applications
You can start your application by simply double-clicking your application .exe file
in the bin\bin.x86 directory. If your application uses a .sav file, this executable
does the following:

• Restores the specified .sav file, if one is specified at the command line.

• Restores the .sav file specified in the idl.ini file if no .sav file is specified
at the command line.

• Restores the file runtime.sav, if no file is specified at the command line or
in the idl.ini file.

IDL then calls the main procedure. This is:

• a procedure named main in the .sav file, or

• a procedure with the same name as the .sav file

When the main procedure returns, IDL exits.

If you wish to create a shortcut or Start menu item for your user, you would use the
path to your application executable. For example, assume the top-level directory of
your application is C:\myapp, which contains the file myapp.sav, the executable
myapp.exe is located in C:\myapp\bin\bin.x86 directory, and your idl.ini
file looks like this:

[IDL 6.1]
HomeDir=..\..
PortSetId=0
LicenseMethod=1
RuntimeFile=..\..\myapp.sav
SearchPath=+..\..
RSI Root=..\..\..

To create a shortcut that restores the file myapp.sav, you could use the following for
the Command Line field of your shortcut:

C:\myapp\bin\bin.x86\myapp.exe

If your .sav file name is different from the name of your executable, you can specify
the name of the .sav file to be restored. For example, if your executable is named
myapp.exe, and your .sav file is named mysav.sav, you could use the following
for the Command Line field of your shortcut:

C:\myapp\bin\bin.x86\myapp.exe C:\myapp\mysav.sav

In order for this to work, your .sav file must contain a procedure named main.
Preparing a Windows Distribution Building IDL Applications

Chapter 22: Distributing IDL Applications 573
ActiveX Applications

When an ActiveX application is installed on the end user’s system, the following
steps must be performed in addition to those listed in the previous section. These
tasks can be performed using an installer, or they can be performed manually by the
end user:

1. Make sure that when your application is being installed, the idldrawx3.ocx
file from the bin.x86 directory of your distribution tree is transferred to the
windows\system32 directory.

2. Register the idldrawx3.ocx file during your application installation process.
This can be accomplished using the regsvr32.exe executable. For example,
your installation script could contain the following command:

regsvr32 idldrawx3.ocx

For more information, refer to your Microsoft Windows documentation.
Building IDL Applications Preparing a Windows Distribution

574 Chapter 22: Distributing IDL Applications
Preparing a UNIX Distribution

The following sections describe the steps you must perform prior to distributing your
application on UNIX systems. For information on distributing your application on
Microsoft Windows systems, see “Preparing a Windows Distribution” on page 568.

The method for preparing an IDL distribution varies depending on the type of IDL
application you are distributing:

• “Unlicensed Native IDL Applications” on page 574

• “Virtual Machine Applications” on page 574

Unlicensed Native IDL Applications

If your native IDL application is intended to be run in an existing fully-licensed IDL
installation, you do not need to create an IDL distribution. Simply package up your
application files (either .pro files or .sav files, and any necessary data files) and
distribute it to your users along with instructions describing how to install and launch
the application.

Virtual Machine Applications

If your IDL Virtual Machine application is intended to be run in an end-user’s
existing IDL installation, you do not need to create an IDL distribution. Simply
distribute the .sav files that make up your application along with instructions on
how to install and launch the application. SAVE files created to be run in the IDL
Virtual Machine can be placed anywhere on the user’s system, and launched as
described in “Running a .sav File in the IDL Virtual Machine” on page 539.
Preparing a UNIX Distribution Building IDL Applications

Chapter 22: Distributing IDL Applications 575
Callable IDL Applications

The following steps are required before distributing a Callable IDL application.

1. Add Your Executables to the Distribution

Copy your application executable to the bin.platform directory, where platform
is the name of the platform for which you created the application. If you are
distributing your application on multiple platforms, copy the executable for each
platform to the corresponding bin.platform directory. Placing your executables in
the bin.platform directory offers a couple of advantages:

• It simplifies application startup, especially if your application is distributed for
multiple platforms. The application startup script calls a script in the bin
directory. This script is designed to start the correct executable, depending on
the platform on which it is being executed. This allows the user to start the
application on any platform by simply executing the startup script in the top-
level directory, thereby saving the user from having to know the directory in
which the executable is located.

• It saves the user, or your installation script, from having to set the
LD_LIBRARY_PATH environment variable because sharable libraries are
located in the bin.platform directory.

2. Rename the idl Script

Located in the bin directory of your distribution is a script called idl. For Callable
IDL applications, this script must use the same name as your application executable
in the bin.platform directory. For example, if your application executable in the
bin.platform directory is called myapp, rename the idl script in the bin
directory to myapp.
Building IDL Applications Preparing a UNIX Distribution

576 Chapter 22: Distributing IDL Applications
3. Edit the Startup Script

In the top-level directory of your application distribution, there is a startup script with
the name specified by the savefile parameter you specified when you ran the
make_rt script. Make the following changes to this script:

1. For Callable IDL applications, you must edit this startup script to execute the
script in the bin directory that you renamed in the previous section, “Rename
the idl Script”. For example, if your application executable in the
bin.platform directory is called myapp, and you therefore renamed the idl
script in the bin directory to myapp, you would edit the startup script in the
top-level directory as follows:

./bin/myapp

Note
The above command requires the user to execute the startup script from the
top-level directory of your application distribution. To allow the user to
launch your application from a different directory, the user (or your
installation script) could change the command to use the full path to the
script in the bin directory. See the example after the following step.

2. In order to allow your application to find the correct executable (either IDL or
a Callable IDL executable), the IDL_DIR environment variable must be set on
the user’s machine to point to the top-level directory of your application.
Because this location is not known until the user installs your application,
IDL_DIR must be set by either an installation script or by the user.

If there are other RSI products installed on the user’s machine, IDL_DIR may
already be set. For this reason, IDL_DIR should be set for the instance of the
shell that will be used to start your application, but should not be set in the
user’s login scripts such as .cshrc or .profile. This allows IDL_DIR to be
set properly for your application, without conflicting with the IDL_DIR setting
for other products the user may have installed.
Preparing a UNIX Distribution Building IDL Applications

Chapter 22: Distributing IDL Applications 577
The most convenient way to set IDL_DIR on the user’s machine is to have
your installation script (or the user) edit the startup script. This saves the user
from having to manually set IDL_DIR prior to launching your application. You
can either provide the user with instructions on adding the necessary
commands to the startup script, or you can have your installation script modify
the startup script. For example, if an application called myapp is installed in
the /home/apps directory, your startup script would resemble the following:

IDL_DIR=/home/apps
export IDL_DIR
/home/apps/bin/myapp

If you do not modify the startup script, the user must set IDL_DIR at the
command prompt prior to launching your application. For example, if your
application is installed in the user’s /home/myapp directory, the user could
execute the following command at the C shell prompt:

setenv IDL_DIR /home/myapp

Starting Your UNIX Application

For both IDL and Callable IDL applications, starting your application on UNIX
requires the following steps:

1. Set the IDL_DIR environment variable as described above.

2. Execute the startup script in the top-level directory of your application.
Building IDL Applications Preparing a UNIX Distribution

578 Chapter 22: Distributing IDL Applications
Distributing Your Application on a CD

Under Microsoft Windows, you can allow your users to run your IDL Virtual
Machine application directly from a CD-ROM that you create. This allows users with
Windows machines to run your application without needing to install IDL.

To create a CD-ROM containing the IDL Virtual Machine distribution and your
application files, you will do the following:

1. Create a CD-ROM Image Directory

2. Copy the IDL Virtual Machine Distribution

3. Copy and Rename the idlvm.exe File

4. Copy and Rename the idlvm.ini File

5. Copy your Application Files

6. Modify the idlvm.ini File

7. Copy and Modify the autorun.inf File

8. Remove the reg.dat File

9. Create and Test the CD-ROM

Note
You can distribute multiple IDL Virtual Machine applications on a single
CD-ROM.

Note
Additional installation steps are required to configure the IDL DataMiner,
IDLffDicomEX feature, and IDL-Java bridge. Applications that use these features
cannot be distributed on a CD-ROM as described in this section.

Create a CD-ROM Image Directory

Begin by creating a CD-ROM image directory on your hard drive. This directory will
serve as the root directory of the CD-ROM you create, and will contain both the IDL
Virtual Machine distribution and your application files.

Copy the IDL Virtual Machine Distribution

Insert the IDL for Windows Installation CD-ROM in your CD-ROM drive, and copy
the entire
Distributing Your Application on a CD Building IDL Applications

Chapter 22: Distributing IDL Applications 579
X:\setup\x86\RSI\IDL61

directory (where X: is the drive letter of your CD-ROM drive) into your CD-ROM
image directory.

Copy and Rename the idlvm.exe File

Copy the file

X:\setup\x86\RSI\idlvm.exe

(where X: is the drive letter of your CD-ROM drive) into your CD-ROM image
directory. If you want, rename idlvm.exe to reflect the name of your application.
For example, if your application is named “HydroPlot,” you could rename the
idlvm.exe file as hydroplot.exe.

Warning
If you rename idlvm.exe, be sure to retain the .exe extension.

Copy and Rename the idlvm.ini File

When the user loads your CD-ROM and clicks on the executable file (idlvm.exe or
whatever you have renamed it), the executable searches for and reads a .ini file with
the same base name as the executable. If you renamed idlvm.exe, you will also
need to rename the .ini file with the same base name. For example, if you renamed
idlvm.exe as hydroplot.exe, you would rename idlvm.ini as
hydroplot.ini.

Copy the file

X:\setup\x86\RSI\idlvm.ini

(where X: is the drive letter of your CD-ROM drive) into your CD-ROM image
directory. Rename the .ini file to match the name of the executable file, if you have
changed it from idlvm.exe.

Copy your Application Files

Copy your application files into your CD-ROM image directory. While you can copy
the files anywhere in the directory hierarchy on the CD-ROM, you might want to
create an application directory to contain your files. This can be especially convenient
if you are delivering multiple applications on a single CD-ROM.

Modify the idlvm.ini File

The .ini file (idlvm.ini or whatever you have renamed it) specifies what will
happen when the user runs the .exe file. You must modify this file to launch your
Building IDL Applications Distributing Your Application on a CD

580 Chapter 22: Distributing IDL Applications
application. See “Format of the .ini File” on page 581 for a complete description of
the .ini file.

Copy and Modify the autorun.inf File

If you want your application to launch automatically when the user inserts your
CD-ROM, you must modify the autorun.inf file. The autorun.inf file contains
the following lines:

[autorun]
open = idlvm.exe
icon = idl.ico

If you want your application to launch automatically when the user inserts the
CD-ROM, copy the file

X:\setup\x86\RSI\autorun.inf

(where X: is the drive letter of your CD-ROM drive) into your CD-ROM image
directory and modify the

open = idlvm.exe

line to reflect the name of the executable file you want to launch automatically. For
example, if you renamed idlvm.exe to hydroplot.exe, change the line to read:

open = hydroplot.exe

If your executable file displays a dialog, you might want to modify the

icon = idl.ico

line to specify an icon that will be displayed in the Windows task bar. If you specify
an icon file in your autorun.inf file, you must ensure that the icon file is included
in the root directory of your CD-ROM.

Remove the reg.dat File

When IDL for Windows runs, it creates a hidden file named reg.dat in the
bin/bin.x86 subdirectory of the IDL distribution. This file contains information
used by IDL to locate entries in the Windows registry. If you have tested your
CD-ROM image directory by running your IDL Virtual Machine application, the
bin/bin.x86 subdirectory of the IDL distribution will contain a reg.dat file.

Warning
You must remove this file before you create your CD-ROM. Including this file in
the distribution you send to users may cause errors when IDL attempts to locate
registry entries in the location specified by the reg.dat file.
Distributing Your Application on a CD Building IDL Applications

Chapter 22: Distributing IDL Applications 581
Since reg.dat is a hidden file, you may need to select the options appropriate for
your Windows version in Windows Explorer to see it.

Create and Test the CD-ROM

Use your CD-ROM creation software to create a CD-ROM from the contents of the
CD-ROM image directory. To test the CD-ROM — specifically to determine whether
your application will run from the IDL Virtual Machine distribution on the disk —
you might want to do the following:

1. Exit IDL, if it is running.

2. Change the name of the IDL directory so that IDL will not be found on your
hard drive. For example, change the name of the IDL 6.1 directory to
IDL61_x. Windows might warn you that changing the directory name may
cause some programs not to function correctly; click Yes to accept the change.

3. Insert your CD-ROM and test your application.

4. After testing your application, rename your IDL directory to IDL61.

Format of the .ini File

The idlvm.exe file can either run a single application immediately or display a
dialog with up to four buttons, each of which invokes a different application. The
configuration of the dialog (including whether or not it is displayed at all) is
controlled by the .ini file (idlvm.ini or whatever you have renamed it).

The .ini file contains five sections, one labelled [DIALOG] and four labelled
[BUTTONn] (where n is a number between 1 and 4). The contents of each type of
section are described below.

DIALOG Section

[DIALOG]
Show=False
BackColor=&H6B1F29
Caption=<any string>
Picture=.\splash.bmp
DefaultAction=<path to application>

Show — This field can contain the string True or the string False. If Show=True,
the dialog is displayed, and the DefaultAction is not executed. If Show=False,
the dialog is not displayed, and the DefaultAction is executed immediately when
the user double-clicks on the idlvm.exe icon.
Building IDL Applications Distributing Your Application on a CD

582 Chapter 22: Distributing IDL Applications
BackColor — This field contains an RGB color triplet specified in hexadecimal
notation. This color will be used in any part of the dialog that is not covered by the
image specified as the value of the Picture field. To make the background white, set
BackColor=&HFFFFFF.

Caption — This field contains a string that will be displayed in the title bar of the
dialog, if Show=True.

Picture — This field contains the relative path to a Windows bitmap file that will be
displayed in the dialog if Show=True. The image will be positioned with its upper
left corner in the upper left corner of the dialog window. To completely fill the dialog,
the image contained in the bitmap file should be 480 x 335 pixels. Any area of the
dialog that is not filled by the image will be displayed in the color specified in the
BackColor field.

DefaultAction — This field contains the command that should be executed when
idlvm.exe is run if Show=False. In most cases, you will need to specify the
relative path to the idlrt.exe file in the IDL distribution on your CD-ROM,
followed by the -vm flag and the relative path to your application’s SAVE file.

For example, if you have placed the SAVE file for the application hydroplot.sav
in the root directory of the CD-ROM along with the idlvm.exe application, the
following DefaultAction would launch hydroplot.sav in the IDL Virtual
Machine when the user double clicks on the idlvm.exe icon:

DefaultAction=.\IDL61\bin\bin.x86\idlrt.exe -vm=.\hydroplot.sav

BUTTON Sections

There can be up to four [BUTTON] sections. The format is the same for any section of
this type.

Note
If the Show field of the [DIALOG] section is set to False, no buttons will be
displayed, regardless of the content of the [BUTTON] sections.

[BUTTON1]
Show=True
Caption=<any string>
Action=<path to application>

Show — This field can contain the string True or the string False. If Show=True,
the button will be displayed on the dialog.

Caption — This field contains a string that will be displayed on the button, if
Show=True.
Distributing Your Application on a CD Building IDL Applications

Chapter 22: Distributing IDL Applications 583
Action — This field contains the command that should be executed when the user
clicks on the button, if Show=True. See DefaultAction above for an explanation
of the format of the command string.

To create a button that simply closes the dialog without executing anything, set
Action=Exit on the button.
Building IDL Applications Distributing Your Application on a CD

584 Chapter 22: Distributing IDL Applications
Installing Your Application

Installation of your application on the end user’s machine can be performed manually
by the user, or it can be automated using an installer. There are a number of
commercial applications available to help you build installers.

Your users should keep the following points in mind when installing your application:

• In order to avoid any possible conflicts with existing versions of IDL, do NOT
install your application in the same directory as IDL x.x, where IDL x.x is the
version used by your application.

• If prompted with a dialog asking whether or not to import initialization
preferences, answer Yes. Answering No may mean that you are not licensing
IDL.

Note
RSI’s Global Services group can create installation packages for your application.
Contact your RSI sales representative for additional information.
Installing Your Application Building IDL Applications

Chapter 22: Distributing IDL Applications 585
Incorporating the IDL Data Miner

If your application uses IDL DataMiner, you will need to add some files and move
other files before you distribute your application. The changes you make will depend
on the operating system you are using.

Windows

If your application uses IDL DataMiner, please call RSI Technical Support for
instructions.

• E-mail: support@RSInc.com

• Phone: (303) 413-3920

UNIX

If your application uses IDL DataMiner, you will need to add the files listed in the
manifest_aux.txt file to the manifest file before creating your IDL distribution.

You must modify the odbc.ini file to include information about the drivers you are
using. This file is located in the resource/dm/<OS_NAME> directory of the
distribution tree you have just created. After modifying this file, it must be placed in
each user’s home directory. For details on the modifications you must make to the
odbc.ini file, see the IDL DataMiner manual.
Building IDL Applications Incorporating the IDL Data Miner

586 Chapter 22: Distributing IDL Applications
Incorporating the IDL Data Miner Building IDL Applications

Part IV: Using IDL
Objects

Chapter 23:

Object Basics
The following topics are covered in this chapter:
Object-Oriented Programming 590
IDL Object Overview 591
Class Structures . 593
Inheritance . 595
Object Heap Variables 597
Null Objects . 600

The Object Lifecycle 601
Operations on Objects 604
Obtaining Information about Objects 606
Method Routines 608
Method Overriding 612
Object Examples 615
Building IDL Applications 589

590 Chapter 23: Object Basics
Object-Oriented Programming

Traditional programming techniques make a strong distinction between routines
written in the programming language (procedures and functions in the case of IDL)
and data to be acted upon by the routines. Object oriented programming begins to
remove this distinction by melding the two into objects that can contain both routines
and data. Object orientation provides a layer of abstraction that allows the
programmer to build robust applications from groups of reusable elements.

Beginning in version 5.0, IDL provides a set of tools for developing object-oriented
applications. IDL’s Object Graphics engine is object-oriented, and a class library of
graphics objects allows you to create applications that provide equivalent graphics
functionality regardless of your (or your users’) computer platform, output devices,
etc. As an IDL programmer, you can use IDL’s traditional procedures and functions
as well as the new object features to create your own object modules. Applications
built from object modules are, in general, easier to maintain and extend than their
traditional counterparts.

This chapter describes how to use object techniques with IDL. A complete discussion
of object orientation is beyond the scope of this book—if you are new to object
oriented programming, consult one of the many references on object oriented
program that are available.
Object-Oriented Programming Building IDL Applications

Chapter 23: Object Basics 591
IDL Object Overview

IDL objects are actually special heap variables, which means that they are global in
scope and provide explicit user control over their lifetimes. Object heap variables can
only be accessed via object references. Object references are discussed in this
chapter. Heap variables in general are discussed in detail in “Heap Variables” on
page 157.

Briefly, IDL provides support for the following object concepts and mechanisms:

Classes and Instances

IDL objects are created as instances of a class, which is defined in the form of an IDL
structure. The name of the structure is also the class name for the object. The instance
data of an object is an IDL structure contained in the object heap variable, and can
only be accessed by special functions and procedures, called methods, which are
associated with the class. Class structures are discussed in “Class Structures” on
page 593.

Encapsulation

Encapsulation is the ability to combine data and the routines that affect the data into a
single object. IDL accomplishes this by only allowing access to an object’s instance
data via that object’s methods. Data contained in an object is hidden from all but the
object’s own methods.

Methods

IDL allows you to define method procedures and functions using all of the
programming tools available in IDL. Method routines are identified as belonging to
an object class via a routine naming convention. Methods are discussed in detail in
“Method Routines” on page 608.

Polymorphism

Polymorphism is the ability to create multiple object types that support the same
operations. For example, many of IDL’s graphics objects support an operation called
“Draw,” which sends graphics output to a specified place. The “Draw” operation is
different in different contexts; sending a graphic to a printer is different from writing
it to a file. Polymorphism allows the details of the differences to remain hidden—all
you need to know is that a given object supports the “Draw” operation.
Building IDL Applications IDL Object Overview

592 Chapter 23: Object Basics
Inheritance

Inheritance is the ability of an object class to inherit the behavior of other object
classes. This means that when writing a new object class that is very much like an
existing object class, you need only program the functions that are different from
those in the inherited class. IDL supports multiple inheritance—that is, an object can
inherit qualities from any number of other existing object classes. Inheritance is
discussed in detail in “Inheritance” on page 595.

Persistence

Persistence is the ability of objects to remain in existence in memory after they have
been created, allowing you to alter their behavior or appearance after their creation.
IDL objects persist until you explicitly destroy them, or until the end of the IDL
session. In practice, object persistence removes the need (in traditional IDL
programs) to re-execute IDL commands that create an item (a plot, for example) in
order to change a detail of the item. For example, once you have created a graphic
object containing a plot, you can alter any aspect of the plot “on the fly,” without re-
creating it. Similarly, having created an object containing a plot, you need not
recreate the plot in order to print, save to an image file, or re-display it.

IDL objects also persist in the sense that you can use the SAVE and RESTORE
routines to save and recreate objects between IDL sessions.
IDL Object Overview Building IDL Applications

Chapter 23: Object Basics 593
Class Structures

Object instance data is contained in named IDL structures. We will use the term class
structure to refer to IDL structures containing object instance data.

Beyond the restriction that class structures must be named structures, there are no
limits on what a class structure contains. Class structures can include data of any type
or organization, including pointers and object references. When an object is created,
the name of the class structure becomes the name of the class itself, and thus serves to
define the names of all methods associated with the class. For example, if we create
the following class structure:

struct = { Class1, data1:0L, data2:FLTARR(10) }

any objects created from the class structure Class1 would have the same two fields
(data1, a long integer, and data2, a ten-element floating-point array) and any methods
associated with the class would have the name Class1::method, where method is the
actual name of the method routine. Methods are discussed in detail in “Method
Routines” on page 608.

Note
When a new instance of a structure is created from an existing named structure, all
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only a template for that type of data. This
is true of objects as well; a newly created object will contain a zeroed copy of the
class structure as its instance data.

It is important to realize that creating a class structure does not create an object.
Objects can only be created by calling the OBJ_NEW or OBJARR function with the
name of the class structure as the argument, and can only be accessed via the returned
object reference. In addition, object methods can only be called on objects, and not on
class structures themselves.

Once defined, a given class structure type cannot be changed. If a structure definition
is executed and the structure already exists, each tag name and the structure of each
tag field must agree with the original definition. To redefine a structure, you must
either reset or exit the current IDL session.
Building IDL Applications Class Structures

594 Chapter 23: Object Basics
Automatic Class Structure Definition

If IDL finds a reference to a structure that has not been defined, it will search for a
structure definition procedure to define it. (This is true of all structure references, not
just class structures.) Automatic structure definition is discussed in “Automatic
Structure Definition” on page 198. Briefly, if IDL encounters a structure reference for
a structure type that has not been defined, it searches for a routine with a name of the
form

STRUCT__DEFINE

where STRUCT is the name of the structure type. Note that there are two underscores
in the name of the structure definition routine.

The following is an example of a structure definition procedure that defines a
structure that will be used for the class CNAME.

PRO CNAME__DEFINE
struct = { CNAME, data1:0L, data2:FLTARR(10) }

END

This defines a structure named CNAME with 2 data fields (data1, a long integer, and
data2, a ten-element floating-point array). If you tell IDL to create an object of type
CNAME before this structure has been defined, IDL will search for the procedure
CNAME__DEFINE to define the class structure before attempting to create the
object. If the CNAME__DEFINE procedure has not yet been compiled, IDL will use
its normal routine searching algorithm to attempt to find a file named
CNAME__DEFINE.PRO. If IDL cannot find a defined structure or structure
definition routine, the object-creation operation will fail.

Note
If you are creating structure definitions on the fly, the possibility exists that you will
run into namespace conflicts — that is, a structure with the same name as the
structure you are attempting to create may already exist. This can be a problem if
you are developing object-oriented applications for others, since you probably do
not have much control over the IDL environment on your clients’ systems. You can
avoid most problems by creating a unique namespace for your routines; RSI does
this by prefixing the names of objects with the letters “IDL”. To be completely sure
that the objects created by your programs are what you expect, however, you should
have the program inspect the created structures and handle errors appropriately.
Class Structures Building IDL Applications

Chapter 23: Object Basics 595
Inheritance

When defining a class structure, use the INHERITS specifier to indicate that this
structure inherits instance data and methods from another class structure. For
example, if we defined a class structure called “circle,” as follows:

struct = { circle, x:0, y:0, radius:0 }

we can define a subclass of the “circle” class like this:

struct = { filled_circle, color:0, INHERITS circle }

You can use the INHERITS specifier in any structure definition. However, when the
structure being defined is a class structure (that is, an object will be created from the
structure), inheritance affects both the structure definition and the object methods
available to the object that inherits. The INHERITS specifier is discussed in
“Structure Inheritance” on page 184.

When a class structure inherits from another class structure, it is said to be a subclass
of the class it inherits from. Similarly, the class that is inherited from is called a
superclass of the new class. Defining a subclass of an existing class in this manner
has two consequences. First, the class structure for the subclass is constructed as if
the elements of the inherited class structure were included in-line in the structure
definition. In our example, the command defining the “filled_circle” class above
would create the followings structure definition:

{ filled_circle, color:0, x:0, y:0, radius:0 }

Note that the data fields from the inherited structure definition appear in-line at the
point where the INHERITS specifier appears.

The second consequence of defining a subclass structure that inherits from another
class structure is that when an object is created from the subclass structure, that object
inherits the methods of the superclass as well as its data fields. That is, if an object of
the superclass type has a method, that method is available to objects created from the
subclass as well. In our example above, say we create an object of type circle and
define a Print method for it. Any objects of type filled_circle will also have access to
the Print method defined for circle.

IDL allows multiple inheritance. This means that you can include the INHERITS
specifier as many times as you desire in a structure definition, as long as all of the
resulting data fields have unique names. Data fields must have unique names because
when the class structure definition is built, the tag names are included in-line at the
point where the INHERITS specifier appears. Duplicate tag names will cause the
structure definition to fail; it is your responsibility as a programmer to ensure that tag
names are not used more than once in a structure definition.
Building IDL Applications Inheritance

596 Chapter 23: Object Basics
Note
The requirement that names be unique applies only to data fields. It is perfectly
legitimate (and often necessary) for subclasses to have methods with the same
names as methods belonging to the superclass. See “Method Overriding” on
page 612 for details.

If a structure referred to by an INHERITS specifier has not been defined in the
current IDL session, IDL will attempt to define it in the manner described in
“Automatic Class Structure Definition” on page 594.
Inheritance Building IDL Applications

Chapter 23: Object Basics 597
Object Heap Variables

Object heap variables are IDL heap variables that are accessible only via object
references. While there are many similarities between object references and pointers,
it is important to understand that they are not the same type, and cannot be used
interchangeably. Object heap variables are created using the OBJ_NEW and
OBJARR functions. For more information on heap variables and pointers, see “IDL
Pointers” on page 162.

Heap variables are a special class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. In IDL documentation of
pointers and objects, heap variables accessible via pointers are called pointer heap
variables, and heap variables accessible via object references are called object heap
variables.

Note
Pointers and object references have many similarities, the strongest of which is that
both point at heap variables. It is important to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use both in
a given program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:

• Facilitate object oriented programming.

• Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved as well. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.
Building IDL Applications Object Heap Variables

598 Chapter 23: Object Basics
• Are manipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

• Can be used to construct arbitrary, fully general data structures in conjunction
with pointers.

Dangling References

If a heap variable is destroyed, any remaining pointer variable or object reference that
still refers to it is said to contain a dangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message.

There are several possible approaches to avoiding such errors. The best option is to
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (via the
PTR_VALID or OBJ_VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereferencing.

Heap Variable “Leakage”

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.
See “Heap Variables” on page 157 for additional details.

Freeing Heap Variables

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
all array elements and structure fields. When a valid pointer or object reference is
encountered, that heap variable is marked for removal, and then is recursively
examined for additional heap variables to be freed. In this way, all heap variables that
are referenced directly or indirectly by the input argument are located. Once all such
heap variables are identified, HEAP_FREE releases them in a final pass. Pointers are
released as if the PTR_FREE procedure was called. Objects are released as with a
call to OBJ_DESTROY.
Object Heap Variables Building IDL Applications

Chapter 23: Object Basics 599
HEAP_FREE is recommended when:

• The data structures involved are highly complex, nested, or variable, and
writing cleanup code is difficult and error prone.

• The data structures are opaque, and the code cleaning up does not have
knowledge of the structure.

See “HEAP_FREE” in the IDL Reference Guide manual for further details.
Building IDL Applications Object Heap Variables

600 Chapter 23: Object Basics
Null Objects

The Null Object is a special object reference that is guaranteed to never point at a
valid object heap variable. It is used by IDL to initialize object reference variables
when no other initializing value is present. It is also a convenient value to use when
defining structure definitions for fields that are object references, since it avoids the
need to have a pre-existing valid object reference.

Null objects are created when you call an object-creation routine but do not specify a
class structure to be used as the new object’s template. The following statement
creates a null object:

nullobj = OBJ_NEW()
Null Objects Building IDL Applications

Chapter 23: Object Basics 601
The Object Lifecycle

As discussed above, objects are persistent, meaning they exist in memory until you
destroy them. We can break the life of an object into three phases: creation and
initialization, use, and destruction. Object lifecycle routines allow the creation and
destruction of object references; lifecycle methods associated with an object allow
you to control what happens when an object is created or destroyed.

This section will discuss the first and last phases of the object lifecycle; the remainder
of this chapter discusses manipulation of existing objects and use of object method
routines.

Creation and Initialization

Object references are created using one of two lifecycle routines: OBJ_NEW or
OBJARR. Newly created objects are initialized upon creation in two ways:

1. The object reference is created based on the class structure specified,

2. The object’s INIT method (if it has one) is called to initialize the object’s
instance data (contained in fields defined by the class structure). If the object
does not have an INIT method, the object’s superclasses (if any) are searched
for an INIT method.

The INIT Method

An object’s lifecycle method INIT is a function named Class::INIT (where Class is
the actual name of the class). The purpose of the INIT method is to populate a newly-
created object with instance data. INIT should return a scalar TRUE value (such as 1)
if the initialization is successful, and FALSE (such as 0) if the initialization fails.

The INIT method is unusual in that it cannot be called outside an object-creation
operation. This means that—unlike most object methods—you cannot call the INIT
method on an object directly. You can, however, call an object’s INIT method from
within the INIT method of a subclass of that object. This allows you to specify
parameters used by the superclass’ INIT method along with those used by the INIT
method of the object being created. In practice, this is often done using the _EXTRA
keyword. See“Keyword Inheritance” on page 81 for details.
Building IDL Applications The Object Lifecycle

602 Chapter 23: Object Basics
The OBJ_NEW Function

Use the OBJ_NEW function to create an object reference to a new object heap
variable. If you supply the name of a class structure as its argument, OBJ_NEW
creates a new object containing an instance of that class structure. Note that the fields
of the newly-created object’s instance data structure will all be empty. For example,
the command:

obj1 = OBJ_NEW('ClassName')

creates a new object heap variable that contains an instance of the class structure
ClassName, and places an object reference to this heap variable in obj1. If you do not
supply an argument, the newly-created object will be a null object.

When creating an object from a class structure, OBJ_NEW goes through the
following steps:

1. If the class structure has not been defined, IDL will attempt to find and call a
procedure to define it automatically. See “Automatic Class Structure
Definition” on page 594 for details. If the structure is still not defined,
OBJ_NEW fails and issues an error.

2. If the class structure has been defined, OBJ_NEW creates an object heap
variable containing a zeroed instance of the class structure.

3. Once the new object heap variable has been created, OBJ_NEW looks for a
method function named Class::INIT (where Class is the actual name of the
class). If an INIT method exists, it is called with the new object as its implicit
SELF argument, as well as any arguments and keywords specified in the call to
OBJ_NEW. If the class has no INIT method, the usual method-searching rules
are applied to find one from a superclass. For more information on methods
and method-searching rules, see “Method Routines” on page 608.

Note
OBJ_NEW does not call all the INIT methods in an object’s class hierarchy.
Instead, it simply calls the first one it finds. Therefore, the INIT method for a class
should call the INIT methods of its direct superclasses as necessary.

4. If the INIT method returns true, or if no INIT method exists, OBJ_NEW
returns an object reference to the heap variable. If INIT returns false,
OBJ_NEW destroys the new object and returns the NULL object reference,
indicating that the operation failed. Note that in this case the CLEANUP
method is not called.

See “OBJ_NEW” in the IDL Reference Guide manual for further details.
The Object Lifecycle Building IDL Applications

Chapter 23: Object Basics 603
The OBJARR Function

Use the OBJARR function to create an array of objects of up to eight dimensions.
Every element of the array created by OBJARR is set to the null object. For example,
the following command creates a 3 by 3 element object reference array with each
element contain the null object reference:

obj2 = OBJARR(3, 3)

See “OBJARR” in the IDL Reference Guide manual for further details.

Destruction

Use the OBJ_DESTROY procedure to destroy an object. If the object’s class, or one
of its superclasses, supplies a procedure method named CLEANUP, that method is
called, and all arguments and keywords passed by the user are passed to it. The
CLEANUP method should perform any required cleanup on the object and return.
Whether a CLEANUP method actually exists or not, IDL will destroy the heap
variable representing the object and return.

The CLEANUP method is unusual in that it cannot be called outside an object-
destruction operation. This means that—unlike most object methods—you cannot
call the CLEANUP method on an object directly. You can, however, call an object’s
CLEANUP method from within the CLEANUP method of a subclass of that object.

Note that the object references themselves are not destroyed. Object references that
refer to nonexistent object heap variables are known as dangling references, and are
discussed in more detail in “Dangling References” on page 169.

See “OBJ_DESTROY” in the IDL Reference Guide manual for further details.
Building IDL Applications The Object Lifecycle

604 Chapter 23: Object Basics
Operations on Objects

Object reference variables are not directly usable by many of the operators, functions,
or procedures provided by IDL. You cannot, for example, do arithmetic on them or
plot them. You can, of course, do these things with the contents of the structures
contained in the object heap variables referred to by object references, assuming that
they contain non-object data.

There are four IDL operators that work with object reference variables: assignment,
method invocation, EQ, and NE. In addition, the structure dot operator (.) is allowed
within methods of a class. The remaining operators (addition, subtraction, etc.) do not
make any sense for object references and are not defined.

Many non-computational functions and procedures in IDL do work with object
references. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It is worth
noting that the only I/O allowed directly on object reference variables is default
formatted output, in which they are printed as a symbolic description of the heap
variable they refer to. This is merely a debugging aid for the IDL programmer—
input/output of object reference variables does not make sense in general and is not
allowed. Please note that this does not imply that I/O on the contents of non-object
instance data contained in heap variables is not allowed. Passing non-object instance
data contained in an object heap variable to the PRINT command is a simple example
of this type of I/O.

Assignment

Assignment works in the expected manner—assigning an object reference to a
variable gives you another variable with the same reference. Hence, after executing
the statements:

;Define a class structure.
struct = { cname, data1:0.0 }

;Create an object.
A = OBJ_NEW('cname')

;Create a second object reference.
B = A

HELP, A, B

IDL prints:

A OBJREF = <ObjHeapVar1(CNAME)>
B OBJREF = <ObjHeapVar1(CNAME)>
Operations on Objects Building IDL Applications

Chapter 23: Object Basics 605
Note that both A and B are references to the same object heap variable.

Method Invocation

In order to perform an action on an object’s instance data, you must call one of the
object’s methods. (See “Method Routines” on page 608 for more on methods.) To call
a method, you must use the method invocation operator,->(the hyphen followed by
the greater-than sign). The syntax is:

ObjRef->Method

where ObjRef is an object reference and Method is a method belonging either to the
object’s class or to one of its superclasses. Method may be specified either partially
(using only the method name) or completely using both the class name and method
name, connected with two colons:

ObjRef->Class::Method

Equality and Inequality

The EQ and NE operators allow you to compare object references to see if they refer
to the same object heap variable. For example:

;Define a class structure.
struct = {cname, data:0.0}

;Create an object.
A = OBJ_NEW('CNAME')

;B refers to the same object as A.
B = A

;C contains a null object reference.
C = OBJ_NEW()

PRINT, 'A EQ B: ', A EQ B & $
PRINT, 'A NE B: ', A NE B & $
PRINT, 'A EQ C: ', A EQ C & $
PRINT, 'C EQ NULL: ', C EQ OBJ_NEW() & $
PRINT, 'C NE NULL:', C NE OBJ_NEW()

IDL prints:

A EQ B: 1
A NE B: 0
A EQ C: 0
C EQ NULL: 1
C NE NULL: 0
Building IDL Applications Operations on Objects

606 Chapter 23: Object Basics
Obtaining Information about Objects

Three IDL routines allow you to obtain information about an existing object:

OBJ_CLASS

Use the OBJ_CLASS function to obtain the class name of a specified object, or to
obtain the names of a specified object’s direct superclasses. For example, if we create
the following class structures:

struct = {class1, data1:0.0 }
struct = {class2, data2a:0, data2b:0L, INHERITS class1 }

We can now create an object and use OBJ_CLASS to determine its class and
superclass membership.

;Create an object.
A = OBJ_NEW('class2')

;Print A’s class membership.
PRINT, OBJ_CLASS(A)

IDL prints:

CLASS2

Or you can print as superclasses:

;Print A’s superclasses.
PRINT, OBJ_CLASS(A, /SUPERCLASS)

IDL prints:

CLASS1

See “OBJ_CLASS” in the IDL Reference Guide manual for further details.

OBJ_ISA

Use the OBJ_ISA function to determine whether a specified object is an instance or
subclass of a specified object. For example, if we have defined the object A as above:

IF OBJ_ISA(A, 'class2') THEN $
PRINT, 'A is an instance of class2.'

IDL prints:

A is an instance of class2.

See “OBJ_ISA” in the IDL Reference Guide manual for further details.
Obtaining Information about Objects Building IDL Applications

Chapter 23: Object Basics 607
OBJ_VALID

Use the OBJ_VALID function to verify that one or more object references refer to
valid and currently existing object heap variables. If supplied with a single object
reference as its argument, OBJ_VALID returns TRUE (1) if the reference refers to a
valid object heap variable, or FALSE (0) otherwise. If supplied with an array of
object references, OBJ_VALID returns an array of TRUE and FALSE values
corresponding to the input array. For example:

;Create a class structure.
struct = {cname, data:0.0}

;Create a new object.
A = OBJ_NEW('CNAME')

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A refers to a valid object.

If we destroy the object:

;Destroy the object.
OBJ_DESTROY, A

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A does not refer to a valid object.

See “OBJ_VALID” in the IDL Reference Guide manual for further details.
Building IDL Applications Obtaining Information about Objects

608 Chapter 23: Object Basics
Method Routines

IDL objects can have associated procedures and functions called methods. Methods
are called on objects via their object references using the method invocation operator.

While object methods are constructed in the same was as any other IDL procedure or
function, they are different from other routines in the following ways:

• Object methods are defined using a special naming convention that
incorporates the name of the class to which the method belongs.

• All method routines automatically pass an implicit argument named self,
which contains the object reference of the object on which the method is
called.

• Object methods cannot be called on their own. You must use the method
invocation operator and supply a valid object reference, either of the class the
method belongs to or of one of that class’ subclasses.

Defining Method Routines

Method routines are defined in the same way as other IDL procedures and functions,
with the exception that the name of the class to which they belong, along with two
colons, is prepended to the method name:

PRO ClassName::Method
IDL statements

END

or

FUNCTION ClassName::Method, Argument1
IDL statements

RETURN, value
END

For example, suppose we create two objects, each with its own “print” method.

First, define two class structures:

struct = { class1, data1:0.0 }
struct = { class2, data2a:0, data2b:0L, INHERITS class1 }

Now we define two “print” methods to print the contents of any objects of either of
these two classes. (If you are typing this at the IDL command line, enter the .RUN
command before each of the following procedure definitions.)

PRO class1::Print1
PRINT, self.data1
Method Routines Building IDL Applications

Chapter 23: Object Basics 609
END
PRO class2::Print2

PRINT, self.data1
PRINT, self.data2a, self.data2b

END

Once these procedures are defined, any objects of class1 have access to the method
Print1, and any objects of class2 have access to both Print1 and Print2 (because class2
is a subclass of—it inherits from—class1). Note that the Print2 method prints the
data1 field inherited from class1.

Note
It is not necessary to give different method names to methods from different classes,
as we have done here with Print1 and Print2. In fact, in most cases both methods
would have simply been called Print, with each object class knowing only about its
own version of the method. We have given the two procedures different names here
for instructional reasons; see “Method Overriding” on page 612 for a more
complete discussion of method naming.

The Implicit Self Argument

Every method routine has an implicit argument parameter named self. The self
parameter always contains the object reference of the object on which the method is
called. In the method routines created above, self is used to specify which object the
data fields should be printed from.

You do not need to explicitly pass the self argument; in fact, if you try to specify an
argument called self when defining a method routine, IDL will issue an error.

Calling Method Routines

You must use the method invocation operator (->) to call a method on an object. The
syntax is slightly different from other routine invocations:

;For a procedure method.
ObjRef->Method

;For a function method.
Result = ObjRef->Method()

Where ObjRef is an object reference belonging to the same class as the Method, or to
one of that class’ subclasses. We can illustrate this behavior using the Print1 and
Print2 methods defined above.

First, define two new objects:
Building IDL Applications Method Routines

610 Chapter 23: Object Basics
A = OBJ_NEW('class1')
B = OBJ_NEW('class2')

We can call Print1 on the object A as follows:

A->Print1

IDL prints:

0.00000

Similarly, we can call Print2 on the object B:

B->Print2

IDL prints:

0.00000
0 0

Since the object B inherits its properties from class1, we can also call Print1 on the
object B:

B->Print1

IDL prints:

0.00000

We cannot, however, call Print2 on the object A, since class1 does not inherit the
properties of class2:

A->Print2

IDL prints:

% Attempt to call undefined method: 'CLASS1::PRINT2'.

Searching for Method Routines

When a method is called on an object reference, IDL searches for it as with any
procedure or function, and calls it if it can be found, following the naming convention
established for structure definition routines. (See “Automatic Class Structure
Definition” on page 594.) In other words, IDL discovers methods as it needs them in
the same way as regular procedures and functions, with the exception that it searches
for files named

classname__method.pro

rather than simply

method.pro
Method Routines Building IDL Applications

Chapter 23: Object Basics 611
Remember that there are two underscores in the file name, and two colons in the
method routine’s name.

Note
If you are working in an environment where the length of filenames is limited, you
may want to consider defining all object methods in the same .pro file you use to
define the class structure. This practice avoids any problems caused by the need to
prepend the classname and the two underscore characters to the method name. If
you must use different .pro files, make sure that all class (and superclass) definition
filenames are unique in the first eight characters.
Building IDL Applications Method Routines

612 Chapter 23: Object Basics
Method Overriding

Unlike data fields, method names can be duplicated. This is an important feature that
allows method overriding, which in turn facilitates polymorphism in the design of
object-oriented programs. Method overriding allows a subclass to provide its own
implementation of a method already provided by one of its superclasses. When a
method is called on an object, IDL searches for a method of that class with that name.
If found, the method is called. If not, the methods of any inherited object classes are
examined in the order their INHERITS specifiers appear in the structure definition,
and the first method found with the correct name is called. If no method of the
specified name is found, an error occurs.

The method search proceeds depth first, left to right. This means that if an object’s
class does not provide the method called directly, IDL searches through inherited
classes by first searching the leftmost included class—and all of its superclasses—
before proceeding to the next inherited class to the right. If a method is defined by
more than a single inherited structure definition, the first one found is used and no
warning is generated. This means that class designers should pick non-generic names
for their methods as well as their data fields. For example, suppose we have defined
the following classes:

struct = { class1, data1}
struct = { class2, data2a:0, data2b:0.0, inherits class1 }
struct = { class3, data3:'', inherits class2, inherits class1 }
struct = { class 4, data4:0L, inherits class2, inherits class3 }

Furthermore, suppose that both class1 and class3 have a method called Print defined.

Now suppose that we create an object of class4, and call the Print method:

A = OBJ_NEW('class4')
A->Print

IDL takes the following steps:

1. Searches class4 for a Print method. It does not find one.

2. Searches the leftmost inherited class (class2) in the class definition structure
for a Print method. It does not find one.

3. Searches any superclasses of class2 for a Print method. It finds the class1 Print
method and calls it on A.

Notice that IDL stops searching when it finds a method with the proper name. Thus,
IDL doesn’t find the Print method that belongs to class3.
Method Overriding Building IDL Applications

Chapter 23: Object Basics 613
Specifying Class Names in Method Calls

If you specify a class name when calling an object method, like so:

ObjRef->classname::method

Where classname is the name of one of the object’s superclasses, IDL will search
classname and any of classname’s superclasses for the method name. IDL will not
search the object’s own class or any other classes the object inherits from.

This type of method call is especially useful when a class has a method that overrides
a superclass method and does its job by calling the superclass method and then
adding functionality. In our simple example from “Calling Method Routines” on
page 609, above, we could have defined a Print method for each class, as follows:

PRO class1::Print
PRINT, self.data1

END
PRO class2::Print

self->class1::Print
PRINT, self.data2a, self.data2b

END

In this case, to duplicate the behavior of the Print1 and Print2 methods, we make the
following method calls:

A->Print

IDL prints:

0.00000

And now the B:

B->Print

IDL prints:

0.00000
0 0

Now we’ll use the second method:

B->class1::Print

IDL prints:

0.00000

And now A:

A->class2::Print
Building IDL Applications Method Overriding

614 Chapter 23: Object Basics
IDL prints:

% CLASS2 is not a superclass of object class CLASS1.
% Execution halted at: $MAIN$
Method Overriding Building IDL Applications

Chapter 23: Object Basics 615
Object Examples

We have included a number of examples of object-oriented programming as part of
the IDL distribution. Many of the examples used in this volume are included —
sometimes in expanded form — in the examples/visual subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described here. See “!PATH” in the
IDL Reference Guide manual for information on IDL's path.
Building IDL Applications Object Examples

616 Chapter 23: Object Basics
Object Examples Building IDL Applications

Chapter 24:

Using Language
Catalogs
The following topics are covered in this chapter:
What Is a Language Catalog? 618
Creating a Language Catalog File 619

Using the IDLffLangCat Class 621
Widget Example . 624
Building IDL Applications 617

618 Chapter 24: Using Language Catalogs
What Is a Language Catalog?

A language catalog is a set of text strings in a particular language, created as key
name/value pairs. Applications can use these catalogs to fill in the names of menu
items, buttons, and other elements of a user interface, for example. The use of
different language catalogs, then, can support an application’s internationalization:
for example, letting a user decide what language to use for installing and running the
application.

There are two main advantages of using a language catalog in a separate file, rather
than having these strings embedded in the application:

• The strings do not consume memory until the application loads them

• You can edit the catalog to add new languages and new strings without directly
involving the application

In addition, because the language catalogs are in XML format, you can easily read
and edit the files in any text editor.

Implementing language catalog functionality requires two parts:

• The creation of a language catalog (.cat) file, which contains the name/value
pairs in the desired languages. See “Creating a Language Catalog File” on
page 619 for information on requirements for a language catalog file’s
structure.

• The creation of an IDLffLangCat object, which provides access and use of the
keys in the catalog file. See “Using the IDLffLangCat Class” on page 621 for
information on creating and using a language catalog object.
What Is a Language Catalog? Building IDL Applications

Chapter 24: Using Language Catalogs 619
Creating a Language Catalog File

A language catalog (.cat) file contains the XML that defines the text strings as key
name/value pairs within a single <IDLffLangCat> tag. The tag can contain four
optional attributes, as described in Table 24-1.

Note
You cannot perform queries on VERSION, DATE, and AUTHOR. These attributes are
more like XML comments on the tag; they are informational only.

The following XML snippet, extracted from the iTools menu catalog file that comes
with the IDL installation, illustrates the basic file structure:

<IDLffLangCat APPLICATION="itools menu" VERSION="1.0"
AUTHOR="RSI">
<LANGUAGE NAME="English">

<KEY NAME="Menu:File">File</KEY>
<KEY NAME="Menu:File:New">New</KEY>
<KEY NAME="Menu:File:Open">Open...</KEY>

</LANGUAGE>
</IDLffLangCat>

The <IDLffLangCat> tag can contain any number of LANGUAGE tags. Each
LANGUAGE tag must have a NAME attribute denoting the language contained therein.

Each LANGUAGE tag can contain any number of KEY tags. Each KEY tag must have a
NAME attribute denoting the name of the key.

Attribute Description

APPLICATION Name of the application that will use the
keys in the file

VERSION Version of IDLffLangCat for which the
file was created

DATE Date of the file’s creation or last
modification, as desired

AUTHOR Author of the file

Table 24-1: IDLffLangCat Tag Attributes
Building IDL Applications Creating a Language Catalog File

620 Chapter 24: Using Language Catalogs
Note
All text between the open and close KEY tags will be part of the string returned by
the query, including any line feeds, carriage returns, and spaces.

The catalog file can contain keys for one or more languages. Whether there is a single
catalog file containing multiple languages, or multiple catalog files, each containing a
single language, is personal preference.

By keeping each language separate in the tag definition, you can easily cut and paste
an entire block and then change the strings of one language to another language while
keeping all the keys intact. This technique also allows for the possibility of having
different languages in separate files. Note that the keys in any one language need not
match those of another language (although in most cases they will).

Note
IDL supports catalog files written in 8-bit Latin alphabet languages. Also, you must
have the corresponding fonts installed on your machine before you can use a
particular language.

Storing and Loading Language Catalog Files

The catalog files included with IDL are in the /resource/langcat directory of the
IDL installation and end in a .cat extension. These files contain the English keys for
iTools menus, dialogs, and messages and are provided to support the use of
applications using iTools functionality in other languages. All catalog files must end
with the .cat extension if APP_NAME is used to locate the files.

You can create custom catalog files and place them in a location of your choice. You
typically use a full path to access these catalog files through the creation of an
IDLffLangCat object (see “Using the IDLffLangCat Class” on page 621 for more
information).

You can specify a catalog either by giving the full path of the catalog file or files, or
by providing an application name or names and, optionally, an application path or
paths. If no path is specified, only the current directory is searched. For all
application paths, all .cat files found in any of the directories listed are searched for
all given applications.

On a similar note, if IDL finds a duplicate key name while loading keys, IDL will use
the string corresponding to the last key found with the given name.
Creating a Language Catalog File Building IDL Applications

Chapter 24: Using Language Catalogs 621
Using the IDLffLangCat Class

You use the IDLffLangCat class to find and load an XML language catalog. The class
also provides methods for retrieving text strings by matching key names.

Creating a Language Catalog Object

The IDL installation comes with an English language catalog for the iTools menu,
called itoolsmenu_eng.cat, in the /resource/langcat directory of the IDL
installation. To load the keys in this file:

oLangCat = OBJ_NEW('IDLffLangCat', 'ENGLISH', $
APP_NAME='itools menu', $
APP_PATH=FILEPATH('', $

SUBDIRECTORY=['resource','langcat','itools']), /VERBOSE)

This command searches the given directory for language catalog keys in English that
match the application of ‘itools menu.’ In fact, if there are any other language catalog
files, besides itoolsmenu_eng.cat, containing keys whose LANGUAGE value is
‘ENGLISH’ and APPLICATION value is ‘itools menu,’ the object adds those keys as
well. The matches must be exact in that ‘itools menu2,’ for example, is not a match;
however, the matching is not case-sensitive (i.e., ’ENGLISH’ and ‘English’ are both
matches for LANGUAGE).

Note
Whenever the object encounters a key (or language) that already exists, the key (or
language) is overwritten with the new value.

The VERBOSE flag on the command sends all catalog-loading messages to the IDLDE
output window. This list contains details resulting from the object’s initialization (the
names and numbers of keys loaded, keys overwritten, etc.).

Adding Application Keys

You might want to add keys for a different application to an existing language catalog
object. To do so:

retval = oLangCat->AppendCatalog(APP_NAME='itools ui', $
APP_PATH=FILEPATH('', $
SUBDIRECTORY=['resource','langcat','itools']))

This command searches the given directory for keys matching an APPLICATION
value of ‘itools ui’ and appends them to oLangCat. The method returns a value
indicating success or failure of the operation.
Building IDL Applications Using the IDLffLangCat Class

622 Chapter 24: Using Language Catalogs
Getting and Setting Languages

To return the available languages in a language catalog object:

oLangCat->GetProperty, AVAILABLE_LANGUAGES=availLangs

This command stores the list of available languages as a string array in availLangs.

To set the current language of a language catalog object (the language used for query
searches and matching):

oLangCat->SetProperty, LANGUAGE='English'

You can use these two methods for getting and setting other properties of a language
catalog object. For the list of available object properties, see “IDLffLangCat
Properties” in the IDL Reference Guide manual.

Comparisons such as those done with the Query method (see “Performing Queries”
on page 622) are case insensitive, but the values returned by the GetProperty method
are exactly as the last encountered value. The exception is that all key names are
returned in uppercase. For example, if File 1 has LANGUAGE='English' and File 2
has LANGUAGE='engLISh', then 'engLISh' will be returned, although only one
ENGLISH language exists in the current catalog.

Performing Queries

To populate the text fields of a widget or other interface object, for example, you can
query a language catalog object for key values it contains. IDL performs the search
on the NAME attribute of the keys; matches are not case-sensitive.

keyVal = oLangCat->Query('Menu:File:New', $
DEFAULT_STRING='Key not found')

This command searches oLangCat for keys with the NAME value of ‘Menu:File:New’
and returns the match in keyVal. If oLangCat finds a match in the current language,
keyVal will hold that value string. If a given key does not exist in the current
language, the default language is queried (if one exists). If there are still no matches,
the default string is returned.

You can use more than one key in a query by passing an array of strings to the Query
method (e.g., ['Menu:File:New','Menu:File:Open']). Similarly, you can
supply an array of strings for the DEFAULT_STRING keyword. In such a case, only
those values in the array whose indices match the missing keys will be returned. If
you do not specify DEFAULT_STRING, a null string will be returned instead.
Using the IDLffLangCat Class Building IDL Applications

Chapter 24: Using Language Catalogs 623
Destroying a Language Catalog Object

You can destroy a catalog object as you would any other IDL object, as follows:

OBJ_DESTROY, oLangCat

Destroying a language catalog object does not affect any files from which the object
drew its keys.
Building IDL Applications Using the IDLffLangCat Class

624 Chapter 24: Using Language Catalogs
Widget Example

This example creates a widget with two buttons whose text strings change between
two languages, depending on the selection from a drop-down list.

The following language catalogs are two separate files (as denoted by the
<IDLffLangCat> tag for each) and should be placed on your system as such.

<?xml version="1.0"?>
<!-- $Id: myButtonsText.eng.cat,v 1.1 2004 rsiDoc Exp $ -->
<IDLffLangCat APPLICATION="myOpenButtons" VERSION="1.0"

AUTHOR="RSI">
<LANGUAGE NAME="English">

<KEY NAME="Button:OpenFile">Open File</KEY>
<KEY NAME="Button:OpenFolder">Open Folder</KEY>

</LANGUAGE>
</IDLffLangCat>

<?xml version="1.0"?>
<!-- $Id: myButtonsText.fr.cat,v 1.1 2004 rsiDoc Exp $ -->
<IDLffLangCat APPLICATION="myOpenButtons" VERSION="1.0"

AUTHOR="RSI">
<LANGUAGE NAME="French">

<KEY NAME="Button:OpenFile">Ouvrir le Fichier</KEY>
<KEY NAME="Button:OpenFolder">Ouvrir le Dossier</KEY>

</LANGUAGE>
</IDLffLangCat>

To use the following code, save it in a .pro file. You do not have to run it from the
same directory containing the language catalog files.

; Routine to change the language of the button labels.
PRO button_language_change, pstate

vLangString = (*pstate).vlang

; Access the language catalog to retrieve string values.
oLangCat = OBJ_NEW('IDLffLangCat', vLangString, $

APP_NAME='myOpenButtons' , APP_PATH=(*pstate).vpath)
; Access and store language-specific strings in the structure.
strOpenFile = oLangCat->Query('Button:OpenFile')
strOpenFolder = oLangCat->Query('Button:OpenFolder')
WIDGET_CONTROL, (*pstate).pb1, SET_VALUE=strOpenFile
WIDGET_CONTROL, (*pstate).pb2, SET_VALUE=strOpenFolder

END

; Event handler for 'Open File' button.
PRO button_file, event

sFile = DIALOG_PICKFILE(TITLE='Select image file')
Widget Example Building IDL Applications

Chapter 24: Using Language Catalogs 625
END

; Event handler for 'Open Folder' button.
PRO button_folder, event

sFolder = DIALOG_PICKFILE(/DIRECTORY, $
TITLE='Choose the directory in which to store the data')

END

; Event handler for 'Language' droplist.
PRO button_language_event, event

WIDGET_CONTROL, event.top, GET_UVALUE = pstate
; Access user's language selection and store it in the pointer.
IF event.index EQ 0 THEN (*pstate).vlang = 'English'
IF event.index EQ 1 THEN (*pstate).vlang = 'French'
; Call the procedure to change the button text.
button_language_change, pstate

END

; Widget-creation procedure
PRO button_language

; Prompt for path to catalog files
vpath=dialog_pickfile(TITLE='Select directory that ' + $

'contains *.cat files', /DIRECTORY)
IF vpath EQ '' THEN return

; Create a top level base. Not specifying tab mode uses default
; value of zero (do not allow widgets to receive or lose focus).
tlb = WIDGET_BASE(/COLUMN, TITLE = "Language Change", $

XSIZE=220, /BASE_ALIGN_CENTER)
; Create the button widgets.
bbase = WIDGET_BASE(tlb, /COLUMN)
pb1 = WIDGET_BUTTON(bbase, VALUE='Open File', $

UVALUE='openFile', XSIZE=105, EVENT_PRO='button_file')
pb2 = WIDGET_BUTTON(bbase, VALUE='Open Folder', $

UVALUE='openFolder', XSIZE=105, EVENT_PRO='button_folder')
; Create a drop-down list indicating available catalogs.
vLangList = ['English', 'French']
langDrop = WIDGET_DROPLIST(tlb, VALUE=vLangList, $

TITLE='Language')
; Draw the widgets and activate events.
WIDGET_CONTROL, tlb, /REALIZE

; Create the state structure.
state = { $

pb1:pb1, $
pb2:pb2, $
vlang:'', $
vpath:vpath $

}

Building IDL Applications Widget Example

626 Chapter 24: Using Language Catalogs
pstate = PTR_NEW(state, /NO_COPY)
WIDGET_CONTROL, tlb, SET_UVALUE=pstate
XMANAGER, 'button_language', tlb

; Clean up pointers.
PTR_FREE, pstate

END
Widget Example Building IDL Applications

Chapter 25:

Using the XML Parser
Object Class
The following topics are covered in this chapter:
About XML . 628
Using the XML Parser 630
Example: Reading Data Into an Array . . . 635

Example: Reading Data Into Structures . . 642
Building Complex Data Structures 649
Building IDL Applications 627

628 Chapter 25: Using the XML Parser Object Class
About XML

XML (eXtensible Markup Language) provides a set of rules for defining semantic
tags that can describe virtually any type of data in a simple ASCII text file. Data
stored in XML-format files is both human- and machine-readable, and is often
relatively easy to interpret either visually or programmatically. The structure of data
stored in an XML file is described by either a Document Type Definition (DTD) or an
XML schema, which can either be included in the file itself or referenced from an
external network location.

It is beyond the scope of this manual to describe XML in detail. Numerous third-
party books and electronic resources are available. The following texts may be useful:

• http://www.w3.org — information about many web standards, including
XML related technologies.

• http://www.w3schools.com — tutorials on all manner of XML-related
topics.

• http://www.saxproject.org — information about the Simple API for
XML, the event-based XML parsing technology used by IDL.

• Brownell, David. SAX2. O'Reilly & Associates, 2002. ISBN: 0-596-00237-8.

• Harold, Eliotte Rusty. XML Bible. IDG Books Worldwide, 1999. ISBN:
0-7645-3236-7

About XML Parsers

There are two basic types of parsers for XML data:

• tree-based parsers

• event-based parsers.

Tree-based Parsers

Tree-based parsers map an XML document into a tree structure in memory, allowing
you to select elements by navigating through the tree. This type of parser is generally
based on the Document Object Model (DOM) and the tree is often referred to as a
DOM tree. The IDLffXMLDOM object classes implement a tree-based parser; for
more information, see Chapter 26, “Using the XML DOM Object Classes”.

Tree-based parsers are especially useful when the XML data file being parsed is
relatively small. Having access to the entire data set at one time can be convenient
and makes processing data based on multiple data values stored in the tree easy.
About XML Building IDL Applications

http://www.w3.org
http://www.w3schools.com
http://www.saxproject.org

Chapter 25: Using the XML Parser Object Class 629
However, if the tree structure is larger than will fit in physical memory or if the data
must be converted into a new (local) data structure before use, then tree-based parsers
can be slow and cumbersome.

Event-based Parsers

Event-based parsers read the XML document sequentially and report parsing events
(such as the start or end of an element) as they occur, without building an internal
representation of the data structure. The most common examples of event-based
XML parsers use the Simple API for XML (SAX), and are often referred to as a SAX
parsers.

Event-based parsers allow the programmer to write callback routines that perform an
appropriate action in response to an event reported by the parser. Using an event-
based parser, you can parse very large data files and create application-specific data
structures. The IDLffXMLSAX object class implements an event-based parser based
on the SAX version 2 API.
Building IDL Applications About XML

630 Chapter 25: Using the XML Parser Object Class
Using the XML Parser

IDL’s XML parser object class (IDLffXMLSAX) implements a SAX 2 event-based
parser. The object’s methods are a set of callback routines that are called
automatically when the parser encounters different constituents of an XML
document. For example, when the parser encounters the beginning of an XML
element, it calls the StartElement method. When the StartElement method
returns, the parser continues.

The IDLffXMLSAX object’s methods are completely generic. As provided, they do
nothing with the items encountered in the XML file. To use the parser object to read
data from an XML file, you must write a subclass of the IDLffXMLSAX class,
overriding the superclass’s methods to accomplish your objectives. This requirement
that you subclass the object makes the IDLffXMLSAX class unlike any other object
class supplied by IDL.

For a detailed discussion of IDL object classes, subclassing, and method overriding,
see Chapter 23, “Object Basics”. For a description of the parser object class and its
methods, see “IDLffXMLSAX” in the IDL Reference Guide manual.

Subclassing the IDLffXMLSAX Object Class

Writing a subclass of the IDLffXMLSAX object class is similar to writing a subclass
of any of IDL’s other object classes. The basic steps are:

1. Define a class structure for your subclass, inheriting from the IDLffXMLSAX
object class.

2. Write methods to override the IDLffXMLSAX object class methods as
necessary.

3. Write additional methods required for your application.

4. Create a class definition routine for your XML parser object.

Let’s look at these steps individually:

Define a Class Structure

Every object class has a unique class structure that defines the instance data contained
in the object. (See “Class Structures” on page 593 for details.) When writing your
own parser object (a subclass of the IDLffXMLSAX object), you must first determine
what instance data you need your parser object to contain, and define a class structure
accordingly.
Using the XML Parser Building IDL Applications

Chapter 25: Using the XML Parser Object Class 631
Note
Your parser object’s class structure must inherit from the IDLffXMLSAX class
structure. See “Inheritance” on page 595 for details.

For example, suppose you want to use your parser to extract an array of data from an
XML file. You might choose to define your class structure to include an IDL pointer
that will contain the data array. For this case, your class structure definition might
look something like

void = {myParser, INHERITS IDLffXMLSAX, ptr:PTR_NEW()}

Within your subclass’s methods, this data structure will always be available via the
implicit self argument (see “Method Routines” on page 608 for details). Setting the
value of self.ptr within a method routine sets the instance data of the object.

In most cases, your class structure definition will be included in a routine that does
Automatic Structure Definition (see “Automatic Class Structure Definition” on
page 594 for details).

Override Superclass Methods

For your XML parser to do any work, you must override the generic methods of the
IDLffXMLSAX object class. Overriding a method is as simple as defining a method
routine with the same name as the superclass’s method. When your parser encounters
an item in the parsed XML file that triggers one of the IDLffXMLSAX methods, it
will look first for a method of the same name in the definition of your subclass of the
IDLffXMLSAX object class. See “Method Overriding” on page 612 for details.

For example, suppose you want your parser to print out the element name of each
XML element it encounters to IDL’s output. You could override the StartElement
method of the IDLffXMLSAX class as follows:

PRO myParser::StartElement, URI, Local, Name

PRINT, Name

END

Note
The new method must take the same parameters as the overridden method.

When your parser encounters the beginning of an XML element, it will look for a
method named StartElement and call that method with the parameters specified
for the IDLffXMLSAX::StartElement method. Since your subclass’s StartElement
method is found before the superclass’s StartElement method, your method is used.
Building IDL Applications Using the XML Parser

632 Chapter 25: Using the XML Parser Object Class
Note
You do not necessarily need to override all of the IDLffXMLSAX object methods.
Depending on your application, it may be sufficient to override four or five of the
superclass’s methods. See the parser definitions later in this chapter for examples.

Overriding the IDLffXMLSAX methods is the heart of writing your own XML
parser. To write an efficient parser, you will need detailed knowledge of the structure
of the XML file you want to parse.

See “Example: Reading Data Into an Array” on page 635 and “Example: Reading
Data Into Structures” on page 642 for examples of how to work with parsed XML
data and return the data in IDL variables.

Write Additional Methods

Depending on your application, you may need to write additional object methods to
work with the instance data retrieved from the parsed XML file. Like the overridden
object methods, any new methods you write have access to the object’s instance data
via the implicit self parameter.

Create a Class Definition Routine

If you combine your class definition routine with your class’s method routines in a
file, you can use IDL’s Automatic Structure Definition feature to automatically
compile the class routines when an instance of your class is created via the
OBJ_NEW function. Keep the following in mind when creating the .pro file that
will contain the definition of your class structure and method routines:

• The routine that creates your class structure should be named with the
characters “__define” appended to the end of the class name. For example, if
your parser object class is named “myParser” and its class structure is the one
described in “Define a Class Structure” on page 630, the routine definition
would be:

PRO myParser__define

void = {myParser, INHERITS IDLffXMLSAX, ptr:PTR_NEW()}

END

• The .pro file should be named after the class structure definition routine. In
this case, the name would be myParser__define.pro.

• The class structure definition routine should be the last routine in the .pro file.
Using the XML Parser Building IDL Applications

Chapter 25: Using the XML Parser Object Class 633
Using Your Parser

Once you have written the class definition routine for your parser, you are ready to
parse an XML file. The process is straightforward:

1. Create an instance of your parser object.

2. Call the ParseFile method on your object instance with the name of an XML
file as the parameter.

For example, if your parser object is named myParser and the object class definition
file is named myParser__define.pro, you could use the following IDL
statements:

xmlFile = OBJ_NEW('myParser')
xmlFile->ParseFile, 'data.xml'

The first statement creates a new XML parser based on your class definition and
places a reference to the parser object in the variable xmlFile. The second statement
calls the ParseFile method on that object with the filename data.xml.

What happens next depends on your application. If your object definition stores
values from the parsed file in the object’s instance data, you will need some way to
retrieve the values into IDL variables that are accessible outside the object. See
“Example: Reading Data Into an Array” on page 635 and “Example: Reading Data
Into Structures” on page 642 for examples that return data variables that are
accessible to other routines.

Validation

An XML document is said to be valid if it adheres to a set of constraints set forth in
either a Document Type Definition (DTD) or an XML schema. Both DTDs and
schemas define which elements can be included in an XML file and what values those
elements can assume. XML schemas are a newer technology that is designed to
replace and be more robust than DTDs. In working with existing XML files, you are
likely to encounter both types of validation mechanisms.

Ensuring that a file contains valid XML helps in writing an efficient parsing
mechanism. For example, if your validation method specifies that element B can only
occur inside element A, and the XML document you are parsing is known to be valid,
then your parser can assume that if it encounters element B it is inside element A.
Building IDL Applications Using the XML Parser

634 Chapter 25: Using the XML Parser Object Class
The IDLffXMLSAX parser object can check an XML document using either
validation mechanism, depending on whether a DTD or a schema definition is
present. By default, if either is present, the parser will attempt to validate the XML
document. See SCHEMA_CHECKING and VALIDATION_MODE under
“IDLffXMLSAX Properties” in the IDL Reference Guide manual for details.
Using the XML Parser Building IDL Applications

Chapter 25: Using the XML Parser Object Class 635
Example: Reading Data Into an Array

This example subclasses the IDLffXMLSAX parser object class to create an object
class named xml_to_array. The xml_to_array object class is designed to read
numerical values from an XML file with the following structure:

<array>
<number>0</number>
<number>1</number>
...

</array>

and place those values into an IDL array variable.

Note
This example is a very simple example. It is designed to illustrate how an event-
based XML parser is constructed using the IDLffXMLSAX object class. An
application that reads real data from an XML file will most likely be quite a bit
more complicated.

Creating the xml_to_array Object Class

In order to read the XML file and return an array variable, we will need to create an
object class definition that inherits from the IDLffXMLSAX object class, and
override the following superclass methods: Init, Cleanup, StartDocument,
Characters, StartElement, and EndElement. Since this example does not
retrieve data using any of the other IDLffXMLSAX methods, we do not need to
override those methods. In addition, we will create a new method that allows us to
retrieve the array data from the object instance data.

Note
This example is included in the file xml_to_array__define.pro in the
examples/data_access subdirectory of the IDL distribution.
Building IDL Applications Example: Reading Data Into an Array

636 Chapter 25: Using the XML Parser Object Class
Object Class Definition

The following routine is the definition of the xml_to_array object class:

PRO xml_to_array__define

void = {xml_to_array, $
INHERITS IDLffXMLSAX, $
charBuffer:'', $
pArray:PTR_NEW()}

END

The following items should be considered when defining this class structure:

• The structure definition uses the INHERITS keyword to inherit the object class
structure and methods of the IDLffXMLSAX object.

• The charBuffer structure field is set equal to an empty string.

• The pArray structure field is set equal to an IDL pointer. We will use this
pointer to store the numerical array data we retrieve.

• The routine name is created by adding the string “__define” (note the two
underscore characters) to the class name.

Why do we store the array data in a pointer variable? Because the fields of a named
structure (xml_to_array, in this case) must always contain the same type of data as
when that structure was defined. Since we want to be able to add values to the data
array as we parse the XML file, we will need to extend the array with each new value.
If we began by defining the size of the array in the structure variable, we would not be
able to extend the array. By holding the data array in a pointer, we can extend the
array without changing the format of the xml_to_array object class structure.

Note
Although we describe this routine first here, the xml_to_array__define routine
must be the last routine in the xml_to_array__define.pro file.

Init Method

The Init method is called when the an xml_to_array parser object is created by a
call to OBJ_NEW. The following routine is the definition of the Init method:

FUNCTION xml_to_array::Init
self.pArray = PTR_NEW(/ALLOCATE_HEAP)
RETURN, self->IDLffxmlsax::Init()

END
Example: Reading Data Into an Array Building IDL Applications

Chapter 25: Using the XML Parser Object Class 637
We do two things in this method:

• We initialize the pointer in the pArray field of the class structure variable.

Note
Within a method, we can refer to the class structure variable with the implicit
parameter self. Remember that self is actually a reference to the
xml_to_array object instance.

• The return value from this function is the return value of the superclass’s Init
method, called on the self object reference.

Note
The initialization task (setting the value of the pArray field) is performed before
calling the superclass’s Init method.

See “IDLffXMLSAX::Init” in the IDL Reference Guide manual for details on the
method we are overriding.

Cleanup Method

The Cleanup method is called when the xml_to_array parser object is destroyed
by a call to OBJ_DESTROY. The following routine is the definition of the Cleanup
method:

PRO xml_to_array::Cleanup

IF (PTR_VALID(self.pArray)) THEN PTR_FREE, self.pArray

END

All we do in the Cleanup method is to release the pArray pointer, if it exists.

See “IDLffXMLSAX::Cleanup” in the IDL Reference Guide manual for details on
the method we are overriding.

Characters Method

The Characters method is called when the xml_to_array parser encounters
character data inside an element. The following routine is the definition of the
Characters method:

PRO xml_to_array::characters, data

self.charBuffer = self.charBuffer + data

END
Building IDL Applications Example: Reading Data Into an Array

638 Chapter 25: Using the XML Parser Object Class
As it parses the character data in an element, the parser will read characters until it
reaches the end of the text section. Here, we simply add the current characters to the
charBuffer field of the object’s instance data structure.

See “IDLffXMLSAX::Characters” in the IDL Reference Guide manual for details on
the method we are overriding.

StartDocument Method

The StartDocument method is called when the xml_to_array parser encounters
the beginning of the XML document. The following routine is the definition of the
StartDocument method:

PRO xml_to_array::StartDocument

IF (N_ELEMENTS(*self.pArray) GT 0) THEN $
void = TEMPORARY(*self.pArray)

END

Here, we check to see if the array pointed at by the pArray pointer contains any data.
Since we are just beginning to parse the XML document at this point, it should not
contain any data. If data is present, we reinitialize the array using the TEMPORARY
function.

Note
Since pArray is a pointer, we must use dereferencing syntax to refer to the array.

See “IDLffXMLSAX::StartDocument” in the IDL Reference Guide manual for
details on the method we are overriding.

StartElement Method

The StartElement method is called when the xml_to_array parser encounters
the beginning of an XML element. The following routine is the definition of the
StartElement method:

PRO xml_to_array::startElement, URI, local, strName, attr, value

CASE strName OF
"array": BEGIN

IF (N_ELEMENTS(*self.pArray) GT 0) THEN $
void = TEMPORARY(*self.pArray);; clear out memory

END
"number" : BEGIN

self.charBuffer = ''
END
Example: Reading Data Into an Array Building IDL Applications

Chapter 25: Using the XML Parser Object Class 639
ENDCASE

END

Here, we first check the name of the element we have encountered, and use a CASE
statement to branch based on the element name:

• If the element is an <array> element, we check to see if the array pointed at
by the pArray pointer is empty. Since we are just beginning to read the array
data at this point, there should be no data. If data already exists, we reinitialize
the array using the TEMPORARY function.

• If the element is a <number> element, we reinitialize the charBuffer field.
Since we are just beginning to read the number data, nothing should be in the
buffer.

See “IDLffXMLSAX::StartElement” in the IDL Reference Guide manual for details
on the method we are overriding.

EndElement Method

The EndElement method is called when the xml_to_array parser encounters the
end of an XML element. The following routine is the definition of the EndElement
method:

PRO xml_to_array::EndElement, URI, Local, strName

CASE strName OF
"array":
"number": BEGIN

idata = FIX(self.charBuffer);
IF (N_ELEMENTS(*self.pArray) EQ 0) THEN $

*self.pArray = iData $
ELSE $

*self.pArray = [*self.pArray,iData]
END

ENDCASE

END

As with the StartElement method, we first check the name of the element we have
encountered, and use a CASE statement to branch based on the element name:

• If the element is an <array> element, we do nothing.

• If the element is a <number> element, we must get the data stored in the
charBuffer field of the instance data structure and place it in the array:

• First, we convert the string data in the charBuffer into an IDL integer.
Building IDL Applications Example: Reading Data Into an Array

640 Chapter 25: Using the XML Parser Object Class
• Next, we check to see if the array pointed at by pArray is empty. If it is
empty, we simply set the array equal to the data value we retrieved from
the charBuffer.

• If the array pointed at by pArray is not empty, we redefine the array to
include the new data retrieved from the charBuffer.

See “IDLffXMLSAX::EndElement” in the IDL Reference Guide manual for details
on the method we are overriding.

Note
In both the StartElement and EndElement methods, we rely on the validity of
the XML data file. Our CASE statements only need to handle the element types
described in the XML file’s DTD or schema (in this case, the only elements are
<array> and <number>). We do not need an ELSE clause in the CASE statement.
If an unknown element is found in the XML file, the parser will report a validation
error.

GetArray Method

The GetArray method allows us to retrieve the array data stored in the pArray
pointer variable. The following routine is the definition of the GetArray method:

FUNCTION xml_to_array::GetArray

IF (N_ELEMENTS(*self.pArray) GT 0) THEN $
RETURN, *self.pArray $

ELSE RETURN , -1

END

Here, we check to see whether the array pointed at by pArray contains any data. If it
does contain data, we return the array. If the array contains no data, we return the
value -1.
Example: Reading Data Into an Array Building IDL Applications

Chapter 25: Using the XML Parser Object Class 641
Using the xml_to_array Parser

To see the xml_to_array parser in action, you can parse the file num_array.xml,
found in the examples/data subdirectory of the IDL distribution. This
num_array.xml file contains the fragment of XML like the one shown in the
beginning of this section, and includes 20 extra <number> elements. The
num_array.xml file also includes a DTD describing the structure of the file.

Enter the following statements at the IDL command line:

xmlObj = OBJ_NEW('xml_to_array')
xmlFile = FILEPATH('num_array.xml', $

SUBDIRECTORY = ['examples', 'data'])
xmlObj->ParseFile, xmlFile
myArray = xmlObj->GetArray()
OBJ_DESTROY, xmlObj
HELP, myArray
PRINT, myArray

IDL prints:

MYARRAY INT = Array[20]
0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19
Building IDL Applications Example: Reading Data Into an Array

642 Chapter 25: Using the XML Parser Object Class
Example: Reading Data Into Structures

This example subclasses the IDLffXMLSAX parser object class to create an object
class named xml_to_struct. The xml_to_struct object class is designed to read
data from an XML file with the following structure:

<Solar_System>
 <Planet NAME='Mercury'>
 <Orbit UNITS='kilometers' TYPE='ulong64'>579100000</Orbit>
 <Period UNITS='days' TYPE='float'>87.97</Period>
 <Satellites TYPE='int'>0</Satellites>
 </Planet>

...
</Solar_System>

and place those values into an IDL array containing one structure variable for each
<Planet> element. We use a structure variable for each <Planet> element so we
can capture data of several data types in a single place.

Note
While this example is more complicated than the previous example, it is still rather
simple. It is designed to illustrate a method whereby more complex XML data
structures can be represented in IDL.

Creating the xml_to_struct Object Class

To read the XML file and return a structure variable, we will need to create an object
class definition that inherits from the IDLffXMLSAX object class, and override the
following superclass methods: Init, Characters, StartElement, and
EndElement. Since this example does not retrieve data using any of the other
IDLffXMLSAX methods, we do not need to override those methods. In addition, we
will create a new method that allows us to retrieve the structure data from the object
instance data.

Notice that the elements of the XML data file include attributes. While we will
retrieve and use some of the attribute data from the file, we will ignore some of it.

Note
When parsing an XML data file, you can pick and choose the data you wish to pull
into IDL. This ability to selectively retrieve data from the XML file is one of the
great advantages of an event-based parser over a tree-based parser.
Example: Reading Data Into Structures Building IDL Applications

Chapter 25: Using the XML Parser Object Class 643
Note
This example is included in the file xml_to_struct__define.pro in the
examples/data_access subdirectory of the IDL distribution.

Object Class Definition

The following routine is the definition of the xml_to_struct object class:

PRO xml_to_struct__define

void = {PLANET, NAME: "", Orbit: 0ull, period:0.0, Moons:0}
void = {xml_to_struct, $

INHERITS IDLffXMLSAX, $
CharBuffer:"", $
planetNum:0, $
currentPlanet:{PLANET}, $
Planets : MAKE_ARRAY(9, VALUE = {PLANET})}

END

The following items should be considered when defining this class structure:

• Before creating the object class structure, we define a structure named
PLANET. We will use the PLANET structure to store data from the <Planet>
elements of the XML file.

• The object class structure definition uses the INHERITS keyword to inherit the
object class structure and methods of the IDLffXMLSAX object.

• The charBuffer structure field is set equal to a string value. We will use this
field to accumulate character data stored in XML elements.

• The planetNum structure field is set equal to an integer value. We will use this
field to keep track of which array element we are currently populating.

• The currentPlanet structure field is set equal to a PLANET structure.

• The Planets structure field is set equal to a nine-element array of PLANET
structures.

• The routine name is created by adding the string “__define” (note the two
underscore characters) to the class name.
Building IDL Applications Example: Reading Data Into Structures

644 Chapter 25: Using the XML Parser Object Class
We have explicitly defined our Planets structure field as a nine-element array of
PLANET structures, which we can do because we know exactly how many
<Planet> elements will be read from our XML file. Specifying the exact size of the
data array in the class structure definition is very efficient (since we create the array
only once) and eliminates the need to free the pointer in the Cleanup method.
However, it has the following consequences:

• We must explicitly keep track of the index of the array element we are
populating, and increment it after we have finished with a given element (see
the EndElement method below).

• We must know in advance how many elements the array will hold. If the size of
the final array is unknown, it is more efficient to use a pointer to an array, as we
did in the previous example, and allow the array to grow as elements are added.
See “Building Complex Data Structures” on page 649 for additional discussion
of ways to configure the instance data structure.

Note
Although we describe this routine here first, the xml_to_struct__define
routine must be the last routine in the xml_to_struct__define.pro file.

Init Method

The Init method is called when the an xml_to_struct parser object is created by
a call to OBJ_NEW. The following routine is the definition of the Init method:

FUNCTION xml_to_struct::Init

self.planetNum = 0
RETURN, self->IDLffXMLSAX::Init()

END

We do two things in this method:

• We initialize the planetNum field with the value of zero. We will increment
this value as we populate the Planets array.

Note
Within a method, we can refer to the class structure variable with the implicit
parameter self. Remember self is actually a reference to the
xml_to_struct object instance.

• The return value from this function is the return value of the superclass’s Init
method, called on the self object reference.
Example: Reading Data Into Structures Building IDL Applications

Chapter 25: Using the XML Parser Object Class 645
Note
We perform our own initialization task (setting the value of the planetNum field)
before calling the superclass’s Init method.

See “IDLffXMLSAX::Init” in the IDL Reference Guide manual for details on the
method we are overriding.

Characters Method

The Characters method is called when the xml_to_struct parser encounters
character data inside an element. The following routine is the definition of the
Characters method:

PRO xml_to_struct::characters, data

self.charBuffer = self.charBuffer + data

END

As it parses the character data in an element, the parser will read characters until it
reaches the end of the text section. Here, we simply add the current characters to the
charBuffer field of the object’s instance data structure.

See “IDLffXMLSAX::Characters” in the IDL Reference Guide manual for details on
the method we are overriding.

StartElement Method

The StartElement method is called when the xml_to_struct parser encounters
the beginning of an XML element. The following routine is the definition of the
StartElement method:

PRO xml_to_struct::startElement, URI, local, strName, attrName,
attrValue

CASE strName OF
"Solar_System": ; Do nothing
"Planet" : BEGIN

self.currentPlanet = {PLANET, "", 0ull, 0.0, 0}
self.currentPlanet.Name = attrValue[0]

END
"Orbit" : self.charBuffer = ''
"Period" : self.charBuffer = ''
"Moons" : self.charBuffer = ''

ENDCASE

END
Building IDL Applications Example: Reading Data Into Structures

646 Chapter 25: Using the XML Parser Object Class
Here, we first check the name of the element we have encountered, and use a CASE
statement to branch based on the element name:

• If the element is a <Solar_System> element, we do nothing.

• If the element is a <Planet> element, we do the following things:

• Set the value of the currentPlanet field of the self instance data
structure equal to a PLANET structure, setting the values of the structure
fields to zero values.

• Set the value of the Name field of the PLANET structure held in the
currentPlanet field equal to the value of the Name attribute of the
element. This field contains the name of the planet whose data we are
reading.

• If the element is an <Orbit>, <Period>, or <Moons> element, we reinitialize
the value of the charBuffer field of the self instance data structure.

See “IDLffXMLSAX::StartElement” in the IDL Reference Guide manual for details
on the method we are overriding.

EndElement Method

The EndElement method is called when the xml_to_struct parser encounters the
end of an XML element. The following routine is the definition of the EndElement
method:

PRO xml_to_struct::EndElement, URI, Local, strName

CASE strName of
"Solar_System":
"Planet": BEGIN

self.Planets[self.planetNum] = self.currentPlanet
self.planetNum = self.planetNum + 1

END
"Orbit" : self.currentPlanet.Orbit = self.charBuffer
"Period" : self.currentPlanet.Period = self.charBuffer
"Moons" : self.currentPlanet.Moons= self.charBuffer

ENDCASE

END

As with the StartElement method, we first check the name of the element we have
encountered, and use a CASE statement to branch based on the element name:

• If the element is a <Solar_System> element, we do nothing.
Example: Reading Data Into Structures Building IDL Applications

Chapter 25: Using the XML Parser Object Class 647
• If the element is a <Planet> element, we set the element of the Planets
array specified by planetNum equal to the PLANET structure contained in
currentPlanet. Then, we increment the planetNum counter.

• If the element is an <Orbit>, <Period>, or <Satellites> element, we
place the value in the charBuffer field into the appropriate field within the
PLANET structure contained in currentPlanet.

See “IDLffXMLSAX::EndElement” in the IDL Reference Guide manual for details
on the method we are overriding.

Note
In both the StartElement and EndElement methods, we rely on the validity of
the XML data file. Our CASE statements only need to handle the element types
described in the XML file’s DTD or schema. We do not need an ELSE clause in the
CASE statement. If an unknown element is found in the XML file, the parser will
report a validation error.

GetArray Method

The GetArray method allows us to retrieve the array of structures stored in the
Planets variable. The following routine is the definition of the GetArray method:

FUNCTION xml_to_struct::GetArray

IF (self.planetNum EQ 0) THEN $
RETURN, -1 $

ELSE RETURN, self.Planets[0:self.planetNum-1]

END

Here, we check to see whether the planetNum counter has been incremented. If it
has been incremented, we return as the number of array elements specified by the
counter. If the counter has not been incremented (indicating that no data has been
stored in the array), we return the value -1.

Using the xml_to_struct Parser

To see the xml_to_struct parser in action, you can parse the file planets.xml,
found in the examples/data subdirectory of the IDL distribution. The
planets.xml file contains the fragment of XML like the one shown at the
beginning of this section, and includes a <Planet> element for each planet in the
solar system. The planets.xml file also includes a DTD describing the structure of
the file.
Building IDL Applications Example: Reading Data Into Structures

648 Chapter 25: Using the XML Parser Object Class
Enter the following statements at the IDL command line:

xmlObj = OBJ_NEW('xml_to_struct')
xmlFile = FILEPATH('planets.xml', $

SUBDIRECTORY = ['examples', 'data'])
xmlObj->ParseFile, xmlFile
planets = xmlObj->GetArray()
OBJ_DESTROY, xmlObj

The variable planets now holds an array of PLANET structures, one for each
planet. To print the number of moons for each planet, you could use the following
IDL statement:

FOR i = 0, (N_ELEMENTS(planets.Name) - 1) DO $
PRINT, planets[i].Name, planets[i].Moons, $
FORMAT = '(A7, " has ", I2, " moons")'

IDL prints:

Mercury has 0 moons
Venus has 0 moons
Earth has 1 moons
Mars has 2 moons
Jupiter has 16 moons
Saturn has 18 moons
Uranus has 21 moons
Neptune has 8 moons
Pluto has 1 moons

To view all the information about the planet Mars, you could use the following IDL
statement:

HELP, planets[3], /STRUCTURE

IDL prints:

** Structure PLANET, 4 tags, length=32, data length=26:
NAME STRING 'Mars'
ORBIT ULONG64 227940000
PERIOD FLOAT 686.980
MOONS INT 2
Example: Reading Data Into Structures Building IDL Applications

Chapter 25: Using the XML Parser Object Class 649
Building Complex Data Structures

Few limitations exist regarding the complexity of the data structures that can be
represented in an XML data file. Writing a parser to read data from such complex
structures into IDL can be a challenge. If you are designing a parser to read a very
complex or deeply nested XML file, keep the following concepts in mind.

Use Dynamically Sized Arrays if Necessary

If you don’t know the final size of your data array, or if the size of the array will
change, store the data array in an IDL pointer in the instance data structure. This
technique allows you to change the size of the data array without changing the
definition of the instance data structure. The downside of extending the data array in
this manner is performance. Each time the array is extended, IDL must hold two
copies of the entire array in memory. If the array becomes large, this duplication can
cause performance problems.

In “Example: Reading Data Into an Array” on page 635, we extended our data array
as we added each element despite the fact that we knew the number of data elements.
We used a pointer to illustrate the technique, and to make it clear that if you use
pointers to store your instance data, you must free the pointers in your subclass’s
Cleanup method.

Use Fixed-Size Arrays When Possible

If you will be building a large data array, and you know in advance how many
elements it will contain, create the array when defining the class data structure and
use array indexing to place data in the appropriate elements. Using a fixed-size array
eliminates the need to copy the full array each time it is extended, and can lead to
noticeable performance improvements when large arrays are involved.

In “Example: Reading Data Into Structures” on page 642, we illustrated the
technique of using a pre-defined array to store our instance data.

Using Nested Structures

If your data structure is complex, you may be inclined to represent your data as a set
of nested IDL structure variables. While nesting structure variables can help you
create a data structure that emulates the structure of your XML file, deeply nested
structures can make your code more difficult to create and maintain. Consider storing
data in several arrays of structures rather than a single, deeply-nested structure.

If you have a good reason to create nested structures, and also need to extend them
dynamically, you should use the CREATE_STRUCT function.
Building IDL Applications Building Complex Data Structures

650 Chapter 25: Using the XML Parser Object Class
The same caveats apply to extending a structure with CREATE_STRUCT as apply to
extending an array. With large datasets, the process of duplicating the structures may
cause performance problems.
Building Complex Data Structures Building IDL Applications

Chapter 26:

Using the XML DOM
Object Classes
The following topics are covered in this chapter:
About the Document Object Model 652
About the XML DOM Object Classes . . . 655

Using the XML DOM Object Classes . . . 661
Tree-Walking Example 667
Building IDL Applications 651

652 Chapter 26: Using the XML DOM Object Classes
About the Document Object Model

The Document Object Model (DOM) describes the content of XML data in the form
of a document object, which contains other objects that describe the various data
elements of the XML document. The DOM also specifies an interface for interacting
with the objects in the model. This is the interface exposed to the IDL user.

For more information on XML, see “About XML” on page 628.

When to Use the DOM

There are two basic types of parsers for XML data: object-based and event-based.
The DOM is object-based and as such has advantages in certain situations over an
event-based parser such as SAX. In general, use the DOM:

• To access an XML document in any order (SAX must parse in file order)

• To write to a file (SAX does not support modifying or creating XML data)

For more information on the difference between the two parsers, see “About XML
Parsers” on page 628.

About the DOM Structure

Here is an example of an XML file that is used in an application to define a weather-
monitoring plug-in component:

<?xml version="1.0" encoding="UTF-8"?>
<plugin type="tab-iframe">

<name>Weather.com Radar Image [DEN]</name>
<description>600 mile Doppler radar image for DEN</description>
<version>1.0</version>
<tab>

<icon>weather.gif</icon>
<tooltip>DEN Doppler radar image</tooltip>

</tab>
</plugin>

The contents of this file constitute an XML document. When you want to work with
this data, you can use IDL to load the file, parse it, and store it in memory in DOM
format. The sample file listed above is stored in the DOM structure as shown in
Figure 26-1.
About the Document Object Model Building IDL Applications

Chapter 26: Using the XML DOM Object Classes 653
Figure 26-1: XML DOM Tree Structure: Plug-in Example

The DOM structure is a tree of nodes, where each node is represented as a box in the
figure. The type of each node is in boldface. The contents of the node are in normal
type.

Note that whitespace and newline characters can appear in this tree as text nodes, but
are omitted in this picture for clarity. It is important to keep this in mind when
exploring the DOM tree. There are parsing options available that can prevent the
creation of ignorable-whitespace nodes (see “Working with Whitespace” on
page 665).

The attribute node (Attr) is not actually a child of the element node, but is still
associated with it, as indicated by the dotted line.

Document

Element
plugin

Element
name

Element
description

Element
version

Element
tab

Text
1.0

Text
600 mile...

Text
Weather.com...

Text
DEN Doppler...

Text
weather.gif

Element
tooltip

Element
icon

Attr
type, tab-iframe
Building IDL Applications About the Document Object Model

654 Chapter 26: Using the XML DOM Object Classes
How IDL Uses the DOM Structure

To access the XML data in the structure, you need to create a set of IDL objects that
correspond to the portion of the DOM tree in which you are interested. You use the
following process to create the DOM tree and the corresponding IDL objects:

1. Create an IDLffXMLDOMDocument object.

2. Load the XML file. This step parses the XML data from the file and creates the
DOM tree in memory.

3. Use the IDLffXMLDOMDocument object to create IDLffXMLDOM objects
that essentially mirror portions of the DOM tree, as shown in Figure 26-2.

You then use the IDLffXMLDOM objects to access the actual XML data contained in
the DOM tree.

Figure 26-2: The DOM and IDL Trees

The creation and destruction of the IDL objects do not alter the DOM structure. There
are explicit methods for modifying the DOM structure. The IDL objects are merely
access objects that are used to manipulate the DOM tree nodes.

Document

Element

Element Element

CommentText

Document

DOM object tree
(parsed from XML data

loaded into memory)

IDL object tree
(created from object classes

after loading XML data)

Element

ElementElement

CommentText

Attr Attr
About the Document Object Model Building IDL Applications

Chapter 26: Using the XML DOM Object Classes 655
About the XML DOM Object Classes

The IDL XML DOM support is provided by a set of IDL object classes, all starting
with IDLffXMLDOM. These classes provide access to the XML document via the
DOM. The IDLffXMLDOM objects do not in themselves maintain a copy of the
document data. Instead, they provide access to the data stored in the DOM document
structure.

IDLffXMLDOMNode Class Hierarchy

One of the key object classes is IDLffXMLDOMNode. Because it is an abstract class,
you will never create an instance of this class. The node is the basic DOM data
structure used to map each DOM data element. The nodes are organized in a classic
tree structure, according to the layout of the data in the document.

The following classes are derived from IDLffXMLDOMNode, where each class is
named IDLffXML<node type> (e.g., IDLffXMLDOMAttr):
Building IDL Applications About the XML DOM Object Classes

656 Chapter 26: Using the XML DOM Object Classes
Figure 26-3: The IDLffXMLDOMNode Class Hierarchy

These classes represent the data that can be stored in an XML document. Except for
the IDLffXMLDOMDocument class, you do not instantiate any of them directly. To
begin working with the IDL XML DOM interface, you use the OBJ_NEW function
to create an IDLffXMLDOMDocument object. You then use this object to browse
and modify the document. This document object also creates objects using the
derived classes to give you access to the various parts of the document. For example:

oChild = oMyDOMDocument->GetFirstChild()

creates an IDL object of one of the node types, depending on what the first child in
your document actually is. The newly created IDL object refers to the first child node
of the document and does not modify the document in any way.

Node

Attr

CharacterData

Document

DocumentFragment

DocumentType

Element

Entity

EntityReference

Notation

ProcessingInstruction

Comment

Text CDATASection
About the XML DOM Object Classes Building IDL Applications

Chapter 26: Using the XML DOM Object Classes 657
You then use the oChild object’s methods to get data from the node, modify the
node, or find another node.

Because of the class hierarchy, all the methods in a superclass are available to its
subclasses. For example, to determine which methods are available for use by an
object of the IDLffXMLDOMText class, you would have to look at the methods
belonging to the IDLffXMLDOMText, IDLffXMLDOMCharacterData, and
IDLffXMLDOMNode classes.

Note
The IDLffXMLDOMCharacterData class is a special abstract class that provides
character-handling facilities for its subclasses. You will never create an instance of
this class.

IDLffXMLDOM Object Helper Classes

IDL provides a set of other classes to assist you in navigating the DOM tree. These
classes are:

• IDLffXMLDOMNodeList — contains a list of children of a node. You can
create node lists using the GetElementsByTagName and GetChildNodes
methods, for example.

• IDLffXMLDOMNamedNodeMap — contains a list of attributes from an
element node that are looked up by attribute name.

These classes contain nodes that are subclasses of IDLffXMLDOMNode. Node lists
and named node maps are active collections of nodes that are updated as the DOM
tree is modified. That is, they are not static snapshots of a DOM tree in a given state;
the list contents are modified as the DOM tree is modified. While this dynamic
update is useful because you do not have to take specific action to update a list after
modifying the tree, it can be confusing in some situations.

Suppose you want to delete all the children of an element node. The following code
seems to make sense:

oList = oElement->GetChildNodes()
n = oList->GetLength()
FOR i=0, n-1 DO $

oDeleted = oElement->RemoveChild(oList->Item(i))
Building IDL Applications About the XML DOM Object Classes

658 Chapter 26: Using the XML DOM Object Classes
This approach does not work as expected because after the first child is deleted, the
list is updated so it contains one fewer object, and the indexes of all remaining objects
are decremented by one. As the loop continues, some items are not deleted, and
eventually an error occurs when the loop index i exceeds the length of the shortened
list.

The following code performs the intended deletion, by changing the parameter to the
Item method from i to 0:

oList = oElement->GetChildNodes()
n = oList->GetLength()
FOR i=0, n-1 DO $

oDeleted = oElement->RemoveChild(oList->Item(0))

This code works because each time the first child is deleted, the list is automatically
updated to place another object in the first position.

The following approach might be more appealing:

oList = oElement->GetChildNodes()
n = oList->GetLength()
FOR i=n-1, 0, -1 DO $

oDeleted = oElement->RemoveChild(oList->Item(i))

This code works because it deletes items from the end of the list, rather than from the
beginning.

IDL Node Ownership

Whenever you create an IDLffXMLDOM node object with a method such as
IDLffXMLDOMNode::GetFirstChild, you are also creating an ownership
relationship between the created node object and the node object that created it.

Working from the previous plug-in example (see “About the DOM Structure” on
page 652), suppose that you have an object reference, oName, to an instance of the
IDLffXMLDOMElement class that refers to the first child of the plug-in node:

oName = oDocument->GetFirstChild()

Using oName, you can issue the following call:

oDescription = oName->GetNextSibling()

The description and name DOM nodes are siblings of each other in the DOM tree, as
shown in Figure 26-1. The IDL object oDescription refers to the description node
in the DOM tree, and the IDL object oName refers to the name node in the DOM tree.
However, the oDescription object is owned by the oName object because oName
created oDescription.
About the XML DOM Object Classes Building IDL Applications

Chapter 26: Using the XML DOM Object Classes 659
You might understand this relationship better by realizing that the parent/sibling
relationships in the DOM tree reflect the DOM tree structure and that the ownership
relationships among the IDL access objects are due to the creation of the IDL access
objects. Because oName created oDescription, oName destroys oDescription
when oName is destroyed, even though they refer to siblings in the DOM tree. Bear in
mind that destroying these access objects does not affect the DOM tree itself.

This parent relationship among IDLffXMLDOM objects is useful for cleaning them
up. Because all of the objects that might have been created during the exploration of a
DOM tree are all ultimately descendants of an IDLffXMLDOMDocument node,
simply destroying the document object is sufficient to clean up all the nodes. Unless
you are concerned with cleaning up some access objects at a particular time (to save
memory, for example), you can simply wait to clean them all up when you are
finished with the data by destroying the IDLffXMLDOMDocument node.

To reduce memory requirements, you can destroy node objects that are no longer
needed. For example, if you wanted to explore all the children of a given element,
you might use the following code:

oFirstChild = oElement->GetFirstChild()
oChild = oFirstChild
WHILE OBJ_VALID(oChild) DO BEGIN

PRINT, oChild->GetNodeValue()
oChild = oChild->GetNextSibling()

ENDWHILE
OBJ_DESTROY, oFirstChild

This approach works well because all the node objects created during the exploration
of the children by the GetNextSibling method are destroyed when oFirstChild is
destroyed. While it would seem that objects “lost” to the reassignment of oChild
would not be accessible for destruction, the chain of oChild objects keeps track of
them and destroys them all when the head of the chain, saved in oFirstChild, is
destroyed.

Trying to destroy node objects inside the loop as follows does not work as expected:

oChild = oElement->GetFirstChild()
WHILE OBJ_VALID(oChild) DO BEGIN

PRINT, oChild->GetNodeValue()
oNext = oChild->GetNextSibling()
OBJ_DESTROY, oChild
OChild = oNext

ENDWHILE

This code fails because when oChild is destroyed for the first time, it also destroys
oNext, causing the loop to exit after the first iteration.
Building IDL Applications About the XML DOM Object Classes

660 Chapter 26: Using the XML DOM Object Classes
If there is a very large number of children, waiting until the end of the loop to destroy
the list might be too inefficient. Using a node list, as in the following code, is an
alternative:

oList = oElement->GetChildNodes()
n = oList->GetLength()
FOR i=0, n-1 DO BEGIN

oChild = oList->Item(i)
PRINT, oChild->GetNodeValue()
OBJ_DESTROY, oChild

ENDFOR
OBJ_DESTROY, oList

Although oList requires some space to maintain the list, there is only one valid node
connected to oChild in memory each time through the loop.

Saving and Restoring IDLffXMLDOM Objects

IDL does not save IDLffXMLDOM objects in a SAVE file. If you restore a SAVE file
that contains object references to IDLffXMLDOM objects, the object references are
restored, but are set to null object references.

The IDLffXMLDOM objects are not saved because they contain state information for
the external Xerces library. This state information is not available to IDL and cannot
be restored. The contents of the XML file might also have changed, which would also
make any saved state invalid.

It is recommended that applications either complete any DOM operations before
saving their data in a SAVE file or reload the DOM document as part of restoring
their state.
About the XML DOM Object Classes Building IDL Applications

Chapter 26: Using the XML DOM Object Classes 661
Using the XML DOM Object Classes

Continuing from the weather plug-in example (see “About the DOM Structure” on
page 652), this section describes how to use the IDL XLM DOM object classes,
namely how to do the following actions:

• Load an XML document

• Read XML data from a document

• Modify existing XML data

• Create new XML data

• Destroy IDLffXMLDOM objects

Loading an XML Document

Although the DOM tree structure is in memory after the XML file is loaded, you
cannot directly access the data from IDL until you have created IDLffXMLDOM
objects to access them. The DOM loads and parses the XML data into a tree
structure, but you need to create a document object to access that data through a
mirroring IDL tree structure.

To prepare the interface, load the document:

oDocument = OBJ_NEW('IDLffXMLDOMDocument')
oDocument->Load, FILENAME='sample.xml'

This code causes the DOM tree structure to be formed in memory. You could also
perform the same action in one line:

oDocument = OBJ_NEW('IDLffXMLDOMDocument', FILENAME='sample.xml')

Be aware that either of these examples will discard an existing DOM tree referenced
by oDocument. You can load and reload an XML file as often as desired, but each
loading action will overwrite, not add to, the existing tree and remove its objects from
memory.
Building IDL Applications Using the XML DOM Object Classes

662 Chapter 26: Using the XML DOM Object Classes
Reading XML Data

Suppose that you want to print the name of the plug-in. The plug-in element node is
the first and only child of the document node. A document node can have only one
element child node, which represents the containing element for the entire document
(for comparison, consider that an HTML file has only one <HTML></HTML> pair).
The name of the element node is the first element child of the plug-in element. There
may be several ways to locate a desired piece of data using the IDL XML DOM
classes. The following example illustrates one way to find the plug-in name.

First, access the first child of the document, which is the plug-in element:

oPlugin = oDocument->GetFirstChild()

The GetFirstChild method creates an IDLffXMLDOMElement node object and
returns its object reference, which is stored in oPlugin.

Next, ask the plug-in for a list of all of its child element nodes. The oPlugin object
creates an IDLffXMLDOMNodeList object and places all the child element nodes in
the list. You could have asked for only the name element, but by asking for them all,
you will have the other elements in the list in case you need to look at them later.

oNodeList = oPlugin->GetElementsByTagName('*')

You know from the design of the XML data, perhaps as defined in a DTD, that the
name element must always be the first child of a plug-in element. You can access the
name as follows:

oName = oNodeList->Item(0)

You also know that the name element can only contain a text node. Getting access to
the text node lets you print the data that you want.

oNameText = oName->GetFirstChild()
PRINT, oNameText->GetNodeValue()

This command prints out:

Weather.com Radar Image [DEN]

Note that the oPlugin and the oName objects are of type IDLffXMLDOMElement,
and the oNameText object is of type IDLffXMLDOMText. The oName and
oNameText objects are created by the GetFirstChild and Item methods, using the
object class that is appropriate for the type of data in the DOM tree. You used the
GetElementsByTagName method to get the child elements of the plug-in, without
having to sort through the whitespace text nodes that are present.
Using the XML DOM Object Classes Building IDL Applications

Chapter 26: Using the XML DOM Object Classes 663
At this point, you have four IDL objects in addition to the root document object that
give you access to only the portion of the DOM tree to which these objects
correspond. You can create additional objects to explore other parts of the tree and
destroy objects for parts that you are no longer interested in.

Modifying Existing Data

You can also modify XML data and write the result back out to a file.

oDocument = OBJ_NEW('IDLffXMLDOMDocument')
oDocument->Load, FILENAME='sample.xml'
oPlugin = oDocument->GetFirstChild()
oNodeList = oPlugin->GetElementsByTagName('*')
oName = oNodeList->Item(0)
oNameText = oName->GetFirstChild()
oNameText->SetNodeValue('Weather.com Radar Image [PDX]')
oDocument->Save, FILENAME='sample2.xml'
OBJ_DESTROY, oDocument

This code modifies the name node to change the airport to Portland, Oregon, and
writes the modified XML to a new file. Please note that if you save to an existing file
(e.g., using sample.xml instead of sample2.xml at the end of this example), the
current XML data will replace the file entirely.

Creating New Data

You can create an IDLffXMLDOMDocument object and start adding nodes to it
without loading a file.

oDocument = OBJ_NEW('IDLffXMLDOMDocument')
oElement = oDocument->CreateElement('myElement')
oVoid = oDocument->AppendChild(oElement)
oDocument->Save, FILENAME='new.xml'
OBJ_DESTROY, oDocument

This code creates the following XML file:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<myElement/>

Note that <myElement/> is XML shorthand for <myElement></myElement>.
Building IDL Applications Using the XML DOM Object Classes

664 Chapter 26: Using the XML DOM Object Classes
Destroying IDLffXMLDOM Objects

Suppose that you are done with the name node and want to look at the description.

OBJ_DESTROY, oName
oDesc = oNodeList->Item(1)
oDescText = oDesc->GetFirstChild()
PRINT, oDescText->GetNodeValue()

This code destroys the oName object and oNameText with it because it was created
by oName’s GetFirstChild method. This automatic destruction cleans up all the
objects that you might have created from the oName node. You can then fetch the
description element from the node list and print its name in the same manner. The
name node is still in the node list and can be fetched again from the node list with the
Item method, if needed.

Finally,

OBJ_DESTROY, oDocument

destroys the top-level object that you originally created with the OBJ_NEW function
and also destroys any other objects that were created directly or indirectly from the
oDocument object.

You can write the first code sample above more compactly because of the ability of
the IDLffXMLDOMDocument object to clean up all the objects it and its children
created:

oDocument = OBJ_NEW('IDLffXMLDOMDocument')
oDocument->Load, FILENAME='sample.xml'
PRINT, ((((oDocument->GetFirstChild())-> $

GetElementsByTagName('name'))-> $
Item(0))->GetFirstChild())->GetNodeValue()

OBJ_DESTROY, oDocument

Under normal circumstances, the three object references created by the calls to the
GetFirstChild and GetElementsByTagName methods would be lost because the
object references to these three objects were not stored in IDL user variables.
However, these objects are cleaned up by the document object when it is destroyed.

For additional information, see “Orphan Nodes” on page 666.

Please note:

• In general, you should not use the OBJ_NEW function to create any
IDLffXMLDOM objects except for the top-level document object. Use the
methods such as GetFirstChild to create the objects.
Using the XML DOM Object Classes Building IDL Applications

Chapter 26: Using the XML DOM Object Classes 665
• You can destroy objects obtained from the various methods (e.g.,
GetFirstChild) at any time by the OBJ_DESTROY procedure.

• Objects destroyed by the OBJ_DESTROY procedure also destroy objects that
they created.

• Destroying objects does not modify the DOM structure. That is, destroying any
of the IDLffXMLDOM objects does not modify the data in the DOM tree.
There are explicit methods for modifying DOM tree data. Destroying
IDLffXMLDOM objects only removes your ability to access the DOM tree
data.

Working with Whitespace

The XML parser is very particular about whitespace because all characters in an
XML document define the content of that document. Whitespace consists of spaces,
tabs, and newline characters, all of which are commonly used to format documents to
make them easier to work with. In many cases, this whitespace is unimportant with
respect to the document content. It is there only for presentation and does not affect
the actual data stored in the XML document. However, in some cases, for example
with CDATA or text node information, the whitespace might be important.

When whitespace is not important, IDL can treat it as ignorable. In many
circumstances, you might want the parser to skip over this ignorable whitespace and
not place it in the DOM tree so that you do not need to deal with it when visiting
nodes in the DOM tree.

For example, the following two XML fragments produce different DOM trees when
parsed with the default parser settings:

<stateList>
<state>Colorado</state>

</stateList>

<stateList><state>Colorado</state></stateList>

In the first fragment, the stateList element has two child nodes that the second
fragment does not. They are text nodes containing whitespace, a newline, and some
tabs or spaces.

For the parser to distinguish between non-ignorable and ignorable whitespace, there
must be a DTD or schema associated with the XML document, and it must be used to
validate the document during parsing. This implies that a VALIDATION_MODE of 1
or 2 must be used when loading the XML document with the
IDLffXMLDOMDocument::Load method.
Building IDL Applications Using the XML DOM Object Classes

666 Chapter 26: Using the XML DOM Object Classes
Once validation is established, you can either:

• Tell the parser not to include ignorable text nodes in the DOM tree by
setting the EXCLUDE_IGNORABLE_WHITESPACE keyword in the
IDLffXMLDOMDocument::Load method. If you select this option, the
DOM trees for each of the above two fragments are the same.

• Check each text node in the DOM tree with the
IDLffXMLDOMText::IsIgnorableWhitespace method.

Orphan Nodes

You can remove nodes from the DOM tree by using the
IDLffXMLDOMNode::RemoveChild and IDLffXMLDOMNode::ReplaceChild
methods. When these nodes are removed from the tree, they are owned by the DOM
document directly and have no parent (since they are not in the tree anymore).
Similarly, when these methods are used, the IDLffXMLDOM objects' ownership is
changed as well because the IDL tree (made by creating the document interface and
adding nodes) must mirror the underlying DOM tree.

If you issue the following command:

oMyRemovedChild = oMyElement->RemoveChild(oMyChild)

oMyChild is no longer owned by oMyElement and becomes owned by the
document object to which all these nodes belong. Here, oMyRemovedChild and
oMyChild are actually object references to the same object. The function method
syntax provides a convenient way to create a new object reference variable with a
new name that reflects the new status of the removed object, and you can use either
name to access the orphaned node.

After removal, the orphan node is loosely associated with the document via the
ownership relationship and would not be included in the output if the DOM tree were
written to a file. You can insert the node back into the DOM tree with an InsertBefore
or AppendChild method.

If the document that contains orphan nodes is destroyed, the orphan nodes are lost.
More specifically, DOM tree orphan nodes are not written out to a file if they are
orphans at the time that the IDLffXMLDOMDocument::Save method is used to save
the tree, and the IDL node objects referring to the orphans are destroyed when the
document object is destroyed.
Using the XML DOM Object Classes Building IDL Applications

Chapter 26: Using the XML DOM Object Classes 667
Tree-Walking Example

The following code traverses a DOM tree using pre-order traversal.

PRO sample_recurse, oNode, indent

; "Visit" the node by printing its name and value
PRINT, indent GT 0 ? STRJOIN(REPLICATE(' ', indent)) : '', $

oNode->GetNodeName(), ':', oNode->GetNodeValue()

; Visit children
oSibling = oNode->GetFirstChild()
WHILE OBJ_VALID(oSibling) DO BEGIN

SAMPLE_RECURSE, oSibling, indent+3
oSibling = oSibling->GetNextSibling()

ENDWHILE
END

PRO sample
oDoc = OBJ_NEW('IDLffXMLDOMDocument')
oDoc->Load, FILENAME="sample.xml"
SAMPLE_RECURSE, oDoc, 0
OBJ_DESTROY, oDoc

END

This program generates the following output for the plug-in file (see “About the
DOM Structure” on page 652):

#document:
plugin:

#text:

name:
#text:Weather.com Radar Image [DEN]

#text:

description:
#text:600 mile Doppler radar image for DEN

#text:

version:
#text:1.0

#text:

tab:
#text:

icon:
Building IDL Applications Tree-Walking Example

668 Chapter 26: Using the XML DOM Object Classes
#text:weather.gif
#text:

tooltip:
#text:DEN Doppler radar image

#text:

#text:

The program above created an IDLffXMLDOM object for every node it encountered
and did not destroy them until the document was destroyed. Another approach,
illustrated in the program below, cleans up the nodes as it proceeds:

PRO sample_recurse2, oNode, indent
;; "Visit" the node by printing its name and value
PRINT, indent gt 0 ? STRJOIN(REPLICATE(' ', indent)) : '', $

oNode->GetNodeName(), ':', oNode->GetNodeValue()

;; Visit children
oNodeList = oNode->GetChildNodes()
n = oNodeList->GetLength()
for i=0, n-1 do $

SAMPLE_RECURSE2, oNodeList->Item(i), indent+3
OBJ_DESTROY, oNodeList

END

PRO sample2
oDoc = OBJ_NEW('IDLffXMLDOMDocument')
oDoc->Load, FILENAME="sample.xml"
SAMPLE_RECURSE2, oDoc, 0
OBJ_DESTROY, oDoc

END

Please note that document and text nodes do not have node names, so the
GetNodeName method always returns ‘#document’ and ‘#text,’ respectively.
Tree-Walking Example Building IDL Applications

Part V: Creating
Graphical User

Interfaces in IDL

Chapter 27:

Using the
IDL GUIBuilder
The following topics are covered in this chapter:
Overview . 672
Starting the IDL GUIBuilder 674
Creating an Example Application 676
IDL GUIBuilder Tools 687
Widget Operations 702
Generating Files . 705
IDL GUIBuilder Examples 707
Widget Properties 721
Common Widget Properties 722
Base Widget Properties 728

Button Widget Properties 741
Text Widget Properties 747
Label Widget Properties 753
Slider Widget Properties 755
Droplist Widget Properties 758
Listbox Widget Properties 761
Draw Widget Properties 765
Table Widget Properties 772
Tab Widget Properties 781
Tree Widget Properties 784
Building IDL Applications 671

672 Chapter 27: Using the IDL GUIBuilder
Overview

The IDL GUIBuilder is part of the IDLDE for Windows. The IDL GUIBuilder
supplies you with a way to interactively create user interfaces and then generate the
IDL source code that defines that interface and contains the event-handling routine
place holders.

Note
The IDL GUIBuilder is supported on Windows only. However, the code it generates
is portable and runs on all IDL supported platforms. Since applications built with
IDL GUIBuilder may require functionality added in the current release, generated
code only runs on the version of IDL you generated the code on or greater.

The IDL GUIBuilder has several tools that simplify application development. These
tools allow you to create the widgets that make up user interfaces, define the behavior
of those widgets, define menus, and create and edit color bitmaps for use in buttons.

Note
When using code generated by the IDL GUIBuilder on other non-Windows
platforms, more consistent results are obtained by using a row or column layout for
your bases instead of a bulletin board layout. By using a row or column layout,
problems caused by differences in the default spacing and decorations (e.g.,
beveling) of widgets on each platform can be avoided

These are the basic steps you will follow when building an application interface using
the IDL GUIBuilder:

1. Interactively design and create a user interface using the components, or
widgets, supplied in the IDL GUIBuilder. Widgets are simple graphical objects
supported by IDL, such as sliders or buttons.

2. Set attributes for each widget. The attributes control the display, initial state,
and behavior of the widget.

3. Set event properties for each widget. Each widget has a set of events to which
it can respond. When you design and create an application, it is up to you to
decide if and how a widget will respond to the events it can generate. The first
step to having a widget respond to an event is to supply an event procedure
name for that event.
Overview Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 673
4. Save the interface design to an IDL resource file, *.prc file, and generate the
portable IDL source code files. There are two types of generated IDL source
code: widget definition code (*.pro files) and event-handling code
(*_eventcb.pro files).

5. Modify the generated *_eventcb.pro event-handling code file using the
IDLDE, then compile and run the code. This code can run on any IDL-
supported platform.

The *_eventcb.pro file contains place holders for all of the event procedures you
defined for the widgets, and you complete the file by filling in the necessary event
callback routines for each procedure.

Warning
Once you have generated the widget definition code (*.pro files), you should not
modify this file manually. If you decide to change your interface definition, you will
need to regenerate the interface code, and will therefore overwrite that *.pro file.
Any new event handling code will not be overwritten but will instead be appended.

For information about IDL widgets, and how to create user interfaces
programmatically (without the IDL GUIBuilder), see Chapter 28, “Widgets”.
Building IDL Applications Overview

674 Chapter 27: Using the IDL GUIBuilder
Starting the IDL GUIBuilder

To open a new IDL GUIBuilder window, do one of the following:

• Select File → New → GUI from the IDLDE menu.

• Click the “New GUI” button on the IDLDE toolbar.

Each of these actions opens a new IDL GUIBuilder window and displays the IDL
GUIBuilder toolbar. The IDL GUIBuilder window contains a top-level base widget,
as shown in the following figure. This top-level base holds all of the widgets for an
individual interface; it is the top-level parent in the widget hierarchy being created.

Figure 27-1: IDLDE with IDL GUIBuilder Window
Starting the IDL GUIBuilder Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 675
Opening Existing Interface Definitions

To open an existing interface design in the IDL GUIBuilder:

1. Do one of the following to launch the Open dialog:

• Select File → Open from the IDLDE menu.

• Click on the “Open” button on the IDLDE toolbar.

2. In the Open dialog, select the appropriate *.prc file, and click Open.

The *.prc portable resource file contains the widget definitions that make up the
widget hierarchy and define your interface design. When you click Open, the existing
definition is displayed in an IDL GUIBuilder window. You can modify the interface
then save it, and you can generate new IDL source code for the modified definition.
Building IDL Applications Starting the IDL GUIBuilder

676 Chapter 27: Using the IDL GUIBuilder
Creating an Example Application

The following example takes you through the process of creating your first
application with the IDL GUIBuilder and the IDLDE. You will create the user
interface and write the event callback routines.

This simple example application contains a menu and a draw widget. When
complete, the running application allows the user to open and display a graphics file
in PNG format, change the color table for the image display, and perform smooth
operations on the displayed image.

This example introduces you to some of the basic procedures you will use to create
applications with the IDL GUIBuilder; it shows you how to define menus, create
widgets, set widget properties, and write IDL code to handle events.

Defining Menus for the Top-level Base

To define the menu, follow these steps:

1. Open a new IDL GUIBuilder window by selecting File → New → GUI from
the IDLDE menu, or click the “New GUI” button on the IDLDE toolbar.

2. Drag out the window then the top-level base to a reasonable size for displaying
an image. For example, drag the base out so that it has an X Size attribute value
of 500 and a Y Size attribute value of 400. To view the attribute values, right-
click on the base, and choose Properties from menu. In the Properties dialog,
scroll down to view the X Size and Y Size attribute values.

3. Right-click on the top-level base in the IDL GUIBuilder window, then choose
Edit Menu. This opens the Menu Editor.

4. In the Menu Editor Menu Caption field, enter “File” and click Insert to set the
entered value and add a new line after the currently selected line. The new line
becomes the selected line.
Creating an Example Application Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 677
5. To define the File menu items, do the following:

A. With the new line selected, click on the right arrow in the Menu Editor,
which indents the line and makes it a menu item.

B. Click in the Menu Caption field and enter “Open...”.

C. Click in the Event Procedure field and enter “OpenFile”. The OpenFile
routine will be called when the user selects this menu.

D. To create a separator after the Open menu, click the line button at the right
side of the dialog (above the arrow buttons).

E. To set the values and move to a new line, click Insert.

F. In the Menu Caption field, enter “Exit”.

G. In the Event Procedure field, enter “OnExit”.

H. To set the values and move to a new line, click Insert.

6. To define the Tools menu and its one item, do the following:

A. With the new line selected, click the left arrow to make the line a top-level
menu.

B. In the Menu Caption field, enter “Tools”, then click Insert.

C. Click the right arrow to make the new line a menu item.

D. In the Menu Caption field, enter “Load Color Table”.

E. In the Event Procedure field, enter “OnColor”.

F. To set the values and move to a new line, click Insert.

7. To define the Analyze menu and its one menu item, do the following:

A. With the new line selected, click the left arrow to make the line a top-level
menu.

B. In the Menu Caption field, type “Analyze”, then press Enter.

C. Click the right arrow to make the new line a menu item.

D. In the Menu Caption field, enter “Smooth”.

E. In the Event Procedure field, enter “DoSmooth”.
Building IDL Applications Creating an Example Application

678 Chapter 27: Using the IDL GUIBuilder
Your entries should look like those shown in the following figure.

8. Save your menu definitions by clicking OK in the Menu Editor.

Note
For more information about using the Menu Editor, see “Using the Menu Editor” on
page 695.

9. At this time you can click on the menus to test them. Your interface should
look similar to the one in the figure below.

10. Select File → Save from the IDLDE menu, which opens the “Save As” dialog.

11. In the “Save As” dialog, select a location, enter “example.prc” in the File name
field, and click Save. This writes the portable resource code to the specified
file.

Figure 27-2: Menu Editor Dialog with Example Menus
Creating an Example Application Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 679
Creating a Draw Widget

To create a draw area that will display PNG image files, follow these steps:

1. Click on the Draw Widget tool button, then drag out an area that fills the top-
level base display area. Leave a small margin around the edge of the draw area
when you drag it out.

2. Right click on the draw area, and choose Properties to open the Properties
dialog for the draw area.

3. In the Properties dialog, click the push pin button so the dialog will stay open
and on top.

4. In the Properties dialog, change the draw widget Name attribute value to
“Draw”.

Figure 27-3: IDL GUIBuilder with Example Application
Building IDL Applications Creating an Example Application

680 Chapter 27: Using the IDL GUIBuilder
Later, you will write code to handle the display of the image in this draw area
widget. Renaming the widget now will make it easier to write the code later;
the “Draw” name is easy to remember and to type.

Note
The Name attribute must be unique to the widget hierarchy.

5. In the IDL GUIBuilder window, click on the top-level base widget to select it.
When you do so, the Properties dialog will update and display the attributes for
this base widget.

6. In the Properties dialog, change the base widget Component Sizing attribute to
Default. This sizes the base to the draw widget size you created.

When you first dragged out the size of the base, the Component Sizing
attribute changed from Default to Explicit—you explicitly sized the widget.
Now that the base widget contains items, you can return it to Default sizing,
and IDL will handle the sizing of this top-level base.

7. In the Properties dialog, change the base widget Layout attribute to Column.

8. Select File → Save to save your new modifications to the example.prc file.
The application should look like the one shown in the following figure.
Creating an Example Application Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 681
Running the Application in Test Mode

You can run the application in test mode, which allows you to test the display of
widgets and menus. To run your application in test mode, do one of the following:

• Select Run → Test GUI from the IDLDE menu.

• Press Control+t.

Both these actions display the interface as it will look when it runs. You can click on
the menus, but there is no active event handling in test mode.

To exit test mode, do one of the following:

• Press the Esc key.

• Click the X in the upper-right corner of the test application window.

Figure 27-4: Complete Example Application
Building IDL Applications Creating an Example Application

682 Chapter 27: Using the IDL GUIBuilder
Generating the IDL Code

To generate the code for the example application, select File → Generate .pro. In the
“Save As” dialog, find the location where you want the files saved, enter
“example.pro” in the File name field, and click Save. This generates an
example.pro widget definition file and an example_eventcb.pro event-
handling file.

The example.pro file contains the widget definition code, and you should never
modify this file. If you decide later to change your interface, you will need to
regenerate this interface code, and thus overwrite the widget code file.

The example_eventcb.pro contains place holders for all the event procedures you
defined in the IDL GUIBuilder Menu Editor and Properties dialog. You must
complete these event procedures by filling in event callback routines. If you generate
code after you have modified this file, any new event handling code will not be
overwritten but will instead be appended. For information on ways to handle
regenerating the *_eventcb.pro file, see “Notes on Generating Code a Second
Time” on page 706.

For more information on interface definitions and generated code, see “Generating
Files” on page 705.

Note
You should modify only the generated event-handling file (*_eventcb.pro); you
should never modify the generated interface code (the *.pro file).

Handling the Open File Event

You can now modify the generated example_eventcb.pro file to handle the events
for the application. First, you will modify the OpenFile routine.

When the user selects Open from the File menu of the example application, the
appropriate event structure is sent, and the OpenFile routine handles the event. For
this application, the Open menu item will launch an Open dialog to allow the user to
choose a PNG file, and then the routine will check the selected file’s type, read the
image, and display it in the draw area.

To open the file and add the code to handle the OpenFile event, follow these steps:

1. Select File → Open from the IDLDE menu. In the “Open” dialog, select the
example_eventcb.pro file, and click Open. This file contains the event
handling routine place holders, which you will now complete.
Creating an Example Application Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 683
2. In the example_eventcb.pro file, locate the OpenFile procedure, which
looks like this:

pro OpenFile, Event

end

Tip
To easily find the OpenFile routine, select OpenFile from the Functions/Procedures
drop-down list on the IDLDE toolbar.

3. Add the following code between the PRO and END statements to handle the
event:

; If there is a file, draw it to the draw widget.
sFile = DIALOG_PICKFILE(FILTER='*.png')
IF(sFile NE "")THEN BEGIN

; Find the draw widget, which is named Draw.
wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw');
; Make sure something was found.
IF(wDraw GT 0)THEN BEGIN

; Make the draw widget the current, active window.
WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
WSET,idDraw
; Read in the image.
im = READ_PNG(sFile, r, g, b)
; If TrueColor image, quantize image to pseudo-color:
IF (SIZE(im, /N_DIM) EQ 3) THEN $

im = COLOR_QUAN(im, 1, r, g, b)
; Size the image to fill the draw area.
im = CONGRID(im, !D.X_SIZE, !D.Y_SIZE)
; Handle TrueColor displays:
DEVICE, DECOMPOSED=0
; Load color table, if one exists:
IF (N_ELEMENTS(r) GT 0) THEN TVLCT, r, g, b
; Display the image.
TV, im
; Save the image in the uvalue of the top-level base.
WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY

ENDIF
ENDIF

Note
In the added code, you used the FIND_BY_UNAME keyword to find the draw
widget using its name attribute. In this example, the widget name, “Draw”, is the
one you gave the widget in the IDL GUIBuilder Properties dialog. The widget name
is case-sensitive.
Building IDL Applications Creating an Example Application

684 Chapter 27: Using the IDL GUIBuilder
Handling the Exit Event

To add the code that causes the example application to close when the user chooses
Exit from the File menu, follow these steps:

1. Locate the OnExit routine place holder, which looks like this:

pro OnExit, Event

end

2. add the following statement between the PRO and END statements to handle
the destruction of the application:

WIDGET_CONTROL, Event.top, /DESTROY

Handling the Load Color Table Event

To add the code that causes the example application to open the IDL color table
dialog when the user chooses Load Color Table from the Tools menu, follow these
steps:

1. Locate the OnColor routine place holder, which looks like this:

pro OnColor, Event

end

2. Add the following code between the PRO and END statements:

XLOADCT, /BLOCK
; Find the draw widget, which is named Draw:
wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw')
IF(wDraw GT 0) THEN BEGIN

; Make the draw widget the current, active window:
WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
WSET, idDraw
WIDGET_CONTROL,Event.top, GET_UVALUE=im, /NO_COPY
; Make sure the image exists:
IF (N_ELEMENTS(im) NE 0) THEN BEGIN
; Display the image:

TV, im
; Save the image in the uvalue of the top-level base:
WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY

ENDIF
ENDIF
Creating an Example Application Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 685
This procedure opens a dialog from which the user can select from a set of predefined
color tables. When the user selects a color table, it is loaded and the displayed image
changes accordingly.

Handling the Smooth Event

When the user selects Smooth from the Analyze menu, a smooth operation is
performed on the displayed image. The smooth operation displays a smoothed image
with a boxcar average of the specified width, which in the example code is 5.

To add the callback routines to handle the smooth operation, follow these steps:

1. Locate the DoSmooth routine place holder, which looks like this:

pro DoSmooth, Event

end

2. Add the following code between the PRO and END statements to handle the
smooth operation:

; Get the image stored in the uvalue of the top-level-base.
WIDGET_CONTROL, Event.top, GET_UVALUE=image, /NO_COPY
; Make sure the image exists.
IF(N_ELEMENTS(image) GT 0)THEN BEGIN

; Smooth the image.
image = SMOOTH(image, 5)
; Display the smoothed image.
TV, image
; Place the new image in the uvalue of the button widget.
WIDGET_CONTROL, Event.top, SET_UVALUE=image, /NO_COPY

ENDIF

3. Select File → Save, to save all your changes to the example_eventcb.pro
file.
Building IDL Applications Creating an Example Application

686 Chapter 27: Using the IDL GUIBuilder
Compiling and Running the Example Application

To compile and run your example application, type example at the IDL> command
prompt. The following figure shows the example application and the IDL color table
dialog.

In the running application, you can open and display a PNG file. Then, you can open
the XLOADCT dialog and change the color table used in displaying the image, or
you can perform the smooth procedure on the image.

Figure 27-5: Running Example Application and XLOADCT Dialog
Creating an Example Application Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 687
IDL GUIBuilder Tools

You will use the following tools to design and construct a graphical interface using
the IDL GUIBuilder:

• The IDL GUIBuilder Toolbar, which you use to create the widgets that make
up your interface. See “Using the IDL GUIBuilder Toolbar” on page 688 and
“Widget Operations” on page 702.

• The Widget Properties dialog, which you use to set widget attributes and event
properties. See “Using the Properties Dialog” on page 691 and “Widget
Properties” on page 721.

• The Widget Browser, which you can use to see the widget hierarchy and to
modify certain aspects of the widgets in your application. See “Using the
Widget Browser” on page 694.

• The Menu Editor, which you use to define menus to top-level bases and
buttons. See “Using the Menu Editor” on page 695.

• The Bitmap Editor, which you use to create or modify bitmap images to be
displayed on button widgets. See “Using the Bitmap Editor” on page 698.

• The IDLDE to modify, compile, and run the generated code (see Chapter 2,
“The IDL Development Environment” in the Using IDL manual.
Building IDL Applications IDL GUIBuilder Tools

688 Chapter 27: Using the IDL GUIBuilder
Using the IDL GUIBuilder Toolbar

The IDL GUIBuilder has its own toolbar in the IDE, which you use to create the
widgets for your user interface. The following figure shows the toolbar.

These are the widget types you can create using the IDL GUIBuilder toolbar:

Figure 27-6: IDL GUIBuilder Toolbar

Widget Description

Base Creates a container for a group of widgets within a top-level base
container. A top-level base is contained in the IDL GUIBuilder
window, and you build your interface in it. Use base widgets
within the top-level base to set up the widget hierarchy, layout,
and to organize the application. For example, you can use a base
widget to group a set of buttons. For information on base
properties, see “Base Widget Properties” on page 728.

Button Creates a push button. The easiest way to allow a user to interact
with your application is through a button click. You can have
button widgets display labels, menus, or bitmaps. For information
on button properties, see “Button Widget Properties” on page 741.

Table 27-1: Widget Types

Select Cursor

Base Button Radio Button

Checkbox

Text

Label

Vertical Slider ListboxDroplist Draw Area

Table

Horizontal Slider
Tab

Tree
IDL GUIBuilder Tools Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 689
Radio Button Creates a toggle button that is always grouped within a base
container. Use radio buttons to present a set of choices from
which the user can pick only one. For information on radio button
properties, see “Button Widget Properties” on page 741.

Checkbox Creates a checkbox, which you can use either as a single toggle
button to indicate a particular state is on or off or as a list of
choices from which the user can select none to all choices.
Checkboxes are created within a base container. For information
on checkbox properties, see “Button Widget Properties” on
page 741.

Text Creates a text widget. Use text widgets to get input from users or
to display multiple lines of text. For information on text widget
properties, see “Text Widget Properties” on page 747.

Label Creates a label. Use label widgets to identify areas of your
application or to label widgets that do not have their own label
property. Use labels when you have only a single line of text and
you do not want the user to be able to change the text. For
information on label widget properties, see “Label Widget
Properties” on page 753.

Horizontal
and Vertical
Sliders

Creates a slider with a horizontal or vertical layout. Use slider
widgets to allow the user to control program input, such as adjust
the speed of movement for a rotating image. For information on
slider properties, see “Slider Widget Properties” on page 755.

Droplist Creates a droplist widget, which you can use to present a
scrollable list of items for the user to select from. The droplist is
an effective way to present a lot of choices without using too
much interface space. For information on droplist properties, see
“Droplist Widget Properties” on page 758.

Listbox Creates a list widget, which you can use to present a scrollable list
of items for the user to select from. For information on listbox
properties, see “Listbox Widget Properties” on page 761.

Widget Description

Table 27-1: Widget Types (Continued)
Building IDL Applications IDL GUIBuilder Tools

690 Chapter 27: Using the IDL GUIBuilder
Note
The Select Cursor button returns the cursor to its standard state, and it indicates that
the cursor is in that state. After you click on another button and create the selected
widget, the cursor returns to the selection state.

Draw Area Creates a draw area, which you can use to display graphics in
your application. The draw area can display IDL Direct Graphics
or IDL Object Graphics, depending on how you set its properties.
For information on the draw area properties, see “Draw Widget
Properties” on page 765.

Table Creates a table widget, which you can use to display data in a row
and column format. You can allow users to edit the contents of the
table. For information on the table widget properties, see “Table
Widget Properties” on page 772.

Tab Creates a tab widget on which different “pages” (base widgets and
their children) can be displayed by selecting the appropriate tab.
For information on the tab widget properties, see “Tab Widget
Properties” on page 781.

Tree Creates a tree widget, which presents a hierarchical view that can
be used to organize a wide variety of data structures and
information. For information on the tree widget properties, see
“Tree Widget Properties” on page 784.

Widget Description

Table 27-1: Widget Types (Continued)
IDL GUIBuilder Tools Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 691
Creating Widgets

All widgets for a user interface must be descendents of a top-level base; in the IDL
GUIBuilder window, all widgets must be contained in a top-level base widget. When
you open an IDL GUIBuilder window, it contains a top-level base. You can add base
widgets to that top-level widget to form a widget hierarchy. The added bases can act
as containers for groups of widgets.

To create a widget, do one of the following:

• Click on the appropriate button on the toolbar, then drag out an area within the
top-level base widget. When you release the mouse button, a widget the size of
the dragged-out area is created.

• Click on the appropriate button on the toolbar, then click within the top-level
base area. This creates a widget of the default size.

After you add widgets to a top-level base, you can resize, move, and delete them, and
you can change their parent base. You can also set properties for each widget. For
information on how to operate on widgets, see “Widget Operations” on page 702, and
for information on setting properties, see “Using the Properties Dialog” on page 691.

Using the Properties Dialog

For each widget, you can define attribute and event procedure properties. A widget’s
attributes define how it will display on the screen and its basic behaviors. The
attributes you can set for a selected widget are displayed on the Attributes tab of the
Properties dialog. These attributes are initially set to default values.

Event procedures are the predefined set of events a widget can recognize. When you
write an application, you decide if and how the widget will respond to each of the
possible events. The events that a selected widget recognizes are displayed on the
Events tab of the Properties dialog. The event values are initially undefined. Supply
event routine names for only those events to which you want the application to
respond.

Opening the Properties dialog

To open the Properties dialog for a widget, do one of the following:

• Right-click on the widget in the IDL GUIBuilder window, and choose
Properties from the menu.

• Select the widget, and choose Properties from the Edit menu.
Building IDL Applications IDL GUIBuilder Tools

692 Chapter 27: Using the IDL GUIBuilder
These actions open a Properties dialog similar to the one shown in the following
figure.

The status area at the bottom of the Properties dialog contains a description of the
currently selected attribute or event. In addition, for each property that maps directly
to an IDL keyword, there is a tool-tip that provides the name of the IDL keyword.

To display a tool-tip, place the cursor over the property name. The tool-tips are
displayed only for properties that map to IDL keywords.

Note
If you have multiple widgets selected in the IDL GUIBuilder window, the
Properties dialog displays the properties for the primary selection, which is
indicated by the darker, filled-in sizing handles around the widget. When you select
multiple widgets, only one is marked as the primary selection.

To keep the Properties dialog on top, click the push pin button.

The Properties dialog will close as soon as it loses focus, unless you click the push
pin button. If you click the push pin button, the Properties dialog stays on top and
updates to reflect the properties of the currently selected widget.

Figure 27-7: Properties Dialog for a Slider Widget
IDL GUIBuilder Tools Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 693
To close the Properties dialog when the push pin is being used, do one of the
following:

• Click the push pin again, and the dialog will close when it loses focus.

• Press Escape while the dialog has focus.

• Click the X in the upper right corner of the dialog.

Any changes you make to values in the Properties dialog are automatic; you will see
the results of all visual changes immediately. For example, any changes you make to
the alignment or column setting will change the layout position of the widget
immediately.

All widgets share a common set of properties, and each widget has its own specific
properties. These properties are arranged in the following order on the Attributes tab
of the Properties dialog:

• The Name attribute

• An alphabetical list of common and widget-specific properties, combined

On the Events tab of the Properties dialog, the properties are displayed in alphabetical
order with common and widget-specific events combined.

For information on the properties you can set for each widget, see “Widget
Properties” on page 721.

Entering Multiple Strings for a Property

There are several widget properties that you can set to multiple string values. The
attribute’s Value field contains a popup edit control in which you can enter multiple
strings.

To enter more than one string in the edit control, do one of the following:

• Type in a string, then press Control+Enter at the end of each line.

• Type in a string, then press Control+j at the end of each line.

These actions move you to the next line. When you have entered the necessary string,
press Enter to set the values.
Building IDL Applications IDL GUIBuilder Tools

694 Chapter 27: Using the IDL GUIBuilder
Using the Widget Browser

The Widget Browser of the IDL GUIBuilder is a dialog window that presents the
current GUI in a tree control. This presents the user with a different view into the GUI
they are designing.

To start the Widget Browser, right-click on any component in an IDL GUIBuilder
window, then choose Browse from the menu. This opens the Widget Browser, like
the one shown in the following figure.

The Widget Browser is helpful when you want to see your widget hierarchy and when
you need to operate on overlapping widgets in your interface layout, which can
happen when you design an interface to show or hide widgets on specific events. For
an example that uses the Widget Browser for this purpose, see “Controlling Widget
Display” on page 716.

Note
In the Widget Browser, there is no indication of defined menus.

You can expand the widget tree by clicking on the plus sign, or collapse it by clicking
on the minus sign. When you select a widget in the hierarchy by clicking on it, the
widget is selected in the IDL GUIBuilder window, and the Properties dialog updates
to display the selected widget’s properties.

Right-click on a component to display a context menu from which you can cut, copy,
paste, or delete the widget. From the context menu, you can also open the Properties
dialog and the Menu Editor, when appropriate. To delete a widget from the Widget
Browser, use the context menu, or select a widget and press the Delete key.

Figure 27-8: Widget Browser
IDL GUIBuilder Tools Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 695
To change a widget’s Name attribute in the Widget Browser, select the widget name
with two single clicks on the name. This changes the name into an editable text box in
which you can enter the new name. The Name attribute must be unique to the widget
hierarchy. For more information on other ways to operate on widgets, see “Widget
Operations” on page 702.

Using the Menu Editor

You can add menus to top-level bases or to buttons that have the Type attribute set to
Menu. To define menus for your interface, use the Menu Editor, which is shown in
the following figure with defined menus. This dialog allows you to define menus,
menu items, submenu titles, and submenus, and all their associated event procedures.

For instructions on how to define the menus shown in the following figure, see
“Defining Menus for the Top-level Base” on page 676.

Adding Menus to Top-Level Bases

To define basic menus, menu items, submenu titles, submenus, and their associated
event procedures to top-level bases, follow these general steps:

1. Open the Menu Editor by doing one of the following:

• Select the top-level base and select Edit → Menu from the IDLDE menu.

• Right-click on the top-level base, then choose Edit Menu.

Figure 27-9: Menu Editor Dialog
Building IDL Applications IDL GUIBuilder Tools

696 Chapter 27: Using the IDL GUIBuilder
2. To define a top-level menu in the Menu Editor, enter a Menu Caption, and
click Insert. When you are defining menus for a top-level base, the top-level
menus are aligned along the left edge of the menu list, and the indentation
indicates the nesting in the menu.

Note
The Menu Caption is the name that appears on the menubar. If you are defining a
top-level menu for a base, you do not need to supply a value in the Event Procedure
field. On button menus, however, where the button’s Label attribute acts as the top-
level menu, the first level of menus in the editor serve as menu items, and thus
require a value in the Event Procedure field.

3. To define a menu item on a new line in the editor, click the right arrow, enter a
Menu Caption and its associated event procedure, then click Insert. The Menu
Caption is the name you want to appear on the menu. The Event Procedure is
the name of the routine that will be called when the menu item is selected.

Note
For top-level bases, you must indent a line to make it a menu item and enable the
Event Procedure field.

4. To define a submenu title, enter the Menu Caption, and click Insert. It is not
necessary to define an Event Procedure for a submenu title.

5. To define submenus to a submenu title, enter the Menu Caption and the Event
Procedure, indent the item another level by using the right arrow, and click
Insert. Enter the submenus you want at this level of indentation.

6. To define another top-level menu or menu item, enter the information, click the
left arrow until the indentation is appropriate, and click Insert.

7. To define a separator, select a blank line, or select the line you want the
separator after, then click the separator button (which has a line on it and is
above the arrow buttons).

8. To save your defined menus, Click OK in the Menu Editor. When you do so,
the menu items will appear on the top-level base. To test the display of the
menus, click on them.

Note
Under Microsoft Windows, including the ampersand character (&) in the Menu
Caption causes the window manager to underline the character following the
ampersand, which is the keyboard accelerator. This functionality is supported in the
IDL GUIBuilder Tools Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 697
Menu Editor. If you are designing an application to run on other platforms,
however, avoid the use of the ampersand in the Menu Caption.

• To move a menu item to a new position: Select the menu item, click the up or
down arrow on the right side of the dialog until the menu item is in the desired
position, then click OK.

• To add a menu item in the middle of existing menu items: Select the line you
want the new item to follow, then click Insert. This adds a new line, for which
you can enter a Menu Caption and Event Procedure.

• To make a menu item display disabled initially: Click the Enabled checkbox
(to uncheck it). All menu items are enabled by default.

• To enable the ability to place a check or selection box next to the menu item:
Click the Checked checkbox. (Checkmarks are placed next to menu items via
the SET_BUTTON keyword to WIDGET_CONTROL in the event handling
routine.)

• To delete a menu item: Select the item, then click Delete.

• To delete a menu: Delete each contained menu item, then delete the top-level
menu.

Adding Menus to Buttons

You can also create buttons that contain menus. To add a menu to a button, follow
these basic steps:

1. Click on the Button widget tool on the toolbar, then click on the top-level base
area. This creates a button of the default size.

2. Right-click on the button and choose Properties to open the Properties dialog.

3. In the Properties dialog, change the value of the Type attribute to Menu.

4. Right-click on the button, then choose Edit Menu to open the Menu Editor.
You can define the menu items and submenus with the Menu Editor, using the
general steps described in “Using the Menu Editor” on page 695.

Note
For buttons, the Label attribute acts as the top-level menu, and the first level of
menus in the Menu Editor serve as menu items. Therefore, the first level requires a
value in the Event Procedures field (unlike top-level menu items for bases).
Building IDL Applications IDL GUIBuilder Tools

698 Chapter 27: Using the IDL GUIBuilder
5. After you have defined all the necessary menus, click OK. When you do so, the
menus are saved, and the button Label attribute is displayed as the top-level
menu.

To view menus on buttons, do one of the following:

• Immediately after creating the menu (after clicking OK in the Menu Editor),
click on the button, and the button menus will be displayed.

• At any other time, right-click on the button, and then choose Show Menu.

Using the Bitmap Editor

Use the Bitmap Editor to create 16 color bitmaps to be displayed on push buttons.
The Bitmap Editor can read and write bitmap files (*.bmp). Using the editor, you can
create your own bitmaps, or you can open existing bitmap files and modify them.

IDL supplies a set of bitmap files you can use in the buttons of your applications. The
files are always available for loading. The bitmaps are located in the following
directory:

IDL_DIR\resource\bitmaps

Placing a Color Bitmap on a Button

To display a bitmap on a button, follow these steps:

1. Right-click on the button widget, and choose Properties from the menu, which
opens the Properties dialog for this button.

2. In the Type field, select Bitmap from the droplist.

3. In the Properties dialog, click on the arrow to the right of the Bitmap attribute,
and do one of the following:

• To place an existing bitmap on the button: Choose Select Bitmap, and
select a bitmap file from the Open dialog. Note that when Bitmap type is
selected, the Label attribute value changes to Bitmap.

• To edit an existing bitmap and place it on the button: Choose Edit Bitmap,
then select the bitmap file from the Open dialog. This opens the bitmap in
the Bitmap Editor. The bitmap is displayed on the button when you save
the file.

• To create a new bitmap and place it on a button: Choose New Bitmap. This
opens the Bitmap Editor, which you can use to create the new bitmap.
When you save the *.bmp file, it is placed on the button.
IDL GUIBuilder Tools Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 699
When you complete one of these processes, the filename of the selected bitmap
appears in the Bitmap field of the Properties dialog, and the bitmap is
displayed on the button.

Note
For 16- and 256-color bitmaps, IDL uses the color of the pixel in the lower left
corner as the transparent color. All pixels of this color become transparent, allowing
the button color to show through. This allows you to use bitmaps that are not
rectangular. If you have a rectangular bitmap that you want to use as a button label,
you must either draw a border of a different color around the bitmap or save the
bitmap as 24-bit (TrueColor). If your bitmap also contains text, make sure the
border you draw is a different color than the text, otherwise the text color will
become transparent.

Using the Bitmap Editor Tools

The Bitmap Editor tools allow you to select from the color palette, and then use the
Pencil (pixel fill), the Flood fill (fill clear area), or the Eraser (clear or color areas).
The Bitmap Editor tools are shown in the following figure.

Figure 27-10: Bitmap Editor Tools

Selection Cursor

Pencil (Pixel Fill) Flood Fill

Eraser

Color Selection Area

Left-button Color

Right-button Color
Building IDL Applications IDL GUIBuilder Tools

700 Chapter 27: Using the IDL GUIBuilder
You can select a color by clicking on it in the color selection tool, or you can select
your primary colors, the left-button and right-button colors, and then click on a tool
and draw on the bitmap canvas. You can change the primary color selections at any
time.

• To select the left mouse button color: Left-click on the color in the color
selection area.

• To select a right mouse button color: Right-click on the color in the color
selection area.

• To use the left color: With a tool selected, click or press and drag the right
mouse button on the bitmap canvas.

• To use the right color: With a tool selected, click or press and drag the left
mouse button on the bitmap canvas.

• To change the size of the bitmap: Drag the bitmap canvas to the desired size.

Using the Tree Editor

To define a tree widget hierarchy for your interface, use the Tree Editor, shown in the
following figure. This dialog allows you to define tree nodes and folders, menus,
menu items, submenu titles, and submenus, and all their associated event procedures.

Figure 27-11: Tree Editor Dialog
IDL GUIBuilder Tools Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 701
To create a tree hierarchy, do the following:

1. Add a tree widget to your interface, right-click on the widget, and choose Edit
Tree. A new tree widget is created, beginning with the root node of the tree.

2. Click Insert to add a node to the tree. Nodes are added as leaf nodes below
whichever node is currently selected. Inserting a node below an existing leaf
node turns the existing leaf node into a branch node (that is, a folder). You can
also turn a leaf node into a branch node by selecting the node and clicking the
Folder checkbox.

3. Modify the Caption and Name fields for each node as desired. The value of
the Caption field will be come the VALUE of the tree widget; this string is
used as the text label when the widget is displayed. The value of the Name
field will become the variable name of the variable that holds the tree widget’s
widget ID.

4. To delete a node from the hierarchy, select the node and click Delete. Any
nodes or that have the selected node as their parent will also be deleted.

5. Expand and collapse nodes within the editor by clicking on the plus and minus
symbols to the left of the branch nodes.

6. Rearrange the nodes and branches as desired by dragging and dropping the
nodes’ captions or icons.

7. Click OK to save your changes to the tree widget hierarchy, or Cancel to
abandon your changes.
Building IDL Applications IDL GUIBuilder Tools

702 Chapter 27: Using the IDL GUIBuilder
Widget Operations

The IDL GUIBuilder allows you to operate on widgets in many ways. You can select,
deselect, move, cut, copy, paste, and delete widgets, and you can undo and redo
operations. This section describes the following:

• Selecting Widgets

• Moving and Resizing Widgets

• Cutting, Copying, and Pasting Widgets

• Deleting Widgets

• Undoing and Redoing Operations

Selecting Widgets

You can select a widget, then move it or resize it.

To select a widget, click on the widget.

To select more than one widget, do one of the following:

• Press Shift and click on each widget.

• Press Control and click on each widget. When you press Control, you can
change the selection state by clicking again on the widget; pressing Control
during selection allows you to toggle the selection state of a widget without
affecting the selection state of any other widget.

• Press the left mouse button and drag out an area in the top-level base that
includes the widgets you want to select. When you release the mouse button,
widgets in the selection box are selected.

When you select multiple widgets, there is always one primary selection. The
primary widget selection is indicated with the dark, filled-in selection handles. If you
open the Properties dialog with multiple widgets selected, the properties displayed
are those for the primary selection.

Note
When selecting multiple widgets, you can select only widgets that share the same
base widget as their parent.
Widget Operations Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 703
Moving and Resizing Widgets

You can move widgets around in their parent base by dragging the widget to a new
location or by using the arrow keys.

To move a widget to a new base, or to give a widget a new parent base within the
same top-level base, do one of the following:

• Press Alt and drag and drop the widget on the new parent base.

• Right-click on the widget, choose Cut from the menu, right-click on the new
base widget, and choose Paste from the menu.

To resize a widget, click on a sizing handle, and drag to the desired size. To size the
widget larger than its parent base, press Alt and drag to the desired size.

Cutting, Copying, and Pasting Widgets

You can cut, copy, and paste widgets within the same base or to another base in
another IDL GUIBuilder window, using the Edit menu items, toolbar buttons, or a
context menu (opened with a right-click on the widget).

To cut or copy a selected widget, or to paste a widget from the clipboard, do one of
the following:

• Choose the desired operation from the Edit menu, or from the IDLDE toolbar.

• Right-click on the widget and select the desired operation from the menu. If
you are pasting, right-click on the base widget you want to paste into.

• Select the widget and use standard windows keyboard shortcuts to cut, copy, or
paste the widget.

Note
All cut or copied items are placed on a local clipboard, not on the system clipboard.

Deleting Widgets

To delete a widget, do one of the following:

• Select the widget and choose Edit → Delete.

• Select the widget and press the Delete key.

• Right click on a widget and choose Delete from the menu.
Building IDL Applications Widget Operations

704 Chapter 27: Using the IDL GUIBuilder
Undoing and Redoing Operations

In the IDL GUIBuilder, you can undo or redo unlimited operations between save
procedures. If you save the resource file, the operations are cleared from memory.

To undo an operation, do one of the following:

• Select Edit → Undo.

• Click the “Undo” button on the IDLDE toolbar.

• Press Control+z.

To redo an operation, do one of the following:

• Select Edit → Redo.

• Click the “Redo” button on the IDLDE toolbar.

• Press Control+y.
Widget Operations Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 705
Generating Files

The IDL GUIBuilder generates the following two types of files:

• *.prc files that contain the resource definitions for the interface definition as
displayed in the IDL GUIBuilder.

• *.pro files that contain the generated IDL source code. The generated *.pro
files are portable across all IDL-supported platforms.

Generating Resource Files

The *.prc files contain the resource definitions for the graphical interface. You can
open *.prc files in the IDL GUIBuilder and modify the interface at anytime. Do not
attempt to modify this file directly.

To save a *.prc file for the first time, choose Save or Save As from the IDLDE File
menu. This opens the “Save As” dialog, which allows you to select a location and
indicate a file name for the *.prc file.

To have the .prc file generate code for a project, open the .prc file and do the
following for your platform:

• Windows: select File → Generate.

• UNIX: select Project → Build.

Generating IDL Code

The IDL GUIBuilder can generate these two kinds of *.pro IDL source code files:

• Widget definition code (*.pro files).

• Event-handling code (*_eventcb.pro files).

To save both the widget code and the event handler *.pro files, select File →
Generate .pro from the IDLDE menu. This opens the “Save As” dialog, which you
can use to select a location and indicate a name for the widget code. The event code
file name is based on the name specified for the widget code. For example, if you
enter app1.pro in the File name field, the event code file will be named
app1_eventcb.pro.
Building IDL Applications Generating Files

706 Chapter 27: Using the IDL GUIBuilder
Note
Never modify the generated *.pro interface file. If you decide to modify the
application interface, use the IDL GUIBuilder, then regenerate the file. When you
regenerate the widget code, the file is overwritten.

Note
When you save both files, IDL puts the RESOLVE_ROUTINE procedure in the
generated widget code. The procedure contains the name of the related
*_eventcb.pro event-handler file so that it will be compiled and loaded with
when you run the widget code.

Notes on Generating Code a Second Time

When you modify an interface and save the *.prc file, it is overwritten, which
should not be a problem. If you decide to change your interface, however, you will
need to regenerate the widget code and thus overwrite the *.pro widget code file.

Note that if you regenerate either of the *.pro files, they are overwritten. When
writing code, you should modify only the generated event-handling file
(*_eventcb.pro). You should never modify the generated widget code (the *.pro
file). This allows you to change the interface and regenerate the definition code
without losing modifications in that file. This should simplify the procedures you
need to take to update or change an interface.

Because it is modular, the event-handler code is simple to modify after you change
the interface definitions. When you regenerate the IDL source code files, any new
event handler code is appended to the end of the file.
Generating Files Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 707
IDL GUIBuilder Examples

After you define your interface and generate IDL code using the IDL GUIBuilder,
you will write the code that controls the application’s behavior. You can modify the
code, compile it, and run it using the IDLDE.

Generally, you will be writing the event-handler callbacks for the procedures located
in the generated *_eventcb.pro file. While doing this, you might like to handle
initialization states, have multiple GUIs work together, add compound widgets, or
control widget display. For examples of how to handle these different types of events,
see the following sections:

• Understanding IDL GUIBuilder Event Handling Code

• Writing Event Callback Routines

• Handling Initialization Arguments

• Integrating Multiple Interfaces

• Adding Compound Widgets

• Controlling Widget Display

Understanding IDL GUIBuilder Event Handling Code

When using the IDL GUIBuilder, you assign event procedures to specific events
using the Events tab of the Properties dialog. The calling sequence for the events that
you set are added to the generated *_eventcb.pro event callback code.

The argument that is passed into the specified event routine depends on the type of
event being processed. Creation, realization, and destruction event routines are
usually passed the ID of the involved widget, and all other callback routines are
passed the appropriate IDL widget event structure.

It is a normal operation in applications to change the attributes of the interface when
certain events occur. One method used in handling events for IDL GUIBuilder
generated applications is the UNAME keyword, or the Name attribute, given to all
created widgets. (In a programmatically-created IDL application, this action is
handled using information stored in a widget component’s user value.)

When you create a widget in the IDL GUIBuilder, IDL gives it a name unique to the
widget hierarchy to which it belongs. You can rename the widget using the Name
attribute.
Building IDL Applications IDL GUIBuilder Examples

708 Chapter 27: Using the IDL GUIBuilder
In the generated code, this name is specified by the UNAME keyword. Because these
names are unique, you can use the WIDGET_INFO function with the
FIND_BY_UNAME keyword in your event callback routines to get the IDs of
widgets in the interface application.

Note
For information on properties, see “Using the Properties Dialog” on page 691, and
see “Widget Properties” on page 721.

Writing Event Callback Routines

This short example shows how basic event processing works in code generated by the
IDL GUIBuilder. The example demonstrates how to use the FIND_BY_UNAME
keyword to obtain the IDs of other widgets in the interface.

To create this simple example application, follow these steps:

1. Select File → New → GUI from the IDLDE menu. This opens a new IDL
GUIBuilder window.

2. In the IDL GUIBuilder window, right-click on the contained top-level base,
and choose Properties from the menu. This opens the Properties dialog.

3. In the open Properties dialog, click the push pin button to keep the dialog open
and on top.

4. On the Attributes tab of the Properties dialog, set the top-level base Layout
attribute to Column.

5. On the IDL GUIBuilder toolbar, click the Label Widget button, and click on
the top-level base area to add a label widget to the base.

6. With the label widget selected, set the following attributes in the Properties
dialog:

• In the Name field, enter “clock”.

• Set the Alignment attribute to Center.

• Set the Component Sizing attribute to Default.

• In the Text field, enter “No Time Currently Available”.

7. On the IDL GUIBuilder toolbar, click the Button Widget button.

8. Click on the top-level base area, which adds a button widget to the interface.

9. With the button selected, set the Label attribute to “Time”.
IDL GUIBuilder Examples Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 709
10. In the Properties dialog, click the Events tab and set OnButtonPress to
“OnPress”.

Your interface definition should look like the one shown in the following figure.

11. Select File → Save from the IDLDE menu, which opens the “Save As” dialog.

12. In the “Save As” dialog, select a location, enter “time.prc” in the File name
field, and click Save. This saves the interface definition to a resource file.

13. Select File → Generate .pro from the IDLDE menu. In the “Save As” dialog,
select the location, enter “time.pro” in the File name field, and click Save. This
saves the time.pro widget code file and the time_eventcb.pro event
callback code to the specified directory.

14. Select File → Open from the IDLDE menu. In the “Open” dialog, select the
time_eventcb.pro file and click Open.

Figure 27-12: Handling Events Example Application
Building IDL Applications IDL GUIBuilder Examples

710 Chapter 27: Using the IDL GUIBuilder
15. In the time_eventcb.pro file, locate the OnPress event procedure place
holder, which looks like this:

pro OnPress, Event

end

16. Add the following IDL code between the PRO and END statements to handle a
button press:

; Get the widget ID of the label widget.
Label = widget_info(Event.top, find_by_uname='clock')

; Set the value of the label widget to current time.
widget_control, Label, set_value=Systime(0)

The first command gets the ID of the label widget by searching the widget
hierarchy for a widget named “clock”. This is the name that you gave the label
widget in the IDL GUIBuilder Properties dialog. Once the ID is found, the
second command sets the value of the label widget to the current system time.

17. Select Run → Compile time_eventcb.pro to save and compile the file.

18. To execute the program, enter time at the IDL command prompt.

This compiles and runs the time.pro file. In the running application, you can press
the Time button to cause the current time to be displayed in the label.

Handling Initialization Arguments

You can provide runtime initialization information to the generated *.pro widget
code by modifying the *_eventcb.pro file. Keywords provided to the generated
widget interface procedure are passed to the post creation routines using the
_EXTRA keyword.

If a routine is defined with the _EXTRA keyword parameter, you can add
unrecognized keyword and value pairs, and the pairs are placed in an anonymous
structure. The name of each unrecognized keyword becomes a tag name, and each
value becomes the tag value.

You will use this feature most often when your application launches floating or modal
dialogs, but the functionality is always available.

For example, if you want to display a dialog at the creation of an application, you
would follow these basic steps:

1. Create an interface using the IDL GUIBuilder.
IDL GUIBuilder Examples Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 711
2. After creating the interface, open the Properties dialog for the top-level base
and set the PostCreation event for the top-level base widget to a routine name,
such as “OnCreate”.

3. Save the interface definition and generate the IDL source code.

4. In the generated *_eventcb.pro event code file, locate the “OnCreate”
routine place holder, which looks like this:

pro OnCreate, wWidget, _EXTRA=_VWBExtra_

end

5. To process a specific keyword in this post creation routine, declare the
keyword in the procedure statement and add the processing code to the
procedure.

For example, to process the DO_DIALOG keyword in the defined OnCreate
procedure, add the DO_DIALOG keyword to the procedure, and add the logic
to handle it to the event callback routine. The completed procedure should look
like this:

pro OnCreate, wWidget, DO_DIALOG=DO_DIALOG, _EXTRA=_VWBExtra_

; If DO_DIALOG is set, display a simple message box.
if(Keyword_Set(DO_DIALOG))then $

status = Dialog_Message("On Dialog Set")

end

6. Save the file, then compile and generate the application. To show the dialog at
creation time, enter the following at the IDL command prompt:

<ProgramName>, /DO_DIALOG

Integrating Multiple Interfaces

You can create multiple interfaces with the IDL GUIBuilder then integrate them to
form the complete application hierarchy. This example shows you how to construct
two interfaces and integrate them.

The first interface you will create is the main window, and it will consist of a simple
push button that will launch a modal dialog. The second interface you will create is
the modal dialog, and it will display a close button.
Building IDL Applications IDL GUIBuilder Examples

712 Chapter 27: Using the IDL GUIBuilder
Creating the Main Window

To create the main window, follow these steps:

1. Select File → New → GUI from the IDLDE menu to open a new IDL
GUIBuilder window with a top-level base.

2. On the IDL GUIBuilder toolbar, click on the Button Widget button, then click
on the top-level base. This adds a button of the default size to the base. You can
place the button anywhere in the base.

3. Right-click on the newly created button, and choose Properties from the
context menu to open the Properties dialog.

4. In the Properties dialog, click the push pin button to keep the dialog open and
on top.

5. Set the button’s Label attribute to “Modal Dialog”.

6. Click on the Properties dialog Events tab, and set the OnButtonPress value to
“OnPress”.

7. Select File → Save. In the “Save As” dialog, select a location, enter
“maingui.prc” in the File name field, and click Save. This saves the interface
definition to an IDL resource file.

8. Select File → Generate .pro. In the “Save As” dialog, select a location, enter
“maingui.pro” in the File name field, and click Save. This saves the
maingui.pro widget code and the maingui_evnetcb.pro event-handler
code.

9. Select File → Open. In the “Open” dialog, select the
maingui_eventcb.pro file, and click Open.

10. In the maingui_eventcb.pro file, locate the OnPress event procedure place
holder, which looks like this:

pro OnPress, Event

end

11. Add the following code between the PRO and END statements:

modalgui, group_leader=Event.top

You will create the “modalgui” dialog in the next set of steps. Note that you set
the GROUP_LEADER keyword here because the modal dialog requires it.

12. Select Run → Compile maingui_eventcb.pro. This saves and compiles the
file.
IDL GUIBuilder Examples Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 713
Creating the Modal Dialog

To create the modal dialog, follow these steps:

1. Open a new IDL GUIBuilder window.

2. In the IDL GUIBuilder window, select the top-level base, and set the following
in the Properties dialog:

• Set the Modal attribute to True.

• In the Title field, enter “Modal Dialog”.

3. On the IDL GUIBuilder toolbar, click the button widget, then click on the top-
level base. This adds a button to the top-level base. Place it anywhere in the
base.

4. With the new button selected, set the Label attribute value to “OK”.

5. On the Events tab of the Properties dialog, set the OnButtonPress value to
“OnModalPress”.

6. Select File → Save. In the “Save As” dialog, select a location, enter
“modalgui.prc” in the File name field, and click Save. This saves the interface
definition to an IDL resource file.

7. Select File → Generate .pro. In the “Save As” dialog, select a location, enter
“modalgui.pro” in the File name field, and click Save. This saves the
modalgui.pro widget code file and the modalgui_eventcb.pro event
callback file.

8. Open the modalgui_eventcb.pro file and locate the OnModalPress
procedure place holder. Then add the following code between the PRO and
END statements so that the dialog closes when the button is pushed:

widget_control, Event.top, /destroy

9. Save and compile this file.

Running the Example Application

Enter maingui at the IDL command prompt. This command runs the main window.
You can press the Modal Dialog button, and the modal dialog is displayed. When you
press the OK button on the modal dialog, the dialog exits.
Building IDL Applications IDL GUIBuilder Examples

714 Chapter 27: Using the IDL GUIBuilder
Adding Compound Widgets

The IDL GUIBuilder tools do not allow you to add a compound widget directly to
your interface. You can, however, modify your event code to add a compound widget.

To add a compound widget to an IDL GUIBuilder generated interface, follow these
basic steps:

1. Add the compound widget to the widget tree in a PostCreation event callback
procedure.

2. Handle the events generated by the compound widget in the Handle Event
callback function. Set this event function value for the base widget that will
contain the compound widget.

Adding a Compound Widget to an Interface

This example demonstrates how to add a compound widget to an application
constructed with the IDL GUIBuilder. The application contains a label and a
CW_FSLIDER compound widget. In the running application, the values generated
by CW_FSLIDER will be displayed in the label widget.

To create this application, follow these steps:

1. Select File → New → GUI from the IDLDE menu to open a new IDL
GUIBuilder window with a top-level base.

2. Right-click on the base and choose Properties to open the Properties dialog
for the top-level base.

3. In the Properties dialog, click the push pin button to keep the dialog on top.

4. In the Properties dialog of the top-level base, set the Layout attribute to
Column.

5. To add the label, click the Label Widget button on the toolbar, then click on the
top-level base. This creates a label widget of the default size.

6. With the label selected, set the following in the Properties dialog:

• In the Name value field, enter “label”.

• Set the Alignment attribute to Center.

• Set the Component Sizing attribute to Default.

• In the Text value field, enter “000.000”.

7. Click the Base Widget button on the toolbar, and click on the top-level base.
This adds a base to the top-level base.
IDL GUIBuilder Examples Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 715
8. With the new base widget selected, set the Component Sizing attribute to
Default.

9. In the Properties dialog, click on the Events tab and set the following base
widget event values:

• In the Handle Event Value field, enter “HandleEvent”. This is the name of
the function that will handle the compound widget events.

• In the PostCreation Value field, enter “AddCW”. This is the name of the
event routine that will create the compound widget.

10. Select File → Save. In the “Save As” dialog, select a location, enter
“compound.prc” in the File name field, and click Save. This saves the interface
definition to an IDL resource file.

11. Select File → Generate .pro. In the “Save As” dialog, enter “compound.pro”,
and click Save. This generates the compound.pro widget code file and the
compound_eventcb.pro event-handler file.

12. Select File → Open, and open the compound_eventcb.pro file.

13. In the compound_eventcb.pro file, locate the AddCW event routine place
holder, and insert the code to add the CW_FSLIDER compound widget to the
base widget. The routine should look like this:

pro AddCw, wWidget

idslide = CW_FSLIDER(wWidget, /SUPPRESS_VALUE)

end

14. Add the event callback routines to the generated HandleEvent function. The
function should look like this:

FUNCTION HandleEvent, Event

; Fslider event structure is an anonymous structure, so
; the following will return "" if it is from fslider.

IF(TAG_NAMES(Event, /STRUCTURE_NAME) eq "")THEN BEGIN

; Get the id of the label widget using its name.
id = widget_info(Event.top, find_by_uname='label')

; Set the value of the label, to the value in the slider.
WIDGET_CONTROL, id, set_value= $

String(Event.value, format='(f5.2)')
RETURN,0
; Halt event processing here.
Building IDL Applications IDL GUIBuilder Examples

716 Chapter 27: Using the IDL GUIBuilder
ENDIF

RETURN, Event

END

Note that the callback routine finds the label widget using the
FIND_BY_UNAME keyword with the name value you gave the widget in the
Properties dialog.

15. Select Run → Compile compound_eventcb.pro to save and compile the file.

Running the Example

To run the application, enter compound at the IDL command prompt. This complies
and runs the application. In the running application, move the CW_FSLIDER and the
value is placed in the label.

Controlling Widget Display

This example demonstrates how to use the IDL GUIBuilder to create an interface that
contains overlapping sub-bases containing different types of widgets. The example
shows how you can display and hide overlapping controls in an interface created in
the IDL GUIBuilder, and it incorporates using the Widget Browser. Note that this
example is slightly more complicated than the others.

This example constructs an interface with the following widgets:

• A droplist.

• A sub-base that contains two sub-bases:

• One sub-base containing a text widget.

• One sub-base containing a button.

The two contained sub-bases overlap and the visibility of each is controlled by the
value selected in the droplist. When users select an item in the droplist, one sub-base
is hidden and the other one is displayed.

Creating the Interface

To create this application interface, follow these steps:

1. Select New → GUI from the IDLDE File menu to open a new IDL
GUIBuilder window with a top-level base.
IDL GUIBuilder Examples Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 717
2. Right-click on the top-level base, and choose Properties from the menu. This
opens the Properties dialog.

3. In the Properties dialog, click the push pin button to keep the dialog open and
on top.

4. In the Properties dialog, set the Layout attribute to Column.

5. On the IDL GUIBuilder toolbar, click on the Droplist Widget button, then click
on the top-level base. This creates a droplist in the base area.

6. With the droplist selected, set the following in the Properties dialog:

• In the Title value field, enter “Active Base”.

• In the Initial Value field, click on the arrow. This displays a popup edit
control. Enter “Base One”, press Control+Enter to move to the next line,
enter “Base Two”, and press Enter to close the popup edit control.

7. On the Events tab of the Properties dialog, set OnSelectValue to “OnSelect”.

8. On the IDL GUIBuilder toolbar, click on the Base Widget button, then click on
the top-level base. This adds a base widget of the default size to the interface.

9. With the new base selected, set the following attributes in the Properties
dialog:

• In the Name value field, enter “base0”.

• Set the Frame attribute to True.

10. On the IDL GUIBuilder toolbar, click on the Base Widget button, then click on
the base you just added. This adds a base widget to the “base0” widget.

11. With the newly-added base selected, set the following attributes in the
Properties dialog:

• In the Name value field, enter “base1”.

• Set the Component Sizing attribute to Explicit.

• In the X Offset value field, enter “0”.

• In the X Size value field, enter “200”.

• In the Y Offset value field, enter “0”.

• In the Y Size value field, enter “200”.

12. Right-click on a base, and choose Browse from the context menu. This opens
the Widget Browser.
Building IDL Applications IDL GUIBuilder Examples

718 Chapter 27: Using the IDL GUIBuilder
13. In the Widget Browser, right-click on base1, and choose Copy, which copies
the widget to the local clipboard.

14. In the Widget Browser, right-click on “base0”, and choose Paste, which pastes
the copied base in to the “base0” widget. The new base is called “base1_0”.

15. In the Widget Browser, select “base1_0”. This selects the base in the IDL
GUIBuilder window and updates the Properties dialog with the appropriate
properties and values.

16. With “base1_0” selected, set the following attributes in the Properties dialog:

• In the Name value field, enter “base2”.

• Set the Component Sizing attribute to Explicit.

• In the X Offset value field, enter “0”.

• In the X Size value field, enter “200”.

• In the Y Offset value field, enter “0”.

• In the Y Size value field, enter “200”.

17. Select File → Save. In the “Save As dialog”, select a location, enter
“visible.prc” in the File name field, and click Save. This saves the interface
definition.

18. In the Widget Browser, select “base1”.

19. With “base1” selected, set the Visible attribute to False. This will hide “base1”
and make “base2” visible.

20. On the IDL GUIBuilder toolbar, click the Button Widget button, then click on
“base2” in the IDL GUIBuilder. This adds a button to the base widget. Place
the button anywhere in this base.

21. With the button selected, set the Label attribute to “Button 2”.

22. In the Widget Browser, select “base2”, and using the Properties dialog, set the
Visible attribute to False to hide the base.

23. In the Widget Browser, select “base1”, and set the Visible attribute to True to
show the base.

24. On the IDL GUIBuilder toolbar, click the Label Widget button, then click on
“base1”. This adds a label to “base1”. Place the label anywhere in this base.

25. With the label widget selected, set the Text attribute to “Label 1”.

26. Select File → Save to save the changes to the visible.prc resource file.
IDL GUIBuilder Examples Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 719
The interface is now complete. It should look similar to the one shown in the
following figure.

Generating and Modifying the Code

To generate and modify the code, follow these steps:

1. Select File → Generate .pro. In the “Save As” dialog, select a location, enter
“visible.pro” in the File name field, and click Save. This saves the
visible.pro widget code file and the visible_eventcb.pro event-
handler file.

2. Select File → Open, select the visible_eventcb.pro file, and click Open.

Figure 27-13: Visible Widgets Example Application
Building IDL Applications IDL GUIBuilder Examples

720 Chapter 27: Using the IDL GUIBuilder
3. In the visible_eventcb.pro file, locate the OnSelect event procedure
place holder, which looks like this:

pro OnSelect, Event

end

4. Add the following code between the PRO and END statements:

; Toggle the mapping of the two IDL sub-bases and
; get the Widget IDs of the two sub-bases.
wBase1 = Widget_Info(Event.top, find_by_uname="base1")
wBase2 = Widget_Info(Event.top, find_by_uname="base2")

; Now update the mapping.
widget_control, wBase1, map=(Event.index eq 0)
widget_control, wBase2, map=(Event.index eq 1)

The added IDL code gets the Widget IDs of the sub-bases that you created and
sets the mapping (hide or show) of these bases depending on the selected value
of the droplist.

5. Select Run → Compile visible_eventcb.pro to save and compile the file.

Running the Application

To run this application, enter visible at the IDL command prompt. This command
executes the visible application. In the running application, you can change the
selection in the droplist, and the action will change the displayed widget.
IDL GUIBuilder Examples Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 721
Widget Properties

For each widget type, there is a set of attribute values and a set of event values you
can set using the IDL GUIBuilder Properties dialog. When you select a widget in the
IDL GUIBuilder window or in the Widget Browser, the Properties dialog is updated
to contain the properties for the selected widget. These properties include those
common to all widgets and those specific to the selected widget.

On the Attributes tab of the Properties dialog, the properties are set to default values
and are arranged in the following order:

• The Name attribute.

• An alphabetical list of common and widget-specific properties, combined.

On the Events tab, the possible events for a widget are listed in alphabetical order,
with the common and the widget-specific events combined. By default, no event
values are set initially. When you enter a routine name for an event property, you are
responsible for making sure that event procedure exists. IDL does not validate the
existence of the specified routine.

For information on how to open and use the Properties dialog, see “Using the
Properties Dialog” on page 691.

The rest of this chapter describes the properties you can set for each widget:

• Common Widget Properties

• Base Widget Properties

• Button Widget Properties

• Text Widget Properties

• Label Widget Properties

• Slider Widget Properties

• Droplist Widget Properties

• Listbox Widget Properties

• Draw Widget Properties

• Table Widget Properties

• Tab Widget Properties

• Tree Widget Properties
Building IDL Applications Widget Properties

722 Chapter 27: Using the IDL GUIBuilder
Common Widget Properties

There are several attribute and event property values you can set for all widgets. The
attribute properties include the name of the widget and the sizing properties. The
event properties include creation, realization, destruction, and tracking events.

The following sections describe the common properties:

• Common Attributes

• Common Events

Common Attributes

The following attributes are common to all widgets:

Name

The Name attribute specifies the name of the component. This value can be any string
that is unique to the widget hierarchy of the interface, but the string cannot contain
spaces. For each widget you create in the IDL GUIBuilder, a default name is
supplied, and this name is in the WID_<TYPE>_<NUMBER> format.

If you copy and paste a widget in the IDL GUIBuilder, the new widget is given a
unique name based on the name of the one you copied. A number is added to the first
widget’s name, or an existing number is incremented.

You can use the Name value for the widget in your event callback routines. For
example, you can use the specified name to find the widget, using the
FIND_BY_UNAME keyword to the WIDGET_INFO function. Set the name for
each widget to a name that makes sense to you; set the name value to something that
is easy to remember and easy to use in your code.

In the generated *.pro file, this value is specified with the UNAME keyword to the
widget creation routines.
Common Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 723
Component Sizing

The Component Sizing keyword determines how the component is sized, which is by
one of the following methods:

• Default: The widget is sized to a natural or implicit size. This is the default
setting for the attribute. For example, a label widget’s natural size is
determined by the size of the text it is displaying with extra space for margins.
The default size for each widgets is controlled by several things, including
displayed font size and the characteristics of the operating system displaying
the interface.

• Explicit: The widget size is determined by several attributes, which include
Layout for the base and its own X Size and Y Size keywords.

In the generated *.pro widget file, this value is specified with the XSIZE and YSIZE
keywords to the widget creation routines.

Note
The default size of text widgets on Motif is based on the width of text, but the
default size for text widgets on Windows is approximately 20 characters.

Frame

The Frame attribute determines if the widget will have a frame or border around it.
These are the possible values:

• False: The widget will have no frame drawn around it. This is the default value.

• True: The widget will have a frame or border around it.

In the generated *.pro widget file, this value is specified by the FRAME keyword to
the widget creation routines.

Note
The Frame attribute is not available for top-level base widgets.
Building IDL Applications Common Widget Properties

724 Chapter 27: Using the IDL GUIBuilder
Sensitive

The Sensitive attribute determines if the selected widget is active or not active on
startup. You can set this value to determine if the user can access and manipulate the
widget immediately after creation. These are the possible values:

• True: The widget is initially displayed as enabled and accepts keyboard or
mouse input and generates events. This is the default value.

• False: The widget is initially displayed as disabled and does not accept
keyboard or mouse input. The appearance of most widgets change when the
False value is set, but the appearance does not always change to indicate this
state.

In the generated *.pro file, this value is specified with the SENSITIVE keyword to
the widget creation routines.

Note
To change the sensitivity of a widget after the widget is created, use the
WIDGET_CONTROL function with the SENSITIVE keyword.

X Offset

The X Offset attribute specifies the X offset of the component from its parent. The
possible values for X Offset are o to n, in pixels; any number is valid. The Y Offset
attribute specifies the Y offset.

In the generated *.pro file, this value is specified with the XOFFSET keyword to the
widget creation routines.

Note
The X Offset attribute value is not used with base widgets that have the Layout
attribute set to Row or Column.

X Size

The X Size attribute specifies the width of the visible component in pixels. This
attribute is disabled when Component Sizing is set to Default (and the default size is
used). To enable this value, set Component Sizing to Explicit. The possible values for
X Size are 0 to n, in pixels.

In the generated *.pro file, this value is specified with the SCR_XSIZE keyword to
the widget creation routines.
Common Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 725
Note
If you add scroll bars to a widget, use the widget-specific X Scroll attribute to set
the width of the virtual area.

Y Offset

The Y Offset attribute specifies the Y offset of the component from its parent in
pixels. The possible values for Y Offset are 0 to n, in pixels; any number is valid. The
X Offset attribute specifies the X offset.

In the generated *.pro file, this value is specified by the YOFFSET keyword to the
widget creation routines.

Note
The Y Offset attribute value is not used with base widgets that have the Layout
attribute set to Row or Column.

Y Size

The Y Size attribute specifies the height of the visible component in pixels. This
attribute is disabled when Component Sizing is set to Default (and the default size is
used). To enable this value, set Component Sizing to Explicit. The possible values for
Y Size are 0 to n, in pixels.

In the generated *.pro file, this value is specified with the SCR_YSIZE keyword to
the widget creation routines.

Note
If you add scroll bars to a widget, use the widget-specific Y Scroll attribute to set
the height of the virtual area.
Building IDL Applications Common Widget Properties

726 Chapter 27: Using the IDL GUIBuilder
Common Events

The following events are common to all widgets (by default, no event values are set):

Handle Event

The Handle Event value is the function name that is called when an event arrives
from a widget that is rooted in an IDL GUIBuilder-created widget in the hierarchy.
All events are sent to this event function, except for creation and destruction events.

For example, if you add a compound widget to an interface, using the PostCreation
event procedure for a base widget, you should set the Handle Event value for that
parent base widget (for the compound widget’s parent widget). Then, you can handle
all the events returned by the compound widget using this event function value.

In the generated *_eventcb.pro file, the event function place holder looks like this:

Function <Name>, Event

return, Event
End

where Name is the name of the event function you specify. Event is the returned
event structure, which is specific to the widget event.

For an example of how to handle the generated Handle Event function, see “Adding
Compound Widgets” on page 714.

OnDestroy

The OnDestroy value is the routine name that is called when the widget is destroyed.
In the generated *_eventcb.pro file, the event calling sequence looks like this:

pro <RoutineName>, wWidget

where RoutineName is the name of the event procedure you specify. wWidget is the
IDL widget identifier.

OnRealize

The OnRealize value is the routine name that is called automatically when the widget
is realized. In the generated *_eventcb.pro file, the event calling sequence looks
like this:

pro <RoutineName>, wWidget

where RoutineName is the name of the event procedure you specify. wWidget is the
IDL widget identifier.
Common Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 727
OnTimer

The OnTimer value is the routine name that is called when a timer event is detected
for a widget. In the generated *_eventcb.pro file, the event calling sequence looks
like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned event structure, which has the 3 standard event tags and looks like this:

{ WIDGET_TIMER, ID:0L, TOP:0L, HANDLER:0L }

You must set timer events for a widget, using the WIDGET_CONTROL function.
The code generated by the IDL GUIBuilder only routes the events.

OnTracking

The OnTracking value is the routine name that is called when the widget receives a
tracking event, which occurs when the mouse pointer enters or leaves the region of
the widget. In the generated *_eventcb.pro file, the event calling sequence looks
like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned structure, which is of the following type:

{ WIDGET_TRACKING, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER is 1 if the tracking event is an entry event, and 0 if it is an exit event.

PostCreation

The PostCreation value is the routine name that is called after the widget is created,
but before it is realized. In the generated *_eventcb.pro file, the calling sequence
looks like this:

pro <RoutineName>, wWidget

where RoutineName is the name of the event procedure you specify. wWidget is the
IDL widget identifier.
Building IDL Applications Common Widget Properties

728 Chapter 27: Using the IDL GUIBuilder
Base Widget Properties

A base widget holds other widgets, including other base widgets. You can create
groupings of widgets by using a base widget, thus forming a widget hierarchy.

When you open the IDL GUIBuilder, a top-level base is created, and you build your
interface in this base. Top-level bases are a special class of the base widgets that are
created without parent widgets; they act as the top-level parent in the widget
hierarchy.

In the IDL GUIBuilder, you can add a menubar to the top-level base by using the
Menu Editor.

In addition, you can make top-level bases float above their group leaders, with the
Floating attribute, or you can make them modal dialogs, with the Modal attribute.
Modal dialogs interrupt program execution until the user closes them. When you
make a top-level base floating or modal, you must provide a group leader when
calling the generated code, by using the GROUP_LEADER keyword.

When programming in IDL, you create base widgets using the WIDGET_BASE
function. For more information, see “WIDGET_BASE” in the IDL Reference Guide
manual.

For more information on the Menu Editor, see “Using the Menu Editor” on page 695.

Note
A base widget’s layout is controlled by where you place it and the properties of its
parent base.

Base Widget Attributes

For base widgets, you can set common attributes and base-specific attributes. For a
list attributes common to all widgets, see “Common Attributes” on page 722.

Some of the base widget attributes apply to top-level bases only, and this limitation is
noted in the following list of base widget attributes:

of Rows/Columns

The # of Rows/Columns attribute specifies the number of Columns or Rows to use
when laying out the base. This attribute is valid only when the Layout attribute is set
to Column or Row. The possible values for this setting are 1 to n, and the default
value is 1.
Base Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 729
In the generated *.pro file, this value is specified with the COLUMN or the ROW
keyword to the widget creation routine.

For information on other properties that control the layout of contained widgets, see
Alignment, Layout, Space, X Pad, and Y Pad.

Alignment

The Alignment attribute defines how components are aligned in the base. The way in
which the value of this attribute affects the display of widgets depends on the value of
the Layout attribute. The following is a list possible values for the Alignment
attribute, and each value description includes information on how it works with the
Layout settings:

• Center: Aligns the contained widgets with the center this parent base. This is
the default value. For this setting to take effect, the Layout setting must be Row
or Column. With Row set, the contained widgets are vertically centered. With
Column set, the contained widgets are horizontally centered.

• Top: Aligns contained widgets with the top of this parent base. For this setting
to take effect, the Layout setting must be Row.

• Bottom: Aligns the contained widgets with the bottom of this parent base. For
this setting to take effect, the Layout setting must be Row.

• Left: Aligns the contained widgets with the left side of this parent base. For
this setting to take effect, the Layout setting must be Column.

• Right: Aligns the contained widgets with the right side of this parent base. For
this setting to take effect, the Layout setting must be Column.

• Default: Uses the default layout.

In the generated *.pro file, these settings are specified with the
BASE_ALIGN_CENTER, BASE_ALIGN_TOP, BASE_ALIGN_BOTTOM,
BASE_ALIGN_LEFT, and BASE_ALIGN_RIGHT keywords to the widget creation
routine.

For information on other properties that control the layout of contained widgets, see #
of Rows/Columns, Layout, Space, X Pad, and Y Pad.

Allow Closing

The Allow Closing attribute determines if the top-level base can be closed by the user.
By default, this value is set to True and the base can be closed. To make it so the top-
level base cannot be close, set this value to False.
Building IDL Applications Base Widget Properties

730 Chapter 27: Using the IDL GUIBuilder
In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other properties that control aspects of top-level bases, see the
Allow Moving, Minimize/Maximize, System Menu, and Title Bar properties.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Allow Moving

The Allow Moving attribute determines if the base can be moved. By default, this
value is set to True, and the base can be moved. To suppress this behavior, set this
value to False.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Minimize/Maximize, System Menu, and Title Bar attributes.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Floating

The Floating attribute determines if the top-level base is a floating base (always on
top). By default, this setting is False, indicating that the base is not a floating base. To
create a floating base, set this attribute to True.

If you make a top-level base floating, you must set the GROUP_LEADER keyword
to a valid widget ID when calling the generated procedure.

In the generated *.pro file, this value is specified with the FLOATING keyword to
the widget creation routine.

Note
This attribute setting is used with top-level bases only.
Base Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 731
Grid Layout

The Grid Layout attribute determines if the base will have a grid layout, in which all
columns have the same width, or in which all rows have the same height. These are
the possible values:

• False: Columns or rows will not be the same size. This is the default value.

• True: Column widths or row heights are taken from the largest child widget. If
you set this attribute to True, you must also set the Layout attribute to Column
or Row and the # of Rows/Columns attribute to more than 1.

In the generated *.pro file, this value is specified with the GRID_LAYOUT
keyword to the widget creation routine.

Layout

The Layout attribute specifies how components are laid out in the base. These are the
possible values:

• Bulletin: Indicates that you can position the widgets anywhere on the base.
This is the default setting.

• Column: Indicated that widgets should be in columns. If you set this value, you
should also set the # of Rows/Columns attribute and the Alignment attribute.

• Row: Indicated that widgets should be in rows. If you set this value, you
should also set the # of Rows/Columns attribute and the Alignment attribute.

Note
When using code generated by the IDL GUIBuilder on other non-Windows
platforms, more consistent results are obtained by using a row or column layout for
your bases instead of a bulletin board layout. By using a row or column layout,
differences in the default spacing and decorations (e.g., beveling) of widgets on
each platform can be avoided

The number of child widgets placed in each column or row is calculated by dividing
the number of created child widgets by the number of columns or rows specified (# of
Rows/Columns). When one column or row is filled, a new one is started.

The width of each column or the height of the row is determined by the largest widget
in that column or row. If you set the Grid Layout attribute to True, all columns or
rows are the same size; they are the size of the largest widget.
Building IDL Applications Base Widget Properties

732 Chapter 27: Using the IDL GUIBuilder
If you set the Alignment attribute for the base, the contained widgets are their
“natural” size. If you do not set the Alignment attribute for the base or the child
widgets, all contained widgets will be sized to the width of the column or the height
of the row.

For information on other properties that control the layout of contained widgets, see #
of Rows/Columns, Alignment, Space, X Pad, and Y Pad.

In the generated *.pro file, this value is specified with the COLUMN or the ROW
keyword to the widget creation routine.

Note
When you create a radio button or checkbox, it is created in a base, and you can add
more radio buttons or checkboxes to that base (the added widgets must all be of the
same type). The base in which radio buttons and checkboxes are created has a
column layout setting, and buttons you add will be lined up in a column format.

Minimize/Maximize

The Minimize/Maximize attribute determines if the top-level base can be resized,
minimized, and maximized. By default, this value is set to True. To disable this
behavior, set this attribute to False.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Allow Moving, System Menu, and Title Bar attributes.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Modal

The Modal attribute determines if this top-level base is a modal dialog. By default,
this value is set to False. To make the base a modal dialog, set this attribute to True.

If you set the Modal attribute to True, you cannot set the Scroll attribute, and you
cannot define a menu for the top-level base. In addition, the Sensitive common
attribute and the Visible base widget attribute are also disabled.

If you make a top-level base a modal dialog, you must set the GROUP_LEADER
keyword to a valid widget ID in the generated procedure.
Base Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 733
In the generated *.pro file, this value is specified with the MODAL keyword to the
widget creation routine.

Note
This attribute setting is used with top-level bases only.

Scroll

The Scroll attribute determines if the base widget will support scrolling. By default,
this attribute is set to False, and the base will not support scrolling. To give the widget
scroll bars and allow for viewing portions of the widget contents that are not currently
in the viewport area, set the Scroll attribute to True. In the IDL GUIBuilder, scroll
bars on bases are live so that you can work on the entire virtual area of your
application.

If you set the Modal attribute to True, you cannot set the Scroll attribute.

In the generated *.pro file, this value is specified with the SCROLL keyword to the
widget creation routine.

To set the size of the scrollable region, use the X Scroll and Y Scroll attributes.

Space

The Space attribute specifies the number of pixels between the contained widgets (the
children) in a column or row Layout. By default, this value is set to 3 pixels and that
is the space between the contained widgets. Valid values for this attribute are 0 to n
pixels.

In the generated *.pro file, this value is specified with the SPACE keyword to the
widget creation routine.

To set the space from the edge of the base, use the X Pad and Y Pad properties. For
information on other properties that control the layout of contained widgets, see # of
Rows/Columns, Alignment, and Layout.

Note
You cannot set this attribute on a base containing radio buttons or checkboxes.

System Menu

The System Menu attribute determines if the system menu is displayed or suppressed
on a top-level base. By default, this value is set to True, indicating that the system
menu will be used. To suppress the menu, set this attribute to False.
Building IDL Applications Base Widget Properties

734 Chapter 27: Using the IDL GUIBuilder
In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Allow Moving, Minimize/Maximize, and Title Bar attributes.

Note
This attribute setting is used with top-level bases only.

Tab Mode

The Tab Mode attribute specifies what support the base has for receiving or losing
focus through tabbing. By default, this value is set to None for a top level base, and to
Inherit for subsequent bases.

Note
It is not possible to tab to disabled (Sensitive = False) or hidden (Visible = False)
widgets.

Allowable values are:

Value Description

Inherit Upon creation, the subsequent base inherits the tabbing
support of the parent base. This is the default for child
widgets.

None Disallow tabbing into or out of the base. This is the default for
top level bases. This value is inherited by subsequent bases
and widgets unless explicitly set for the individual base or
widget.

In and Out Allow tabbing into and out of the base.

In Only Allow tabbing into the base only.

Out Only Allow tabbing off of the base only.

Table 27-2: Allowable Tab Mode Values
Base Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 735
Note
The default tab mode of lower level bases and widgets is Inherit. The tabbing
support defined for a top level or parent base is inherited by widget children unless
otherwise specified.

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform.

In the generated *.pro file, this value is specified with the TAB_MODE keyword to
the widget creation routine. For more information on tabbing among widgets, see
“Tabbing in Widget Applications” on page 967.

Title

The Title attribute specifies the title of a top-level base. By default, this value is set to
IDL, but you can change it to any string.

In the generated *.pro file, this value is specified with the TITLE keyword to the
widget creation routine.

Note
This attribute setting is used with top-level bases only.

Title Bar

The Title Bar attribute determines if the title bar will be displayed. By default, this
value is set to True, and the title bar is displayed. To suppress the display of the title
bar, set this value to False.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Allow Moving, Minimize/Maximize, and System Menu
attributes.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.
Building IDL Applications Base Widget Properties

736 Chapter 27: Using the IDL GUIBuilder
Visible

The Visible attribute specifies whether to show or hide the base component and its
descendants. Show, the default value, specifies to display the hierarchy when
realized. The Hide value specifies that the hierarchy should not be displayed initially.
This mapping operation applies only to base widgets.

In the generated *.pro file, this value is specified with the MAP keyword to the
widget creation routine.

Note
If you set the Modal attribute to True, you cannot set the Visible attribute value.

X Pad

The X Pad attribute specifies the horizontal space (in pixels) between child widgets
and the edges of rows or columns. By default, this value is set to 3 pixels, indicating
that there are 3 pixels between the edge of the base and the contained widgets. Valid
values for this attribute are 0 to n pixels.

In the generated *.pro file, this value is specified with the XPAD keyword to the
widget creation routine.

To set the space between widgets, use the Space attribute. For information on other
attributes that control the layout of contained widgets, see # of Rows/Columns,
Alignment, Layout, and Y Pad.

Note
You cannot set this attribute for a base that contains radio buttons or checkboxes. In
the IDL GUIBuilder, a base is created when you add a radio button or checkbox to
an interface, and you can add more radio buttons or checkboxes to that base. When
you add the buttons, they are lined up in a column format.

X Scroll

The X Scroll attribute specifies the width in pixels of the base area, which includes
the exposed as well as the virtual area. There is no default value set, but you can set
this value to any number of pixels from 0 to n. To add scroll bars to the base, use the
Scroll attribute, and to set the height of the scrollable base area, use the Y Scroll
attribute.

In the generated *.pro file, this value is specified with the XSIZE keyword to the
widget creation routine.
Base Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 737
Note
To set the width of the displayed widget, use the X Size common attribute.

Y Pad

The Y Pad attribute specifies the vertical space (in pixels) between child components
and the edge of the base in a row or column Layout. By default, this value is set to 3
pixels, indicating that there are 3 pixels between the edge of the base and the
contained widgets. Valid values for this attribute are 0 to n pixels.

In the generated *.pro file, this value is specified with the YPAD keyword to the
widget creation routine.

To set the space between widgets, use the Space attribute. For information on other
attributes that control the layout of contained widgets, see # of Rows/Columns,
Alignment, Layout, and X Pad.

Note
You cannot set this attribute on a base containing radio buttons or checkboxes. In
the IDL GUIBuilder, a base is created when you add a radio button or checkbox to
an interface, and you can add more radio buttons or checkboxes to that base.

Y Scroll

The Y Scroll attribute specifies the height in pixels of the base area, which includes
the exposed as well as the virtual area. There is no default value set, but you can set
this value to any number of pixels from 0 to n.

To add scroll bars to the base, use the Scroll attribute, and to set the width of the base
area, use the X Scroll attribute.

In the generated *.pro file, this value is specified with the YSIZE keyword to the
widget creation routine.

Note
To set the height of the displayed widget, use the Y Size common attribute.
Building IDL Applications Base Widget Properties

738 Chapter 27: Using the IDL GUIBuilder
Base Widget Events

For base widgets, you can set common event properties and base-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 726.

The following is a list of event properties specific to base widgets:

OnContextEvent

The OnContextEvent value is the routine name that is called when the user clicks the
right-hand mouse button over the base widget. In the generated *_eventcb.pro
file, the event calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned event structure returned when the user clicks the right-hand mouse button
and is of the following type:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L}

The X and Y fields give the device coordinates at which the event occurred, measured
from the upper left corner of the base widget.

OnFocus

The OnFocus value is the routine name that is called when the keyboard focus of the
base changes. In the generated *_eventcb.pro file, the event calling sequence
looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when the keyboard focus changes and is of the following
type:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER returns 1 if the base is gaining the keyboard focus, and returns 0 if the base is
losing the keyboard focus.
Base Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 739
OnIconify

The OnIconify value is the routine that is called when the user iconifies or restores
the top-level base widget. In the generated *_eventcb.pro file, the event calling
sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when a user iconifies or restores the widget using the window
manager and is of the following type:

{ WIDGET_TLB_ICONIFY, ID:0L, TOP:0L, HANDLER:0L, ICONIFIED:0 }

ICONIFIED is 1 (one) if the user iconified the base and 0 (zero) if the user restored
the base.

Note
This event procedure is valid for top-level bases only.

OnKillRequest

The OnKillRequest value is the routine that is called when the user attempts to kill
the top-level base widget. In the generated *_eventcb.pro file, the event calling
sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when a user tries to destroy the widget using the window
manager and is of the following type:

{ WIDGET_KILL_REQUEST, ID:0L, TOP:0L, HANDLER:0L }

Note that this event structure contains the standard three fields that all widgets
contain.

Note
This event procedure is valid for top-level bases only.
Building IDL Applications Base Widget Properties

740 Chapter 27: Using the IDL GUIBuilder
OnMove

The OnMove value is the routine that is called when the user moves the top-level base
widget. In the generated *_eventcb.pro file, the event calling sequence looks like
this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when a user moves the widget and is of the following type:

{ WIDGET_TLB_MOVE, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L }

X and Y are the new location of the top left corner of the base.

Note
This event procedure is valid for top-level bases only.

OnSizeChange

The OnSizeChange value is the name of the routine that is called when the top-level
base has been resize. In the generated *_eventcb.pro file, the event calling
sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when the top-level base is resized by the user and is of the
following type:

{ WIDGET_BASE, ID:0L, TOP:0L, HANDLER:0L, X:0, Y:0 }

The X and Y fields return the new width of the base, not including any frame
provided by the window manager.

Note
This event procedure is valid for top-level bases only.
Base Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 741
Button Widget Properties

In IDL, a button widget can be a button (push button), radio button, or checkbox.

A push button is activated by a single-click. Push buttons can be of any size. You can
set the Menu attribute to yes for a button widget, and then it can contain a pull-down
menu. When you do so, the Label is enclosed in a box to indicate that the button is a
menu button.

Radio buttons have two states, set and unset, and they belong to a group that allows
only one radio button selection for that group. The group is defined as all buttons
contained in the same exclusive base widget. When a radio button in a base (in a
group) is selected, any other button selection in that base is cleared. When you create
a radio button in the IDL GUIBuilder, it is created in an exclusive base widget, and
you can add only radio buttons to that base.

Checkboxes have two states, set and unset, and they are grouped in a non-exclusive
base widget. The base widget allows for any number of checkboxes to be set at one
time, and you can also use single checkboxes in your interface. When you create a
checkbox in the IDL GUIBuilder, it is created in an non-exclusive widget base, and
you can add only checkboxes to this base.

When programming in IDL, you create push buttons, radio buttons, and checkboxes
using the WIDGET_BUTTON function. For more information, see
“WIDGET_BUTTON” in the IDL Reference Guide manual.

Note
The bases in which radio buttons and checkboxes are created have the Layout
attribute set to column so when you add more widgets they are lined up
appropriately.

Creating Multiple Radio Buttons or Checkboxes

To create several radio buttons or checkboxes in a base widget:

1. Click on the radio button or checkbox tool, and click on the location to add the
button. This creates a base with one radio button or checkbox in it.

2. Click on the radio button or checkbox tool, and click in the radio button or
checkbox base area you just created. This adds a radio button or checkbox to
the base.
Building IDL Applications Button Widget Properties

742 Chapter 27: Using the IDL GUIBuilder
When you drop a button in an exclusive or non-exclusive base, the added
buttons line up in columns; by default, these exclusive and non-exclusive bases
have their Layout attribute set to Column.

3. Repeat step 2 until you have the desired number of buttons.

4. If you want to change the layout of the checkboxes or radio buttons, you can
open the Properties dialog and set the Layout common attribute for the base
widget to Row or Bulletin.

5. To set the properties for each button in the base, open the Properties dialog,
click the push pin button to keep it on top, then click on each radio button or
checkbox to set their individual properties.

Button, Radio Button, and Checkbox Widget
Attributes

For button widgets, you can set common attributes and button-specific attributes. For
a list of common attributes, see “Common Attributes” on page 722. The following is
a list of button widget attributes, which apply to push buttons, radio buttons, and/or
checkboxes:

Alignment

The Alignment attribute specifies how the text label is aligned in the button widget.
These are the possible alignment values:

• Center: The label text is centered.

• Left: The label text is left-justified.

• Right: The label text is right-justified.

In the generated *.pro file, this value is specified by the ALIGN_CENTER, the
ALIGN_LEFT, or the ALIGN_RIGHT keyword to the widget creation routine.

Bitmap

The Bitmap attribute allows you to select a bitmap to be displayed in the push button,
and it allows you to access the Bitmap Editor to create or modify a bitmap file (*.bmp
file). This value applies only to buttons (not to radio buttons or checkboxes).

To set this value, set the Type value to Bitmap, then the Bitmap attribute displays in
the Properties dialog. When the button type is “Bitmap”, you can set the Bitmap
attribute to the path and name of the bmp file.
Button Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 743
When you click on the arrow in the Bitmap attribute Value field, you can choose from
the following options:

• Select Bitmap: Launches an Open dialog that you can use to locate and select
the existing *.bmp file to be placed in the button.

• Edit Bitmap: Launches an Open dialog that you can use to locate and select the
existing *.bmp file to be opened in the Bitmap Editor. You can modify the
bitmap and save it. The bitmap is then displayed in the button.

• New Bitmap: Opens the Bitmap Editor which you can use to create and save a
bitmap. When you save the new bitmap, it is displayed in the button.

In the generated *.pro file, this value is specified with the VALUE and Bitmap
keyword to the widget creation routine.

For information on using the Bitmap Editor, see “Using the Bitmap Editor” on
page 698.

Label

The Label attribute specifies the text label for a button. If you set the Type attribute to
Bitmap (for push buttons only), this value is not displayed. For radio buttons and
checkboxes, the label value is the text string displayed next to the button. By default,
this value is set to Button, and you can change it to any string.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.

No Release

The No Release attribute enables and disables the dispatching of button release events
for radio buttons and checkboxes. Normal buttons do not generate events when
released, but radio buttons and checkboxes can return separate events for the select
and release actions. These are the possible values:

• True: The release event is not returned; only the select event is returned. This is
the default setting.

• False: Both the release and select events are returned.

In the generated *.pro file, this values is specified with the NO_RELEASE keyword
to the widget creation routine.

Note
The No Release attribute is for radio buttons and checkboxes only.
Building IDL Applications Button Widget Properties

744 Chapter 27: Using the IDL GUIBuilder
Tab Mode

The Tab Mode attribute specifies what support the widget has for receiving or losing
focus through tabbing. By default, this value is set to Inherit.

Note
For radio buttons, the tab mode is automatically inherited from the parent base and
cannot be individually specified.

Note
It is not possible to tab to disabled (Sensitive = False) or hidden (Visible = False)
widgets.

Allowable values are:

Note
The default tab mode of a widget is Inherit. The tabbing support defined for the
parent base, described in “Base Widget Attributes” on page 728, is inherited by
widget children unless otherwise specified.

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform.

Value Description

Inherit Upon creation, the widget inherits the tabbing support of the
parent base.

None Disallow tabbing into or out of the widget.

In and Out Allow tabbing into and out of the widget.

In Only Allow tabbing into the widget only.

Out Only Allow tabbing off of the widget only.

Table 27-3: Allowable Tab Mode Values
Button Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 745
In the generated *.pro file, this value is specified with the TAB_MODE keyword to
the widget creation routine. For more information on tabbing among widgets, see
“Tabbing in Widget Applications” on page 967.

Tooltip

The Tooltip attribute specifies a short text string that will be displayed when the
mouse cursor is positioned over the button. The length of the tooltip is not explicitly
limited, but since tooltips are displayed in a single line, it is best to keep the text
short.

Type

The Type attribute specifies the type of push button.

Note
This attribute applies only to push buttons, not to radio buttons or checkboxes.

The possible values are:

• Push: The button widget is a plain push button. This is the default value.

• Menu: The button contains a menu. After you select this value, you can right-
click on the button widget, choose Edit Menu, and define a menu to display,
using the Menu Editor. See “Using the Menu Editor” on page 695 for details
on using the Menu Editor.

• Bitmap: The button displays a bitmap, which you would use to create a toolbar
for example. If you change the Type value to Bitmap, the Bitmap attribute is
displayed and you can select, modify, or create a bitmap to display on the
button.

In the generated *.pro file, this value is specified with the MENU or VALUE
keywords to the widget creation routine.
Building IDL Applications Button Widget Properties

746 Chapter 27: Using the IDL GUIBuilder
Button, Radio Button, and Checkbox Widget Events

For button widgets, you can set common event properties and button-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 726.

The following is the event property specific to button widgets; it applies to push
buttons, radio buttons, and checkboxes:

OnButtonPress

The OnButtonPress value is the routine that is called when the button is pressed, or
when a button is released for a radio button or checkbox button. In the generated
*_eventcb.pro file, the event calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned event structure, which is of the following type:

{ WIDGET_BUTTON, ID:0L, TOP:0L, HANDLER:0L, SELECT:0 }

SELECT is set to 1 if the button was set, and 0 if released. Push buttons do not
generate events when released, so SELECT will always be 1 for a push button.
However, radio buttons and checkboxes are toggle buttons, and thus return separate
events for the set and the release actions. To control whether or not release events are
returned, set the No Release attribute.
Button Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 747
Text Widget Properties

Use text widgets to display text, and optionally, use them to accept textual input from
users. The text widgets can have one or more lines, and if necessary, the widget can
contain scroll bars to allow for viewing longer text.

When programming in IDL, you create text widgets using the WIDGET_TEXT
function. For more information, see “WIDGET_TEXT” in the IDL Reference Guide
manual.

Note
Use text widgets for displaying large amounts of text, or when you want the user to
be able to edit the text. Use label widgets to display single-line labels that the user
cannot edit.

Text Widget Attributes

For text widgets, you can set common attributes and text-specific attributes. For a list
of common attributes, see “Common Attributes” on page 722. The following are the
attributes specific to text widgets:

Editable

The Editable attribute determines if the text widget is editable or not. By default, this
value is set to False, which means the text widget is not editable. To make the text
widget editable, set this value to True.

In the generated *.pro file, this value is specified with the EDITABLE keyword to
the widget creation routine.

Height

The Height attribute specifies the height of the text widget in text lines. Valid values
for this attribute are 1 to n. The default value, is 1, or one text line.

Note that the physical height of the text widget depends on the value of the Height
attribute and on the size of the font used. The default font size is used, unless you
modify your generated code to use a different font, and the default font size is
platform specific.

In the generated *.pro file, this value is specified by the YSIZE keyword to the
widget creation routine.
Building IDL Applications Text Widget Properties

748 Chapter 27: Using the IDL GUIBuilder
Initial Value

The Initial Value attribute specifies the initial array of values that are placed in the
text widget. You can enter either a string or an array of strings.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line. When you
have entered the strings you want, press Enter to set the values.

In the generated *.pro file, this value is specified by the VALUE keyword to the
widget creation routine.

Note
Variables returned by the GET_VALUE keyword to WIDGET_CONTROL are
always string arrays, even if a scalar string is specified in the call to
WIDGET_TEXT.

Scroll

The Scroll attribute determines if the text widget displays scroll bars. By default, this
value is set to False, which indicates that no scroll bars will be displayed. To have the
text widget display scroll bars, set this value to True.

In the generated *.pro file, this value is specified by the SCROLL keyword to the
widget creation routine.

Tab Mode

The Tab Mode attribute specifies what support the widget has for receiving or losing
focus through tabbing. By default, this value is set to Inherit.

Note
It is not possible to tab to disabled (Sensitive = False) or hidden (Visible = False)
widgets.

Allowable values are:

Value Description

Inherit Upon creation, the widget inherits the tabbing support of the
parent base.

Table 27-4: Allowable Tab Mode Values
Text Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 749
Note
The default tab mode of a widget is Inherit. The tabbing support defined for the
parent base, described in “Base Widget Attributes” on page 728, is inherited by
widget children unless otherwise specified.

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform.

In the generated *.pro file, this value is specified with the TAB_MODE keyword to
the widget creation routine. For more information on tabbing among widgets, see
“Tabbing in Widget Applications” on page 967.

Width

The Width attribute specifies the width of the text widget in characters. Valid values
for this attribute are 0 to n. By default, Width is set to 0, which indicates that default
IDL sizing should be used when, as long as default Component Sizing is also set.

Note that the physical width of the text widget depends on the value of the Width
attribute and on the size of the font used. The default font size varies according to
your windowing system. On Windows, the default size is roughly 20 characters. On
Motif, the default size depends on the system default.

In the generated *.pro code, this value is specified with the XSIZE keyword.

None Disallow tabbing into or out of the widget.

In and Out Allow tabbing into and out of the widget.

In Only Allow tabbing into the widget only.

Out Only Allow tabbing off of the widget only.

Value Description

Table 27-4: Allowable Tab Mode Values (Continued)
Building IDL Applications Text Widget Properties

750 Chapter 27: Using the IDL GUIBuilder
Word Wrapping

The Word Wrapping attribute determines whether scrolling or multi-line text widgets
should automatically break lines between words to keep the text from extending past
the right edge of the text display area. By default this value is set to False, and
carriage returns are not automatically entered; the value of the text widget will remain
a single-element array. To have the text widget enter carriage returns at the end of
lines, change this value to True.

In the generated *.pro code, this value is specified with the WRAP keyword.

Text Widget Events

For text widgets, you can set common event properties and text-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 726.

You can set the following event values for text widgets:

OnContextEvent

The OnContextEvent value is the routine name that is called when the user clicks the
right-hand mouse button over the text widget. In the generated *_eventcb.pro file,
the event calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when the user clicks the right-hand mouse button and is of
the following type:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L}

The X and Y fields give the device coordinates at which the event occurred, measured
from the upper left corner of the text widget.

OnDelete

The OnDelete value is the routine that is called when text is deleted from the text
widget. To set this event value, you must set the Editable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when any amount of text is deleted from a text widget.
Text Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 751
The event structure is of the following type:

{ WIDGET_TEXT_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L }

OFFSET is the (zero-based) character position of the first character to be deleted, and
it is also the insertion position that will result when the characters have been deleted.
LENGTH gives the number of characters deleted, where 0 (zero) indicates that no
characters were deleted.

OnFocus

The OnFocus value is the routine that is called when the keyboard focus changes. In
the generated *_eventcb.pro event code, the calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned structure, which is of the following type:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER returns 1 if the text widget is gaining the keyboard focus, or 0 if the text
widget is losing the keyboard focus.

OnInsertCh

The OnInsertCh value is the routine that is called when a single character is inserted
in the widget. To set this event value, you must set the Editable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when a single character is typed or pasted into a text widget
by a user. The event structure is of the following type:

{ WIDGET_TEXT_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B }

OFFSET is the (zero-based) insertion position that will result after the character is
inserted. CH is the ASCII value of the character.
Building IDL Applications Text Widget Properties

752 Chapter 27: Using the IDL GUIBuilder
OnInsertString

The OnInsertString value is the routine that is called when a text string is inserted in
the text widget. To set this event value, you must set the Editable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when multiple characters are inserted in to text widget. The
event structure is of the following type:

{ WIDGET_TEXT_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'' }

OFFSET is the (zero-based) insertion position that will result after the text is inserted.
STR is the string to be inserted.

OnTextSelect

The OnTextSelect value is the routine that is called when text is selected in the text
widget. To set this event value, you must also set the Editable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when an area of text is selected. The event structure is of the
following type:

{ WIDGET_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3, OFFSET:0L,
LENGTH:0L }

This event announces a change in the insertion point. OFFSET is the (zero-based)
character position of the first character selected, which can also be the insertion
position. LENGTH gives the number of characters involved, where zero indicates that
no characters are selected.

Note
Text insertion, text deletion, or any change in the current insertion point causes any
current selection to be lost. In such cases, the loss of selection is implied by the text
event reporting the insert, delete, or movement event, and a separate zero length
selection event is not sent.
Text Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 753
Label Widget Properties

Label widgets display static text. They are similar to single-line text widgets, but they
are optimized for small labeling purposes.

There are no label widget-specific event properties.

When programming in IDL, you create label using the WIDGET_LABEL function.
For more information, see “WIDGET_LABEL” in the IDL Reference Guide manual.

Note
Use label widgets to display single-line labels that you do not want the user to be
able to edit. Use text widgets for displaying larger amounts of text, or text that you
want the user to be able to edit.

Label Widget Attributes

For label widgets, you can set common attributes and label-specific attributes. For a
list of common attributes, see “Common Attributes” on page 722. These are the label
widget attributes:

Alignment

The Alignment attribute specifies how label Text is aligned. These are the possible
values:

• Left: The text is left-justified. This is the default value.

• Center: The text is centered.

• Right: The text is right-justified.

In the generated *.pro file, this value is specified with the ALIGN_CENTER, the
ALIGN_RIGHT, or the ALIGN_LEFT keyword to the widget creation routine.

Sunken

The Sunken attribute specifies whether the label should be displayed with a “sunken”
border. Sunken borders are often used for status lines and other interface elements in
which the text of the label changes based on user actions or the state of the
application.
Building IDL Applications Label Widget Properties

754 Chapter 27: Using the IDL GUIBuilder
Text

The Text attribute specifies the text string that is displayed in the label widget. By
default, this value is set to Label, and you can set it to any string.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.

Label Widget Events

There are no events specific to Label widgets. For a list of the common widget events,
see “Common Events” on page 726.
Label Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 755
Slider Widget Properties

Horizontal or vertical slider widgets allow for the selection of a value within a range
of possible integer values. A slider widget is a rectangular region representing a range
of values, with a sliding pointer inside that indicates or selects the current value. This
sliding pointer can be manipulated by the user dragging it with the mouse, or within
IDL code.

When programming in IDL, you create horizontal or vertical slider widgets using the
WIDGET_SLIDER function. See “WIDGET_SLIDER” in the IDL Reference Guide
manual.

Horizontal and Vertical Slider Widget Attributes

For slider widgets, you can set common attributes and slider-specific attributes. For a
list of common attributes, see “Common Attributes” on page 722. The following is a
list of slider attributes:

Maximum Value

The Maximum Value attribute specifies the maximum range value for the slider. The
default value is 100, but you can set this attribute to any integer. This value works
with the Minimum Value attribute.

In the generated *.pro file, this value is specified with the MAXIMUM keyword to
the widget creation routine.

Minimum Value

The Minimum Value attribute specifies the minimum range value of the slider. The
default value is 0, but you can set this attribute to any integer. This attribute works
with the Maximum Value attribute.

In the generated *.pro file, this value is specified with the MINIMUM keyword to
the widget creation routine.

Position

The Position attribute specifies the initial value position of the slider. By default this
is set to 0, so the initial position will be at 0. You can set this value to any integer
within the range of the Maximum Value and Minimum Value attribute settings.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.
Building IDL Applications Slider Widget Properties

756 Chapter 27: Using the IDL GUIBuilder
Suppress Value

The Suppress Value attribute controls the display of the current slider value. Sliders
work only with integer units. You can use this attribute to suppress the actual value of
a slider so that a program can present the user with a slider that seems to work in
other units (such as floating-point) or with a non-linear scale. By default, this value is
set to False, indicating that the current value, in integer units, should be displayed. To
suppress the display of the current values, set this attribute value to True.

In the generated *.pro file, this value is specified with the SUPPRESS_VALUE
keyword to the widget creation routine.

Tab Mode

The Tab Mode attribute specifies what support the widget has for receiving or losing
focus through tabbing. By default, this value is set to Inherit.

Note
It is not possible to tab to disabled (Sensitive = False) or hidden (Visible = False)
widgets.

Allowable values are:

Note
The default tab mode of a widget is Inherit. The tabbing support defined for the
parent base, described in “Base Widget Attributes” on page 728, is inherited by
widget children unless otherwise specified.

Value Description

Inherit Upon creation, the widget inherits the tabbing support of the
parent base.

None Disallow tabbing into or out of the widget.

In and Out Allow tabbing into and out of the widget.

In Only Allow tabbing into the widget only.

Out Only Allow tabbing off of the widget only.

Table 27-5: Allowable Tab Mode Values
Slider Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 757
Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform.

In the generated *.pro file, this value is specified with the TAB_MODE keyword to
the widget creation routine. For more information on tabbing among widgets, see
“Tabbing in Widget Applications” on page 967.

Title

The Title attribute specifies the label or title that is associate with the slider widget.
By default, this is not set; it is an empty string. You can set the title to any string.

In the generated *.pro file, this value is specified with the TITLE keyword to the
widget creation routine.

Horizontal and Vertical Slider Widget Events

For slider widgets, you can set common event properties and slider-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 726.

This is the event property specific to slider widgets:

OnChangeValue

The OnChangeValue specifies the routine that is called when the value of the slider is
changed. When you set this event value, the calling sequence looks like this in the
generated *_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when a slider is moved. The event structure is of the
following type:

{ WIDGET_SLIDER, ID:0L, TOP:0L, HANDLER:0L, VALUE:0L, DRAG:0 }

VALUE returns the new value of the slider. DRAG returns integer 1 if the slider event
was generated as part of a drag operation, or zero if the event was generated when the
user had finished positioning the slider. Note that the slider widget only generates
events during the drag operation if the DRAG keyword is set, and if the application is
running on Motif. That is, in most cases, DRAG will return zero.
Building IDL Applications Slider Widget Properties

758 Chapter 27: Using the IDL GUIBuilder
Droplist Widget Properties

Droplist widgets display a single entry from a list of possible choices. To choose from
the list, click the droplist, then click on the item in the list. On Motif operating
systems, the droplist widget looks like a button, which when clicked displays the
drop-down list.

When programming in IDL, you create droplist widgets using the
WIDGET_DROPLIST function. For more information, see “WIDGET_DROPLIST”
in the IDL Reference Guide manual.

Droplist Widget Attributes

For droplist widgets, you can set common attributes and droplist-specific attributes.
For a list of common attributes, see “Common Attributes” on page 722. These are the
droplist attributes:

Initial Value

The Initial Value attribute specifies the initial list of values that are placed in the
droplist widget. The initial value of a droplist can be a scalar string, or it can be a list
of strings. By default, this value is not set, and the droplist is empty.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line. When you
have entered as many strings as you want, press Enter to set the values.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.

Tab Mode

The Tab Mode attribute specifies what support the widget has for receiving or losing
focus through tabbing. By default, this value is set to Inherit.

Note
It is not possible to tab to disabled (Sensitive = False) or hidden (Visible = False)
widgets.
Droplist Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 759
Allowable values are:

Note
The default tab mode of a widget is Inherit. The tabbing support defined for the
parent base, described in “Base Widget Attributes” on page 728, is inherited by
widget children unless otherwise specified.

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform.

In the generated *.pro file, this value is specified with the TAB_MODE keyword to
the widget creation routine. For more information on tabbing among widgets, see
“Tabbing in Widget Applications” on page 967.

Title

The Title attribute specifies the title string, or label, for the droplist. This value can be
any string. By default, this value is set to NULL.

In the generated *.pro file, this value is specified by the TITLE keyword to the
widget creation routine.

Value Description

Inherit Upon creation, the widget inherits the tabbing support of the
parent base.

None Disallow tabbing into or out of the widget.

In and Out Allow tabbing into and out of the widget.

In Only Allow tabbing into the widget only.

Out Only Allow tabbing off of the widget only.

Table 27-6: Allowable Tab Mode Values
Building IDL Applications Droplist Widget Properties

760 Chapter 27: Using the IDL GUIBuilder
Droplist Widget Events

For droplist widgets, you can set common event properties and droplist-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 726.

This is the event property specific to droplist widgets:

OnSelectValue

The OnSelectValue specifies the routine that is called when a droplist item is
selected. When a user selects an item from a droplist, the widget deselects the
previously selected item, changes the visible item on the droplist, and generates an
event.

When you set this event value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when a user selects an item from a droplist. The event
structure is of the following type:

{ WIDGET_DROPLIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L }

INDEX returns the index of the selected item. This value can be used to index the
array of names originally used to set the widget’s value.

Note
On some platforms, when a droplist widget contains only one item and the user
selects it again, the action does note not generate an event. Events are always
generated on selection actions if the list contains multiple items.
Droplist Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 761
Listbox Widget Properties

The listbox displays a list of text items from which a user can select, by clicking on
them. The listboxes have vertical scroll bars to allow viewing of a long list of items.

When programming in IDL, you create listbox widgets using the WIDGET_LIST
function. For more information, see “WIDGET_LIST” in the IDL Reference Guide
manual.

Listbox Widget Attributes

For listbox widgets, you can set common attributes and listbox-specific attributes. For
a list of common attributes, see “Common Attributes” on page 722. These are the
listbox widget attributes:

Height

The Height attribute specifies the height of the listbox based on the number of lines
that are visible. The possible values for the attribute are 1 to n. By default, Height is
set to 1, which indicates the default size of one line will be used.

Note that the final size of the widget may be adjusted to include space for scroll bars,
which are not always visible, so the listbox might be slightly larger than specified.

In the generated *.pro file, this value specified with the YSIZE keyword to the
widget creation routine.

Initial Value

The Initial Value attribute specifies the initial list of values that are placed in the list
widget. By default, the list is empty, but you can set this value to a scalar string or a
list of strings. List widgets are sized based on the length (in characters) of the longest
item specified in the array of values.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line. When you
have entered as many strings as you want, press Enter to set the values.

In the generated *.pro file, this value is specified by the VALUE keyword to the
widget creation routine.
Building IDL Applications Listbox Widget Properties

762 Chapter 27: Using the IDL GUIBuilder
Multiple

The Multiple attribute determines if the user can select multiple list items. By default,
the setting is False, which allows for only one selection. To enable multiple list item
selection, set this value to True. Multiple selections are handled using the method
appropriate to the platform the application is running on.

In the generated *.pro file, this value is specified with the MULTIPLE keyword to
the widget creation routine.

Tab Mode

The Tab Mode attribute specifies what support the widget has for receiving or losing
focus through tabbing. By default, this value is set to Inherit.

Note
It is not possible to tab to disabled (Sensitive = False) or hidden (Visible = False)
widgets.

Allowable values are:

Note
The default tab mode of a widget is Inherit. The tabbing support defined for the
parent base, described in “Base Widget Attributes” on page 728, is inherited by
widget children unless otherwise specified.

Value Description

Inherit Upon creation, the widget inherits the tabbing support of the
parent base.

None Disallow tabbing into or out of the widget.

In and Out Allow tabbing into and out of the widget.

In Only Allow tabbing into the widget only.

Out Only Allow tabbing off of the widget only.

Table 27-7: Allowable Tab Mode Values
Listbox Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 763
Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform.

In the generated *.pro file, this value is specified with the TAB_MODE keyword to
the widget creation routine. For more information on tabbing among widgets, see
“Tabbing in Widget Applications” on page 967.

Width

The Width attribute specifies the width of the listbox in characters. The possible
values for the attribute are 0 to n. By default, Width is set to 0, which indicates that
default sizing will be used, as long as the Component Sizing attribute is set to default.

By default, IDL sizes widgets to fit the situation. However, if the desired effect is not
produced, use explicit Component Sizing with the Width attribute to set your own
sizing. The final size of the widget may be adjusted to include space for the scroll bar,
which is not always visible, so your widget may be slightly larger than specified.

In the generated *.pro file, this value specified with the XSIZE keyword to the
widget creation routine.

Listbox Widget Events

For listbox widgets, you can set common event properties and listbox-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 726.

The following is the event property specific to listbox widgets:

OnContextEvent

The OnContextEvent value is the routine name that is called when the user clicks the
right-hand mouse button over the list widget. In the generated *_eventcb.pro file,
the event calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when the user clicks the right-hand mouse button and is of
the following type:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L}
Building IDL Applications Listbox Widget Properties

764 Chapter 27: Using the IDL GUIBuilder
The X and Y fields give the device coordinates at which the event occurred, measured
from the upper left corner of the base widget.

OnSelectValue

The OnSelectValue specifies a valid IDL routine name that is called when a list item
is selected. When a user clicks on an item in the listbox to select the item, an event is
generated.

When you set this event value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned event structure, which is of the following type:

{ WIDGET_LIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L, CLICKS:0L }

The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This index can be used to subscript the array of
names originally used to set the widget’s value. CLICKS returns either 1 or 2,
depending on how the list item was selected. If the list item is double-clicked,
CLICKS is set to 2.

Note
If you are writing a widget application that requires the user to double-click on a list
widget, you will need to handle two events. The CLICKS field will return a 1 on the
first click and a 2 on the second click.
Listbox Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 765
Draw Widget Properties

Draw widgets are rectangular regions that IDL treats as standard graphics windows.
Use draw widgets to display either IDL Direct graphics or IDL Object graphics,
depending on the value of the Graphics Type attribute. You can direct any graphical
output that can be produced by IDL to one of these widgets, either by using the
WSET function or by using the object reference of a draw widget’s IDLgrWindow
object.

Draw widgets can contain scroll bars that allow for viewing of a graphical region
larger than the area containing the widget.

When programming in IDL, you create draw area widgets using the
WIDGET_DRAW function. For more information, see “WIDGET_CONTROL” in
the IDL Reference Guide manual.

Draw Area Widget Attributes

For a draw area widget, you can set common attributes and draw area-specific
attributes. For a list of common attributes, see “Common Attributes” on page 722.
These are the draw area-specific attributes:

Color Model

The Color Model attribute specifies the color model that should be used for
displaying information on the draw widget. This attribute value is used only when the
Graphics Type attribute is set to Object, for IDL Object Graphics. These are the
possible values for the Color Model attribute:

• Index: The draw widget’s associated IDLgrWindow object uses indexed color.

• RGB: The RGB color model is used. This is the default value.

In the generated *.pro file, this value is specified by the COLOR_MODEL keyword
to the widget creation routine.

Colors

The Colors attribute specifies the number of colors that the drawable should attempt
to use from the system color table. This attribute is only valid with the Graphics Type
attribute is set to Direct, for IDL Direct Graphics. By default, the Color attribute is set
to 0, which indicates that IDL will attempt to get all available colors. That is, all or
most of the available color indices are allocated, based on the window system in use.
Building IDL Applications Draw Widget Properties

766 Chapter 27: Using the IDL GUIBuilder
You can set the Colors attribute to any integer, but most values will be in the range of
-256 < n < 256.

This attribute has effect only if it is supplied when the first IDL graphics window is
created. To use monochrome windows on a color display, set the Colors attribute to 2
for the first window. One color table is maintained for all running IDL windows.

In the generated *.pro file, this value is specified by the COLORS keyword to the
widget creation routine.

Graphics Type

The Graphics Type attribute specifies the type of graphics that the draw widget will
support. These are the possible values:

• Direct: The draw widget will display Direct Graphics. This is the default value.
The Colors attribute is used only when Graphics Type is set to Direct.

• Object: The draw widget will display IDL Object Graphics. The Color Model
and Renderer properties are used only when the Graphics Type is set to Object.

In the generated *.pro file, this value is specified with the GRAPHICS_LEVEL
keyword to the widget creation routine.

Renderer

The Renderer attribute specifies which graphics renderer to use with IDL Object
Graphics. That is, for this attribute to be used, the Graphics Type attribute should be
set to Object. These are the possible values for the Renderer attribute:

• OpenGL: The platform’s native OpenGL renderer is used when drawing
objects within the window. If your platform does not have a native OpenGL
implementation, IDL’s software implementation is used as the renderer. This
value is set by default.

• Software: IDL’s software implementation is used when drawing objects within
the window.

In the generated *.pro file, this value is specified by the RENDERER keyword to
the widget creation routine.

For more information, see “Hardware vs. Software Rendering” in Chapter 34 of the
Using IDL manual.

Note
The renderer selection can also affect the maximum size of a draw widget.
Draw Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 767
Retain

The Retain attribute specifies how backing store is performed in the draw area. These
are the possible values:

• None: There is no backing store. When the Retain attribute is set to None, you
should track OnExpose events so that you can handle the redrawing of the
screen. This is the default value.

• System: The server or window system should provide backing store.

• IDL Pixmap: IDL should provide backing store.

In the generated *.pro file, this value is specified with the RETAIN keyword to the
widget creation routine.

For information on the use of the Retain attribute with Direct Graphics, see “Backing
Store” in Appendix A, “IDL Graphics Devices” in the IDL Reference Guide manual.
For more information on this attribute with IDL Object Graphics, see
“IDLgrWindow::Init” in the IDL Reference Guide manual.

Scroll

The Scroll attribute specifies if the draw area widget will support scrolling, and will
have scroll bars. By default, this value is set to False, which indicates there are no
scroll bars. To display scroll bars, and enable scrolling, set this value to True. If you
do so, set the size of the scrollable area with the X Scroll and Y Scroll properties.

In the generated *.pro file, this value is specified with the SCROLL keyword to the
widget creation routine.

Tooltip

The Tooltip attribute specifies a short text string that will be displayed when the
mouse cursor is positioned over the draw area. The length of the tooltip is not
explicitly limited, but since tooltips are displayed in a single line, it is best to keep the
text short.

X Scroll

The X Scroll attribute specifies the width in pixels of the drawing area. This width
includes the exposed and virtual area. By default, this value is not set. You can set X
Scroll to any width from 0 to n. If you set this value, also set the Scroll and Y Scroll
attribute values.

In the generated *.pro file, this value is specified with the XSIZE keyword to the
widget creation routine.
Building IDL Applications Draw Widget Properties

768 Chapter 27: Using the IDL GUIBuilder
Note
To set the width of the displayed widget, use the X Size common attribute.

Y Scroll

The Y Scroll attribute specifies the height in pixels of the drawing area. This height
includes the exposed and virtual area. By default, this value is not set. You can set Y
Scroll to any height in pixels from 0 to n. If you set this value, also set the Scroll and
X Scroll properties.

In the generated *.pro file, this value is specified with the YSIZE keyword to the
widget creation routine.

Note
To set the height of the displayed widget, use the Y Size common attribute.

Draw Area Widget Events

For draw area widgets, you can set common event properties and draw area-specific
event properties. By default, event values are not set. For a list of events common to
all widgets, see “Common Events” on page 726.

These are the draw area event properties:

OnButton

The OnButton value is the routine that is called when a mouse button event is
detected. In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0L, Y:0L,
PRESS:0B, RELEASE:0B, CLICKS:0, MODIFIERS:0L, CH:0, KEY:0L }

Note that this is the same event structure returned for all draw area events; OnButton,
OnExpose, OnMotion, and OnViewportMoved events all return the same structure.
Therefore the following paragraphs describe all these events.
Draw Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 769
TYPE returns a value that describes the type of draw widget interaction that
generated an event. If there is a button press, it returns 0, and if there is a button
release, it returns 1. If there is motion, it returns 2 (for an OnMotion event). If the
viewport moved with the scroll bars, it returns 3 (for an OnViewportMoved event). If
the visibility changes, it returns 4 (for an OnExpose event).

The X and Y fields give the device coordinates at which the event occurred, measured
from the lower left corner of the drawing area.

PRESS and RELEASE are bitmasks in which the least significant bit represents the
left-most mouse button. The corresponding bit of PRESS is set when a mouse button
is pressed, and in RELEASE when the button is released. If the event is a motion
event, both PRESS and RELEASE returns zero.

CLICKS returns either 1 or 2. If the time interval between button-press events is
greater than the time interval for a double-click event for the system, the CLICKS
field returns 1. If the time interval between two button-press events is less than the
time interval for a double-click event for the platform, the CLICKS field returns 2.

The MODIFIERS field is valid for button press, button release, motion, and keyboard
events. It is a bitmask which returns the current state of several keyboard modifier
keys at the time the event was generated. If a bit is zero, the key is up. If the bit is set,
the key is depressed. See “Widget Events Returned by Draw Widgets” in the IDL
Reference Guide manual for complete details.

Keyboard events are generated with the value of the TYPE field equal to 5 or 6. If the
event was generated by an ASCII keyboard character, the TYPE field will be set to 5
and the ASCII value of the key will be returned in the CH field. (Note that ASCII
values can be converted to the string representing the character using the IDL
STRING routine.) If the event was generated due to a non-ASCII keyboard character,
the type of the event will be set to 6 and a numeric value representing the key will be
returned in the KEY field. See “Widget Events Returned by Draw Widgets” in the
IDL Reference Guide manual for complete details.

OnExpose

The OnExpose value is the routine that is called when the visibility of any portion of
the draw window (or viewport) changes or is exposed. In the generated
*_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0L, Y:0L,
PRESS:0B, RELEASE:0B, CLICKS:0, MODIFIERS:0L, CH:0, KEY:0L }
Building IDL Applications Draw Widget Properties

770 Chapter 27: Using the IDL GUIBuilder
Note that this is the same event structure returned for all draw area events; OnButton,
OnExpose, OnKeyboard, OnMotion, and OnViewportMoved events all return the
same structure. For information on this structure, see OnButton.

OnKeyboard

The OnKeyboard value is the routine that is called when the user presses a key on the
keyboard while the draw window has focus. In the generated *_eventcb.pro file,
the calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0L, Y:0L,
PRESS:0B, RELEASE:0B, CLICKS:0, MODIFIERS:0L, CH:0, KEY:0L }

Note that this is the same event structure returned for all draw area events; OnButton,
OnExpose, OnKeyboard, OnMotion, and OnViewportMoved events all return the
same structure. For information on this structure, see OnButton.

OnMotion

The OnMotion value is the routine that is called when a mouse motion event is
detected. In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0L, Y:0L,
PRESS:0B, RELEASE:0B, CLICKS:0, MODIFIERS:0L, CH:0, KEY:0L }

Note that this is the same event structure returned for all draw area events; OnButton,
OnExpose, OnKeyboard, OnMotion, and OnViewportMoved events all return the
same structure. For information on this structure, see OnButton.
Draw Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 771
OnViewportMoved

The OnViewportMoved value is the routine that is called when the viewport of a
scrolling draw widget is moved, using the scroll bars. In the generated
*_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
returned event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0L, Y:0L,
PRESS:0B, RELEASE:0B, CLICKS:0, MODIFIERS:0L, CH:0, KEY:0L }

Note that this is the same event structure returned for all draw area events; OnButton,
OnExpose, OnKeyboard, OnMotion, and OnViewportMoved events all return the
same structure. For information on this structure, see OnButton.
Building IDL Applications Draw Widget Properties

772 Chapter 27: Using the IDL GUIBuilder
Table Widget Properties

Table widgets display data and allow for data editing by the user. Tables can have one
or more rows and one or more columns.

When programming in IDL, you create table widgets using the WIDGET_TABLE
function. For more information, see “WIDGET_TABLE” in the IDL Reference Guide
manual.

Table Widget Attributes

For table widgets, you can set common attributes and table-specific attributes. For a
list of common attributes, see “Common Attributes” on page 722. These are the table
widget-specific attributes:

Alignment

The Alignment attribute specifies how the text is aligned in the cells. These are the
possible values:

• Left: The text is left-justified. This is the default value.

• Right: The text is right-justified.

• Center: The text is centered.

In the generated *.pro file, this value is specified with the ALIGNMENT keyword
to the widget creation routine.

Column Labels

The Column Labels attribute specifies the labels for the table columns. By default,
this value is set to empty strings, but you can set it to any set of strings. To set the
labels for table rows, use the Row Labels attribute.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line, or the next
label for a column. When you have entered as many labels as you want, press Enter to
set the values.

In the generated *.pro file, this value is specified with the COLUMN_LABELS
keyword to the widget creation routine.
Table Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 773
Disjoint Selection

The Disjoint Selection attribute determines whether the user is allowed to select
multiple, unconnected cell regions within the table. By default, this value is set to
False, indicating that only a single selection is allowed. To allow disconnected
regions, set this value to True.

In the generated *.pro file, the False value is specified with the
DISJOINT_SELECTION keyword to the widget creation routine.

Display Headers

The Display Headers attribute determines if the table headings, the row and column
labels, are displayed. By default, this value is set to True, indicating that table heading
should be displayed. To disable the display of table headings, set this value to False.

In the generated *.pro file, the False value is specified with the NO_HEADERS
keyword to the widget creation routine.

Editable

The Editable attribute determines if the table widget is editable or not. By default, this
value is set to False, which means the text widget is not editable, and the text is read-
only. To make the text widget editable, set this value to True.

In the generated *.pro file, this value is specified with the EDITABLE keyword to
the widget creation routine.

Number of Columns

The Number of Columns attribute specifies the number of columns in the table
widget. This value sets the full, virtual width of the table. By default, it is set to 6.

In the generated *.pro file, this value is specified with the XSIZE keyword to the
widget creation routine.

Note
To have a scrollable table, set the Scroll attribute to True. Then, to specify the
visible size of the table, set the Viewport Columns attribute.

Number of Rows

The Number of Rows attribute specifies the number of rows in the table widget. This
value sets the full, virtual height of the table. By default, it is set to 6.
Building IDL Applications Table Widget Properties

774 Chapter 27: Using the IDL GUIBuilder
In the generated *.pro file, this value is specified with the YSIZE keyword to the
widget creation routine.

Note
To have a scrollable table, set the Scroll attribute to True. Then, to specify the
visible size of the table, set the Viewport Columns attribute.

Resize Columns

The Resize Columns attribute determines if this user can resize table columns. By
default, this value is set to True, indicating that the user can resize the columns. To
specify that the columns of the table are not resizeable by the user, set this value to
False.

In the generated *.pro file, this value is specified with the
RESIZEABLE_COLUMNS keyword to the widget creation routine.

Note
If you set the Display Headers attribute to False, the ability to resize the columns is
automatically disabled.

Row/Column Major

The Row/Column Major attribute specifies how data is transferred to the table
widget, either by Row or by Column. By default, this value is set to Row, indicating
that the data should be read into the table as if each element of the vector is a
structure containing one row’s data. To specify that the data should be read into the
table as if each element of the vector is a structure containing one column’s data, set
this value to Column. Note that for either setting to work properly the structures must
all be of the same type, and must have one field for each column or row in the table.

In the generated *.pro file, this value is specified with the ROW_MAJOR or the
COLUMN_MAJOR keyword to the widget creation routine.

Row Labels

The Row Labels attribute specifies the labels for the table rows. By default, this value
is set to empty strings, but you can set it to any set of strings. To set the labels for
table columns, use the Column Labels attribute.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line, or the next
label for a row. When you have entered as many labels as you want, press Enter to set
the values.
Table Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 775
In the generated *.pro file, this value is specified with the ROW_LABELS keyword
to the widget creation routine.

Scroll

The Scroll attribute determines if the table widget has scroll bars. By default, this
value is set to False, indicating that the table will have no scroll bars. To enable scroll
bars, set this value to True. If you set this value to True, you can set the size of the
scrollable region with the Viewport Rows and Viewport Columns properties.

In the generated *.pro file, this value is specified with the SCROLL keyword to the
widget creation routine.

Tab Mode

The Tab Mode attribute specifies what support the widget has for receiving or losing
focus through tabbing. By default, this value is set to Inherit.

Note
It is not possible to tab to disabled (Sensitive = False) or hidden (Visible = False)
widgets.

Allowable values are:

Note
The default tab mode of a widget is Inherit. The tabbing support defined for the
parent base, described in “Base Widget Attributes” on page 728, is inherited by
widget children unless otherwise specified.

Value Description

Inherit Upon creation, the widget inherits the tabbing support of the
parent base.

None Disallow tabbing into or out of the widget.

In and Out Allow tabbing into and out of the widget.

In Only Allow tabbing into the widget only.

Out Only Allow tabbing off of the widget only.

Table 27-8: Allowable Tab Mode Values
Building IDL Applications Table Widget Properties

776 Chapter 27: Using the IDL GUIBuilder
Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform.

In the generated *.pro file, this value is specified with the TAB_MODE keyword to
the widget creation routine. For more information on tabbing among widgets, see
“Tabbing in Widget Applications” on page 967.

Viewport Columns

The Viewport Columns attribute specifies the number of columns that should be
visible in the scroll area of the table widget. By default, this value is set to 6.

If you first set the Scroll attribute to True, you can then set this value to any size from
0 to n columns within the limits of your full table size. The full table size, or virtual
width in columns, is set with the Number of Columns attribute.

This attribute is used only when the Component Sizing attribute is set to Default. If
you set the Component Sizing attribute to Explicit, either through the Properties
dialog or by dragging the component to specific size, the Viewport Columns attribute
is ignored, and the X Size and the Y Size properties are used.

In the generated *.pro file, this value is specified with the X_SCROLL_SIZE
keyword to the widget creation routine.

Viewport Rows

The Viewport Rows attribute specifies the number of rows that should be visible in
the scroll area of the table widget. By default, this value is set to 6.

If you first set the Scroll attribute to True, you can then set this value to any size from
0 to n rows, within the limits of your full table size. The full table size, or virtual
height in rows, is set with the Number of Rows attribute.

This attribute is used only when the Component Sizing attribute is set to Default. If
you set the Component Sizing attribute to Explicit, either through the Properties
dialog or by dragging the component to specific size, the Viewport Rows attribute is
ignored, and the X Size and the Y Size properties are used.

In the generated *.pro file, this value is specified with the Y_SCROLL_SIZE
keyword to the widget creation routine.
Table Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 777
Table Widget Events

For table widgets, you can set common event properties and table-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 726.

These are the table widget-specific event properties:

OnCellSelect

The OnCellSelect value is the routine that is called when cells are selected in the
table. When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when range of cells is selected or deselected and is of the
following type:

{ WIDGET_TABLE_CELL_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:4,
SEL_LEFT:0L, SEL_TOP:0L, SEL_RIGHT:0L, SEL_BOTTOM:0L }

The range of cells selected is given by the zero-based indices into the table specified
by the SEL_LEFT, SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields. When cells
are deselected, either by changing the selection or by clicking in the upper left corner
of the table, an event is generated in which the SEL_LEFT, SEL_TOP, SEL_RIGHT,
and SEL_BOTTOM fields contain the value -1.

Note
Two WIDGET_TABLE_CELL_SEL events are generated when an existing
selection is changed to a new selection. If your code uses this event, be sure to
differentiate between select and deselect events.
Building IDL Applications Table Widget Properties

778 Chapter 27: Using the IDL GUIBuilder
OnColWidth

The OnColWidth value is the routine that is called when the column width is
changed. When you set this value, the calling sequence looks like this in the
generated *_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when a column width is changed by the user and is of the
following type:

{ WIDGET_TABLE_COLUMN_WIDTH, ID:0L, TOP:0L, HANDLER:0L, TYPE:7,
COLUMN:0L, WIDTH:0L }

COLUMN contains the zero-based column number, and WIDTH contains the new
width.

OnDelete

The OnDelete value is the routine that is called when text is deleted from the table.
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when any amount of text is deleted from a cell of a table
widget and is of the following type:

{ WIDGET_TABLE_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L, X:0L, Y:0L }

OFFSET is the (zero-based) character position of the first character deleted, and it is
the insertion position that will result when the next character is inserted. LENGTH
gives the number of characters involved. The X and Y fields give the zero-based
address of the cell within the table.

OnFocus

The OnFocus value is the routine that is called when the keyboard focus of the base
changes. When you set it, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify.
Table Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 779
Event is the returned event structure, which is of the following type:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER returns 1 (one) if the table widget is gaining the keyboard focus, or 0 (zero) if
the table widget is losing the keyboard focus.

OnInsertChar

The OnInsertChar value is the routine that is called when text is inserted in the table.
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when a single character is typed into a cell of a table widget
and is of the following type:

{ WIDGET_TABLE_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B, X:0L, Y:0L }

OFFSET is the (zero-based) insertion position that will result after the character is
inserted. CH is the ASCII value of the character. The X and Y fields indicate the zero-
based address of the cell within the table.

OnInsertString

The OnInsertString value is the routine that is called when text is inserted in the table.
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when multiple characters are pasted into a cell and is of the
following type:

{ WIDGET_TABLE_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'', X:0L, Y:0L }

OFFSET is the (zero-based) insertion position that will result after the text is inserted.
STR is the string to be inserted. The X and Y fields indicate the zero-based address of
the cell within the table.
Building IDL Applications Table Widget Properties

780 Chapter 27: Using the IDL GUIBuilder
OnInvalidData

The OnInValidData value is the routine that is called when invalid data is set in a cell.
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when the text entered by the user does not pass validation,
and the user has finished editing the field (by pressing Tab or Enter). The event
structure is of the following type:

{ WIDGET_TABLE_INVALID_ENTRY, ID:0L, TOP:0L, HANDLER:0L, TYPE:8,
STR:'', X:0L, Y:0L }

STR contains invalid contents entered by the user as a text string. The X and Y fields
contain the cell location.

OnTextSelect

The OnTextSelect value is the routine that is called when text is selected in the table.
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when an area of text is selected. The event structure is of the
following type:

{WIDGET_TABLE_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3,
OFFSET:0L, LENGTH:0L, X:0L, Y:0L}

This event announces a change in the insertion point. OFFSET is the (zero-based)
character position of the first character to be selected. LENGTH gives the number of
characters involved. A LENGTH of zero indicates that the widget has no selection,
and that the insertion position is given by OFFSET. The X and Y fields indicate the
zero-based address of the cell within the table.
Table Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 781
Tab Widget Properties

Tab widgets present a display area on which different “pages” (base widgets and their
children) can be displayed by selecting the appropriate tab.

Each tabbed area in a tab widget contains a base widget, to which other controls can
be added. When initially created, a tab widget will contain a single tab. To add a tab,
right-click on the tabbed portion of the tab widget and select “Add Tab”. The new tab
is added at the next logical location in the tab widget. To delete a tab, right-click on
the tabbed portion of the tab widget and select “Delete Tab”.

When programming in IDL, you create tab widgets using the WIDGET_TAB
function. For more information, see “WIDGET_TAB” in the IDL Reference Guide
manual.

Tab Widget Attributes

For tab widgets, you can set common attributes and tab-specific attributes. For a list
of common attributes, see “Common Attributes” on page 722. In addition, you can
modify the attributes of the base widget that makes up the displayed area of each tab.

These are the tab widget-specific attributes:

Multiple Rows

The Multiple Rows attribute determines whether tabs will be displayed in multiple
rows if the total length of all the tab titles exceeds the width of the largest tab base
widget. By default, this value is set to False, which means that if the total length of all
the tab titles exceeds the space available, scroll bars will be added to the tab interface
to allow the user to cycle through the tabs. Set this value to True to create tabs in
multiple rows if the total length exceeds the available space.

Note
If the Location attribute is set to either Left or Right, the Multiple Rows attribute is
automatically set to True.

In the generated *.pro file, this value is specified with the MULTILINE keyword to
the widget creation routine.

Location

The Location attribute determines the display location of the tabs on the tab widget.
Possible values are Top, Bottom, Left and Right. The default value is Top.
Building IDL Applications Tab Widget Properties

782 Chapter 27: Using the IDL GUIBuilder
In the generated *.pro file, this value is specified with the LOCATION keyword to
the widget creation routine.

Tab Mode

The Tab Mode attribute specifies what support the widget has for receiving or losing
focus through tabbing. By default, this value is set to Inherit.

Note
It is not possible to tab to disabled (Sensitive = False) or hidden (Visible = False)
widgets.

Allowable values are:

Note
The default tab mode of a widget is Inherit. The tabbing support defined for the
parent base, described in “Base Widget Attributes” on page 728, is inherited by
widget children unless otherwise specified.

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform.

In the generated *.pro file, this value is specified with the TAB_MODE keyword to
the widget creation routine. For more information on tabbing among widgets, see
“Tabbing in Widget Applications” on page 967.

Value Description

Inherit Upon creation, the widget inherits the tabbing support of the
parent base.

None Disallow tabbing into or out of the widget.

In and Out Allow tabbing into and out of the widget.

In Only Allow tabbing into the widget only.

Out Only Allow tabbing off of the widget only.

Table 27-9: Allowable Tab Mode Values
Tab Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 783
Tab Text

The Tab Text attribute specifies the text label used on the currently-selected tab. By
default, this attribute contains the name of the base widget that holds the tab’s
contents.

In the generated *.pro file, this value is specified with the TITLE keyword to the
widget base creation routine.

Tab Widget Events

For tab widgets, you can set common event properties and tab-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 726.

These are the tab widget-specific event properties:

OnTabChange

The OnTabChange value is the routine that is called when the currently-selected tab
of the tab widget changes. When you set this value, the calling sequence looks like
this in the generated *_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when a user changes the selected tab and is of the following
type:

{WIDGET_TAB, ID:0L, TOP:0L, HANDLER:0L, TAB:0L}

TAB contains the zero-based index of the tab selected.
Building IDL Applications Tab Widget Properties

784 Chapter 27: Using the IDL GUIBuilder
Tree Widget Properties

Tree widgets present a hierarchical view that can be used to organize a wide variety
of data structures and information.

When you first create a tree widget, it appears in the interface as a blank control,
containing no nodes. To add nodes to the tree widget, right-click on the tree widget
and select Edit Tree from the context menu. See “Using the Tree Editor” on page 700
for details on constructing a a tree hierarchy.

When programming in IDL, you create tree widgets using the WIDGET_TREE
function. For more information, see “WIDGET_TREE” in the IDL Reference Guide
manual.

Tree Widget Attributes

For tree widgets, you can set common attributes and tree-specific attributes. For a list
of common attributes, see “Common Attributes” on page 722. These are the tree
widget-specific attributes:

Multiple Selection

The Multiple Selection attribute determines whether the tree widget can perform
multiple selection operations. Set this property to True to enable multiple selection,
which allows the user to select multiple tree nodes by holding down the Control key
while selecting with the mouse. By default this property is set to False.

In the generated *.pro file, this value is specified with the MULTIPLE keyword to
the widget creation routine.

Tab Mode

The Tab Mode attribute specifies what support the widget has for receiving or losing
focus through tabbing. By default, this value is set to Inherit.

Note
It is not possible to tab to disabled (Sensitive = False) or hidden (Visible = False)
widgets.
Tree Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 785
Allowable values are:

Note
The default tab mode of a widget is Inherit. The tabbing support defined for the
parent base, described in “Base Widget Attributes” on page 728, is inherited by
widget children unless otherwise specified.

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform.

In the generated *.pro file, this value is specified with the TAB_MODE keyword to
the widget creation routine. For more information on tabbing among widgets, see
“Tabbing in Widget Applications” on page 967.

Tree Widget Events

For tree widgets, you can set common event properties and tree-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 726.

These are the tree widget-specific event properties:

Value Description

Inherit Upon creation, the widget inherits the tabbing support of the
parent base.

None Disallow tabbing into or out of the widget.

In and Out Allow tabbing into and out of the widget.

In Only Allow tabbing into the widget only.

Out Only Allow tabbing off of the widget only.

Table 27-10: Allowable Tab Mode Values
Building IDL Applications Tree Widget Properties

786 Chapter 27: Using the IDL GUIBuilder
OnContextEvent

The OnContextEvent value is the routine name that is called when the user clicks the
right-hand mouse button over the tree widget. In the generated *_eventcb.pro file,
the event calling sequence looks like this:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when the user clicks the right-hand mouse button and is of
the following type:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L}

The X and Y fields give the device coordinates at which the event occurred, measured
from the upper left corner of the base widget.

OnTreeExpand

The OnTreeExpand value is the routine that is called when a folder expand/collapse
event is detected. When you set this value, the calling sequence looks like this in the
generated *_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify. Event is the
event structure returned when a user changes the selected tab, and is of the following
type:

{WIDGET_TREE_EXPAND, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, EXPAND:0L}

The EXPAND field contains 1 (one) if the folder expanded or 0 (zero) if the folder
collapsed.

OnTreeSelect

The OnTreeSelect value is the routine that is called when the selection state of an
item in the tree changes. When you set this value, the calling sequence looks like this
in the generated *_eventcb.pro file:

pro <RoutineName>, Event

where RoutineName is the name of the event procedure you specify.
Tree Widget Properties Building IDL Applications

Chapter 27: Using the IDL GUIBuilder 787
Event is the event structure returned when a user changes the selected tab, and is of
the following type:

{WIDGET_TREE_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, CLICKS:0L}

The CLICKS field indicates the number of mouse-button clicks that occurred when
the event took place. This field contains 1 (one) when the item is selected, or 2 when
the user double-clicks on the item.
Building IDL Applications Tree Widget Properties

788 Chapter 27: Using the IDL GUIBuilder
Tree Widget Properties Building IDL Applications

Chapter 28:

Widgets
The following topics are covered in this chapter:
Overview . 790
Widget Primitives 794
Compound Widgets 807

Dialogs . 816
Utilities . 818
Building IDL Applications 789

790 Chapter 28: Widgets
Overview

IDL allows you to construct and manipulate graphical user interfaces using widgets.
Widgets (or controls, in the terminology of some development environments) are
simple graphical objects such as pushbuttons or sliders that allow user interaction via
a pointing device (usually a mouse) and a keyboard. This style of graphical user
interaction offers many significant advantages over traditional command-line based
systems.

IDL widgets are significantly easier to use than other alternatives, such as writing a C
language program using the native window system graphical interface toolkit directly.
IDL handles much of the low-level work involved in using such toolkits. The
interpretive nature of IDL makes it easy to prototype potential user interfaces. In
addition to the user interface, the author of a program written in a traditional
compiled language also must implement any computational and graphical code
required by the program. IDL widget programs can draw on the full computational
and graphical abilities of IDL to supply these components.

The style of widgets IDL creates depends on the windowing system supported by
your host computer. Unix hosts use Motif widgets, while Microsoft Windows systems
use the native Windows toolkit. Although the different toolkits produce applications
with a slightly different look and feel, most properly-written widget applications
work on all systems without change.

IDL graphical user interfaces are constructed by combining widgets in a treelike
hierarchy. Each widget has one parent widget and zero or more child widgets. There
is one exception: the topmost widget in the hierarchy (called a top-level base) is
always a base widget and has no parent.

Note
On Microsoft Windows platforms, you can use the IDL GUIBuilder to create user
interfaces interactively. The IDL GUIBuilder allows you to create an interface
rapidly and generate the IDL source code to create the interface. For information,
see Chapter 27, “Using the IDL GUIBuilder”.
Overview Building IDL Applications

Chapter 28: Widgets 791
Widget Types

IDL supports several types of widgets and widget-like interface elements:

• Widget primitives are the base interface elements used to create widget
applications. See “Widget Primitives” on page 794 for details.

• Compound widgets are more complex interface elements built in the IDL
language from the widget primitives. Compound widgets can also be used
within widget applications. See “Compound Widgets” on page 807 for details.

• Dialogs are widget-like elements that can be called from any IDL application
(whether or not it uses other widgets), but which do not belong to a widget
hierarchy. Dialogs are useful for informing users of changes in the application
state or collecting relatively simple input, such as the answer to a “Yes or No”
question or the name of a file. See “Dialogs” on page 816 for details.

• Utilities are self-contained widget applications written in the IDL language
that can be invoked from the IDL command line or called from within an
application. See “Utilities” on page 818 for details.

Widget Programming

Programs that use widgets are event driven. In an event driven system, the program
creates an interface and then waits for messages (events) to be sent to it from the
window system. Events are generated in response to user manipulation, such as
pressing a button or moving a slider. The program responds to events by carrying out
the action or computation specified by the programmer, and then waiting for the next
event. This approach to computing is fundamentally different from the traditional
command-based approach.

Because of widget applications’ event-driven nature, creating applications that use
widgets is fundamentally different from creating non-widget applications. The widget
application model and programming techniques are discussed in Chapter 29,
“Creating Widget Applications”.

Events from IDL widgets are generated in the form of an IDL structure variable
specific to the widget. Widget events and event-processing are discussed in detail in
“Widget Event Processing” in Chapter 29.
Building IDL Applications Overview

792 Chapter 28: Widgets
Widget Values

Many widget primitives and compound widgets have widget values associated with
them. Depending on the type of widget, the widget value may represent a static item
set by the programmer (the label of a button widget, for example) or a dynamic value
set by the user (the numerical value of a slider widget, for example).

Widget values are retrieved from a widget using the GET_VALUE keyword to the
WIDGET_CONTROL procedure, and set either when the widget is created or using
the SET_VALUE keyword to WIDGET_CONTROL. Descriptions of widget value
data types and default values are included along with the descriptions of individual
widgets in the following sections.

Widgets can also have user values. A widget’s user value is an IDL variable, and can
thus be of any of IDL’s data types. User values can contain any information the
programmer wants to include; they are not examined or used by IDL except as
specified by the widget application programmer. User values and their role in widget
programming are discussed in “Widget User Values” in Chapter 29.

Note
If a widget value is a string (as for a button label), you can use language catalogs to
internationalize the widget with sets of strings in particular languages. For more
information, see “Using Language Catalogs” on page 617.

Instantiating Widgets

When you call a routine that creates a widget, IDL “creates” the widget and assigns it
a unique identifier (the widget ID). For example, the following IDL statements create
a base widget that holds a button widget, and stores the widgets’ identifiers in the
variables base and button:

base = WIDGET_BASE()
button = WIDGET_BUTTON(base, VALUE='My Button')

At this point, the widgets are nothing more than data structures (referred to as widget
records) in IDL’s memory. Nothing appears on screen, and in fact IDL has yet to
calculate the sizes of the widgets or the way they will appear.
Overview Building IDL Applications

Chapter 28: Widgets 793
In order to instantiate the widget — that is, to create the final form of the widget that
will be displayed from components supplied by the platform-specific user interface
toolkit and (in most cases) make it appear on screen — the widgets must be realized.
Realization occurs with a call to the WIDGET_CONTROL procedure, using the
REALIZE keyword:

WIDGET_CONTROL, base, /REALIZE

After this command has been issued, the widgets appear on the computer screen.

Realization, and the related concepts of mapping and sensitivity, are discussed in
greater detail in Chapter 29, “Creating Widget Applications”. While reading this
chapter, it is sufficient to understand that certain operations on widgets, such as
retrieving size or other information, can only take place after the widget has been
realized.
Building IDL Applications Overview

794 Chapter 28: Widgets
Widget Primitives

Widget primitives are created by functions with names like WIDGET_BASE and
WIDGET_BUTTON. IDL provides the following widget primitives:

The following sections describe each widget primitive, along with its widget value, if
any.

ActiveX

An ActiveX widget is a special widget type that is available on Microsoft Windows
installations of IDL. An ActiveX widget instantiates an ActiveX control within an
IDL widget hierarchy. ActiveX widgets are controlled using the object methods of the
underlying ActiveX control rather than via the WIDGET_CONTROL and
WIDGET_INFO routines.

ActiveX widgets are created using the WIDGET_ACTIVEX function. See
“WIDGET_ACTIVEX” in the IDL Reference Guide and Chapter 5, “Using ActiveX
Controls in IDL” in the External Development Guide manual for more information.

ActiveX Widget Values

The widget value of an ActiveX widget is an object reference to the IDLcomActiveX
object created to hold the ActiveX control. The value cannot be set, and cannot be
retrieved before the widget is realized.

ActiveX Widget Events

ActiveX widgets return a basic widget event structure augmented by fields that are
specific to the ActiveX control. See “ActiveX Widget Events” in Chapter 5 of the
External Development Guide manual for details.

ActiveX Base Button ComboBox

Draw Droplist Label List

Property Sheet Slider Tab Table

Text Tree
Widget Primitives Building IDL Applications

Chapter 28: Widgets 795
Base

A base is a widget used to hold other widgets, including other base widgets. Base
widgets can optionally contain scroll bars that allow the base to be larger than the
space on the screen. In this case, only part of the base is visible at any given time, and
the scroll bars are used to control which part is visible.

Base widgets are created by the WIDGET_BASE function. See “WIDGET_BASE”
in the IDL Reference Guide for more information.

Top-level bases are a special class of base widget created without a parent widget ID.
Every widget hierarchy has exactly one top-level base. (Multiple widget hierarchies,
represented by their top-level bases, can be organized into an application hierarchy by
specifying the GROUP_LEADER keyword. See “Using Multiple Widget
Hierarchies” on page 873 for additional discussion of widget applications with
multiple widget hierarchies.)

Base Widget Values

The base widget does not have a widget value.

Base Widget Events

Base widgets do not generate any events by default. They can be configured to
generate events when the base widget receives the keyboard focus or the user clicks
the right-hand mouse button. In addition, top-level bases can be configured to
generate events when the base is resized, moved, iconified, or killed. See “Events
Returned by Base Widgets” under “WIDGET_BASE” in the IDL Reference Guide
for details.

Button

A button widget is a pushbutton that is activated by moving the mouse cursor over the
widget button and pressing a mouse button. Button widgets are created by the
WIDGET_BUTTON function. See “WIDGET_BUTTON” in the IDL Reference
Guide for more information.

Figure 28-1: A button widget.
Building IDL Applications Widget Primitives

796 Chapter 28: Widgets
Button Widget Values

The widget value of a button widget is a scalar string (text) or byte array (bitmap) that
represents the button’s label. See “Using Button Widgets” in Chapter 30 for
additional details on using bitmap values for button widgets.

Button Widget Events

Button widgets generate an event when a user clicks the mouse-pointer on the button.
See “Events Returned by Button Widgets” under “WIDGET_BUTTON” in the IDL
Reference Guide for details.

ComboBox

ComboBox widgets display a single entry from a list of options. When selected, they
reveal the entire list. When a new option is selected from this list, the list disappears
and the new selection is displayed. The main difference between the ComboBox
widget and the droplist widget is that the text field of the ComboBox can be made
editable, allowing the user to enter of a value that is not on the list.

ComboBox widgets are created by the WIDGET_COMBOBOX function. See
“WIDGET_COMBOBOX” in the IDL Reference Guide for more information.

Combobox Widget Values

The widget value of a ComboBox widget is a scalar string or string array representing
the list elements.

Figure 28-2: A ComboBox widget
Widget Primitives Building IDL Applications

Chapter 28: Widgets 797
Combobox Widget Events

Combobox widgets generate an event when the user selects or edits a value from the
drop-down list. See “Widget Events Returned by Combobox Widgets” under
“WIDGET_COMBOBOX” in the IDL Reference Guide for details.

Draw

Draw widgets offer a rectangular area that works like a standard IDL graphics
window. Draw widgets can use either Direct graphics or Object graphics, depending
on how they are created. Any graphical output that can be produced by IDL can be
directed to one of these widgets, either through the WSET function or by using the
object reference of a draw widget’s IDLgrWindow object. Draw widgets can
optionally contain scrollbars that allow examining a graphical region larger than the
area displayed by the widget. Draw widgets are created by the WIDGET_DRAW
function. See “Using Draw Widgets” on page 903 and “WIDGET_DRAW” in the
IDL Reference Guide for more information.

Draw Widget Values

For draw widgets created using Direct Graphics, the widget value is an integer
representing the IDL window number for use with direct graphics routines, such as
WSET. For draw widgets created using Object Graphics, the widget value is an
object reference to the IDLgrWindow object. This value cannot be set or modified.

Draw Widget Events

Draw widgets do not generate any events by default. They can be configured to
generate events when a mouse button is pressed or released over the widget, when the
mouse cursor moves over the widget, when the draw widget is obscured by another
window on the screen or revealed, or when the user presses a keyboard key.

Figure 28-3: A draw widget.
Building IDL Applications Widget Primitives

798 Chapter 28: Widgets
See “Widget Events Returned by Draw Widgets” under “WIDGET_DRAW” in the
IDL Reference Guide for details.

Droplist

Droplist widgets display a single entry from a list of options. When selected, they
reveal the entire list. When a new option is selected from this list, the list disappears
and the new selection is displayed. The main difference between the droplist widget
and the ComboBox widget is that the text field of the droplist cannot be made
editable. Droplist widgets are created by the WIDGET_DROPLIST function. See
“WIDGET_DROPLIST” in the IDL Reference Guide for more information.

Note
The appearance of the droplist widget differs on Motif and Windows platforms.
Under Windows, the droplist widget looks the same as the ComboBox widget;
under Motif, it appears as shown in the figure above.

Droplist Widget Values

The widget value of a droplist widget is a scalar string or string array representing the
list elements. This value can only be set; it cannot be retrieved.

Droplist Widget Events

Droplist widgets generate an event when the user selects a value from the drop-down
list. See “Widget Events Returned by Droplist Widgets” under
“WIDGET_DROPLIST” in the IDL Reference Guide for details.

Figure 28-4: A droplist widget
Widget Primitives Building IDL Applications

Chapter 28: Widgets 799
Label

Label widgets display static text. They are similar to single-line text widgets but are
optimized for small labeling purposes. If you need to display more than a single line
of text, or if the text must be editable by the user, use a text widget. Label widgets are
created by the WIDGET_LABEL function. See “WIDGET_LABEL” in the IDL
Reference Guide for more information.

Label Widget Values

The widget value of a label widget is a scalar string representing the label text.

Label Widget Events

Label widgets do not generate any events.

List

A list widget offers the user a list of text elements from which to choose. Users can
select an item by pointing with the mouse cursor and pressing a button. List widgets
have a vertical scrollbar when there are more list items than are specified by the
HEIGHT keyword. List widgets are created by the WIDGET_LIST function. See
“WIDGET_LIST” in the IDL Reference Guide for more information.

Figure 28-5: A label widget.

Figure 28-6: A list widget.
Building IDL Applications Widget Primitives

800 Chapter 28: Widgets
List Widget Values

The widget value of a list widget is a scalar string or string array representing the list
elements. This value can only be set; it cannot be retrieved.

List Widget Events

List widgets generate an event when the user selects a value or values from the list.
They can also be configured to generate events when the user clicks the right-hand
mouse button over the widget. See “Widget Events Returned by List Widgets” under
“WIDGET_LIST” in the IDL Reference Guide for details.

Property Sheet

Property sheet widgets enable the user to view and edit the properties of an object
subclassed from the IDLitComponent class. (All IDLgr* and IDLit* objects are
subclassed from IDLitComponent.) The name of the changed property is placed into
an IDL event, and the object is updated when this event is processed. An existing
property sheet can also be assigned a new component, causing it to reload with the
new list of properties and their values.

Figure 28-7: A Property Sheet Widget
Widget Primitives Building IDL Applications

Chapter 28: Widgets 801
Property Sheet Widget Data Types and Controls

The following controls are available for the corresponding data types in property
sheet widgets:

Data Type Control

Boolean Droplist with two choices: True or False

Number One of the following:

• Edit control that accepts +, -, 0123456789, plus decimal
points, e, E, d and D for floating point numbers.

• Slider

• Spinner

String Text box, expandable when string length exceeds visible area.

Color Color picker.

Line Style Droplist displaying seven line style choices:

Line Thickness Droplist displaying ten line thickness choices:

Symbol Droplist displaying eight symbol choices:

Table 28-1: WIDGET_PROPERTYSHEET Controls for Data Types
Building IDL Applications Widget Primitives

802 Chapter 28: Widgets
Property Sheet Widget Values

The property sheet widget's value is an object reference (or array of object
references). The object must be a subclass of IDLitComponent. Whenever the value
is set, via WIDGET_CONTROL's SET_VALUE keyword, the property sheet widget
is loaded with the registered, visible properties of the new component. Setting the
value to a null object will clear the property sheet widget. A null object can be created
by calling the OBJ_NEW function without any arguments:

nullObject = OBJ_NEW()

Property Sheet Widget Events

Property sheet widgets generate events whenever property sheet contents are
modified. See “Widget Events Returned by Property Sheet Widgets” under
“WIDGET_PROPERTYSHEET” in the IDL Reference Guide for details.

Slider

Slider widgets are used to select or indicate a value within a range of possible integer
values. They consist of a rectangular region that represents the possible range of
values. Inside this region is a sliding pointer that displays the current value. This
pointer can be manipulated by the user via the mouse or from within IDL by the
WIDGET_CONTROL procedure. Slider widgets are created by the
WIDGET_SLIDER function.

String list Droplist displaying a list of strings.

User-Defined Edit button linked to user-defined control (see “User-defined
Properties” on page 921).

Data Type Control

Table 28-1: WIDGET_PROPERTYSHEET Controls for Data Types
Widget Primitives Building IDL Applications

Chapter 28: Widgets 803
See “WIDGET_SLIDER” in the IDL Reference Guide for more information. Sliders
that indicate a floating-point value can be created using the CW_FSLIDER
compound widget.

Slider Widget Values

The widget value of a slider widget is the integer value of the current slider position.

Slider Widget Events

Slider widgets generate events when the mouse is used to change their value. See
“Widget Events Returned by Slider Widgets” under “WIDGET_LIST” in the IDL
Reference Guide for details.

Tab

Tab widgets create a “tabbed” interface that allows the user to select one of a list of
rectangular display areas to be displayed in a single space. The displayed interface
elements are contained in base widgets — that is, selecting a tab displays the contents
of a specified base widget within the tab widget. See “Using Tab Widgets” on
page 952 and “WIDGET_TAB” in the IDL Reference Guide for more information.

Figure 28-8: A slider widget.

Figure 28-9: A tab widget.
Building IDL Applications Widget Primitives

804 Chapter 28: Widgets
Tab Widget Values

The tab widget does not have a widget value.

Tab Widget Events

Tab widgets generate an event when a new tab is selected. See “Widget Events
Returned by Tab Widgets” under “WIDGET_TAB” in the IDL Reference Guide for
details.

Table

Table widgets are used to display information in tabular format. Individual table cells
(or ranges of cells) can be selected for editing by the user. Table widgets are created
by the WIDGET_TABLE function. See “Using Table Widgets” on page 941 and
“WIDGET_TABLE” in the IDL Reference Guide for more information.

Table Widget Values

The widget value of a table widget can be either a two-dimensional array of any data
type or a vector of structures, representing the contents of the table. If the table data is
supplied as a vector of structures, the structures must contain one field for each
column (if the COLUMN_MAJOR keyword to WIDGET_TABLE is set) or one field
for each row (if the ROW_MAJOR keyword to WIDGET_TABLE is set, or if neither
keyword is set). The individual structure fields can be of any data type.

Figure 28-10: A table widget.
Widget Primitives Building IDL Applications

Chapter 28: Widgets 805
Table Widget Events

Table widgets generate events when table cell contents are selected, deselected, or
modified, or when table rows or columns are resized. Table widgets can also be
configured to generate events when the keyboard focus changes. See “Widget Events
Returned by Table Widgets” under “WIDGET_TABLE” in the IDL Reference Guide
for details.

Text

Text widgets are used to display text and to get text input from the user. They can
have one or more lines and can optionally contain scroll bars that allow viewing more
text than can otherwise be displayed. Text widgets are created by the
WIDGET_TEXT function. See “WIDGET_TEXT” in the IDL Reference Guide for
more information.

Text Widget Values

The widget value of a text widget is a scalar string or string array representing the
contents of the text widget. When setting this value using WIDGET_CONTROL, by
default the old text is replaced by the new text. Specifying the APPEND keyword to
WIDGET_CONTROL causes the new text to be appended to the old text.

Text Widget Events

Text widgets generate events when the contents of the text widget change. They can
also be configured to generate events when the keyboard focus changes and when the
user clicks the right-hand mouse button on the widget. See “Widget Events Returned
by Text Widgets” under “WIDGET_TABLE” in the IDL Reference Guide for details.

Figure 28-11: A text widget.
Building IDL Applications Widget Primitives

806 Chapter 28: Widgets
Tree

Tree widgets are used to display a hierarchical view of a complex data structure.
Branches on the tree can be expanded or collapsed by the user, displaying different
portions of the structure. See “Using Tree Widgets” on page 961 and
“WIDGET_TREE” in the IDL Reference Guide for more information.

Tree Widget Values

The widget value of a tree widget is a string that represents the text displayed by the
branch or leaf of the tree. If the widget value is not explicitly set, either in the call to
WIDGET_TREE or using the SET_VALUE keyword to WIDGET_CONTROL, the
default value of “Tree” is provided.

Tree Widget Events

Tree widgets generate events when tree elements are selected or deselected, expanded
or collapsed. They can also be configured to generate events when the user clicks the
right-hand mouse button over the widget. See “Widget Events Returned by Tree
Widgets” under “WIDGET_TREE” in the IDL Reference Guide for details.

Figure 28-12: A tree widget.
Widget Primitives Building IDL Applications

Chapter 28: Widgets 807
Compound Widgets

A compound widget is a complete, self-contained, reusable widget sub-tree that
behaves to a large degree just like a widget primitive, but which is written in the IDL
language. Compound widgets allow the development of reusable widget code, much
like a GUI subroutine.

Widget Values of Compound Widgets

Many compound widgets have associated values. Initial values can often be specified
using the VALUE keyword to the creation routine. Note, however, that in some cases
widget values of compound widgets cannot be set until after the widget is realized;
values are thus set, obtained, or changed using the GET_VALUE and SET_VALUE
keywords to the WIDGET_CONTROL procedure. See the documentation for the
individual compound widget creation routines in the IDL Reference Guide for more
detailed information.

Compound Widgets Provided with IDL

Compound widget routines provided with IDL can be found (along with many other
routines that use the widgets) in the lib subdirectory of the IDL distribution. All
RSI-supplied compound widget filenames begin with “CW_” to make them easier to
identify. The following compound widgets are included in the IDL distribution.

See “Compound Widgets” on page 853 for information on writing your own
compound widgets.

CW_ANIMATE CW_ARCBALL CW_BGROUP

CW_CLR_INDEX CW_COLORSEL CW_DEFROI

CW_FIELD CW_FILESEL CW_FORM

CW_FSLIDER CW_LIGHT_EDITOR CW_ORIENT

CW_PALETTE_EDITOR CW_PDMENU CW_RGBSLIDER

CW_ZOOM
Building IDL Applications Compound Widgets

808 Chapter 28: Widgets
Compound Widget Categories

The compound widgets included with IDL fall into the following functional
categories:

Animation

CW_ANIMATE

Color Manipulation

CW_CLR_INDEX

CW_COLORSEL

CW_PALETTE_EDITOR

CW_RGBSLIDER

Data Entry and Display

CW_FIELD

CW_FILESEL

CW_FORM

Image Manipulation

CW_DEFROI

CW_LIGHT_EDITOR

CW_ZOOM

Orientation

CW_ARCBALL

CW_ORIENT

User Interface

CW_BGROUP

CW_FSLIDER

CW_PDMENU
Compound Widgets Building IDL Applications

Chapter 28: Widgets 809
CW_ANIMATE

The CW_ANIMATE compound widget — along with its associated routines —
displays an animated sequence of images. See “CW_ANIMATE” in the IDL
Reference Guide.

Note
Three routines associated with the CW_ANIMATE compound widget —
CW_ANIMATE_GETP, CW_ANIMATE_LOAD, and CW_ANIMATE_RUN —
do not create compound widgets themselves, but act on an existing CW_ANIMATE
widget.

CW_ANIMATE Widget Value

The CW_ANIMATE compound widget does not have a widget value.

CW_ANIMATE Widget Events

CW_ANIMATE generates an event when the user presses the Done button. See
“Widget Events Returned by the CW_ANIMATE Widget” in the IDL Reference
Guide for details.

CW_ARCBALL

The CW_ARCBALL compound widget allows the user to intuitively specify three-
dimensional orientations. See “CW_ARCBALL” in the IDL Reference Guide.

CW_ARCBALL Widget Value

The widget value of a CW_ARCBALL compound widget is a 3 by 3 array containing
the three-dimensional rotation matrix.

CW_ARCBALL Widget Events

CW_ARCBALL generates an event containing a 3 by 3 array containing the three-
dimensional rotation matrix. See “Widget Events Returned by the CW_ARCBALL
Widget” in the IDL Reference Guide for details.

CW_BGROUP

The CW_BGROUP compound widget simplifies creation of a cluster of buttons.
Button groups can be simple menus in which each button acts independently,
Building IDL Applications Compound Widgets

810 Chapter 28: Widgets
exclusive groups (also known as “radio buttons”), or non-exclusive groups (often
called “checkboxes”). See “CW_BGROUP” in the IDL Reference Guide.

CW_BGROUP Widget Value

For “normal” button groups, a CW_BGROUP compound widget does not have a
widget value. For exclusive button groups, the widget value is the integer index of the
selected button. For non-exclusive button groups, the value is a vector indicating
which buttons are selected. The initial value of a button group can be set using the
SET_VALUE keyword to CW_BGROUP or using WIDGET_CONTROL.

CW_BGROUP Widget Events

CW_BGROUP generates an event that specifies which button or buttons were
selected. See “Widget Events Returned by the CW_BGROUP Widget” in the IDL
Reference Guide for details.

CW_CLR_INDEX

The CW_CLR_INDEX compound widget displays a color bar and allows the user to
select a color index. See “CW_CLR_INDEX” in the IDL Reference Guide.

CW_CLR_INDEX Widget Value

The widget value of a CW_CLR_INDEX compound widget is the index of the color
selected. The value cannot be set before the widget is realized.

CW_CLR_INDEX Widget Events

CW_CLR_INDEX generates an event that specifies the selected color index. See
“Widget Events Returned by the CW_CLR_INDEX Widget” in the IDL Reference
Guide for details.

CW_COLORSEL

The CW_COLORSEL compound widget displays all the colors in the current
colormap and allows the user to select color indices. See “CW_COLORSEL” in the
IDL Reference Guide.

CW_COLORSEL Widget Value

The widget value of a CW_COLORSEL compound widget is the index of the color
selected. The value cannot be set before the widget is realized.
Compound Widgets Building IDL Applications

Chapter 28: Widgets 811
CW_COLORSEL Widget Events

CW_COLORSEL generates an event that specifies the selected color index. See
“Widget Events Returned by the CW_COLORSEL Widget” in the IDL Reference
Guide for details.

CW_DEFROI

The CW_DEFROI compound widget allows you to specify a region of interest within
a draw widget. See “CW_DEFROI” in the IDL Reference Guide.

CW_DEFROI Widget Value

The CW_DEFROI compound widget does not have a widget value.

CW_DEFROI Widget Events

CW_DEFROI does not return any events.

CW_FIELD

The CW_FIELD compound widget simplifies building data-entry interfaces by
combining label and text widgets. See “CW_FIELD” in the IDL Reference Guide.

CW_FIELD Widget Value

The widget value of a CW_FIELD compound widget is the string value of the text
portion of the field widget.

CW_FIELD Widget Events

CW_FIELD returns an event that specifies the current value of the field, the type of
data, and whether the data has been updated. See “Widget Events Returned by the
CW_FIELD Widget” in the IDL Reference Guide for details.

CW_FILESEL

The CW_FILESEL compound widget allows you to select a file. See
“CW_FILESEL” in the IDL Reference Guide.

CW_FILESEL Widget Value

The CW_FILESEL compound widget does not have a widget value.
Building IDL Applications Compound Widgets

812 Chapter 28: Widgets
CW_FILESEL Widget Events

CW_FILESEL generates an event that specifies the name of the selected file, whether
the user completed the file selection operation, and the filename filter used. See
“Widget Events Returned by CW_FILESEL” in the IDL Reference Guide for details.

CW_FORM

The CW_FORM compound widget allows you to create simple forms with text,
numeric fields, buttons, and droplists. See “CW_FORM” in the IDL Reference Guide.

CW_FORM Widget Value

The widget value of the CW_FORM compound widget is a structure of tag/value
pairs for each field in the form. The value cannot be set before the widget is realized.

CW_FORM Widget Events

CW_FORM generates an event that specifies the which field within the form changed
and the new value. See “Widget Events Returned by the CW_FORM Widget” in the
IDL Reference Guide for details.

CW_FSLIDER

The CW_FSLIDER compound widget is a version of the slider widget that handles
floating-point values. See “CW_FSLIDER” in the IDL Reference Guide.

CW_FSLIDER Widget Value

The widget value of the CW_FSLIDER compound widget is the floating-point
numeric value of the slider.

CW_FSLIDER Widget Events

CW_FSLIDER generates an event that specifies the current value of the slider and a
flag specifying whether events are generated as the slider is dragged. See “Widget
Events Returned by the CW_FSLIDER Widget” in the IDL Reference Guide for
details.

CW_LIGHT_EDITOR

The CW_LIGHT_EDITOR compound widget allows you to edit properties of
existing IDLgrLight objects in a view. See “CW_LIGHT_EDITOR” in the IDL
Reference Guide.
Compound Widgets Building IDL Applications

Chapter 28: Widgets 813
Note
Two routines associated with the CW_LIGHT_EDITOR compound widget —
CW_LIGHT_EDITOR_GET and CW_LIGHT_EDITOR_SET — do not create
compound widgets themselves, but act on an existing CW_LIGHT_EDITOR
widget.

CW_LIGHT_EDITOR Widget Value

The CW_LIGHT_EDITOR compound widget does not have a widget value.

CW_LIGHT_EDITOR Widget Events

CW_LIGHT_EDITOR generates events when the light is selected and when a light is
modified. See “Widget Events Returned by the CW_LIGHT_EDITOR Widget” in the
IDL Reference Guide for details.

CW_ORIENT

The CW_ORIENT compound widget allows the user to interactively adjust the three-
dimensional drawing transformation. SEE “CW_ORIENT” in the IDL Reference
Guide.

CW_ORIENT Widget Value

The CW_ORIENT compound widget does not have a widget value.

CW_ORIENT Widget Events

CW_ORIENT generates a standard event (containing only the three standard fields)
when the three dimensional drawing transformation has been altered. See “Widget
Events Returned by the CW_ORIENT Widget” in the IDL Reference Guide for
details.

CW_PALETTE_EDITOR

The CW_PALETTE_EDITOR compound widget creates allows you to display and
edit color palettes. SEE “CW_PALETTE_EDITOR” in the IDL Reference Guide.

Note
Two routines associated with the CW_PALETTE_EDITOR compound widget —
CW_PALETTE_EDITOR_GET and CW_PALETTE_EDITOR_SET — do not
Building IDL Applications Compound Widgets

814 Chapter 28: Widgets
create compound widgets themselves, but act on an existing
CW_PALETTE_EDITOR widget.

CW_PALETTE_EDITOR Widget Value

The CW_PALETTE_EDITOR compound widget does not have a widget value.

CW_PALETTE_EDITOR Widget Events

CW_PALETTE_EDITOR generates events when the selection region is changed and
when the color palette has been modified. See “Widget Events Returned by the
CW_PALETTE_EDITOR Widget” in the IDL Reference Guide for details.

CW_PDMENU

The CW_PDMENU compound widget creates pulldown menus, which can include
sub-menus, from a set of buttons. See “CW_PDMENU” in the IDL Reference Guide.

CW_PDMENU Widget Value

The CW_PDMENU compound widget does not have a widget value.

CW_PDMENU Widget Events

CW_PDMENU generates an event that specifies the index, widget ID, or name of the
menu item selected. See “Widget Events Returned by the CW_PDMENU Widget” in
the IDL Reference Guide for details.

CW_RGBSLIDER

The CW_RGBSLIDER compound widget allows the user to adjust color values using
the RGB, CMY, HSV, and HLS color systems. See “CW_RGBSLIDER” in the IDL
Reference Guide.

CW_RGBSLIDER Widget Value

The widget value of the CW_RGBSLIDER compound widget is a 3-element [r, g, b]
vector representing the RGB value selected.
Compound Widgets Building IDL Applications

Chapter 28: Widgets 815
CW_RGBSLIDER Widget Events

CW_RGBSLIDER generates an event that specifies the red, green, and blue values
selected. See “Widget Events Returned by the CW_RGBSLIDER Widget” in the IDL
Reference Guide for details.

CW_ZOOM

The CW_ZOOM compound widget displays original and zoomed images side-by-
side. See “CW_ZOOM” in the IDL Reference Guide.

CW_ZOOM Widget Value

The initial widget value of the CW_ZOOM compound widget is a byte array that
represents the full image to be displayed in the widget. The value cannot be set before
the widget is realized.

After the image has been zoomed, the widget value is a byte array that represents the
magnified area of the image.

CW_ZOOM Widget Events

CW_ZOOM generates an event that specifies the dimensions of the zoomed image
and the corresponding coordinates within the original image. See “Widget Events
Returned by the CW_ZOOM Widget” in the IDL Reference Guide for details.
Building IDL Applications Compound Widgets

816 Chapter 28: Widgets
Dialogs

A dialog is a widget-like user interface element that is not part of a widget hierarchy.
Dialogs are used to report errors, prompt for a user response, or collect small amounts
of user input such as the answer to a yes-or-no question or the name of a file. They
have short lifetimes, and disappear after serving their purpose.

Dialogs are modal (or “blocking”), which means that when a dialog is displayed, no
other interface elements (widgets or compound widgets) can be manipulated until the
user dismisses the dialog. While the dialog is not part of any widget hierarchy, you
can specify a widget over which the dialog will be centered on screen, making it
possible to visually associate the dialog with a specific widget application.

IDL supplies the following dialogs:

DIALOG_MESSAGE

The DIALOG_MESSAGE function displays a warning, informational message, or
error message, and blocks manipulation of other IDL widgets until the user dismisses
the dialog by clicking one of its buttons. See “DIALOG_MESSAGE” in the IDL
Reference Guide for details.

DIALOG_PICKFILE

The DIALOG_PICKFILE function allows you to choose a file or directory via a
graphical interface, and returns a string containing the name of the selected file or
directory. See “DIALOG_PICKFILE” in the IDL Reference Guide for more
information.

DIALOG_PRINTERSETUP

The DIALOG_PRINTERSETUP function opens an operating system-native dialog
for setting the applicable properties for a particular printer. See
“DIALOG_PRINTERSETUP” in the IDL Reference Guide for more information.

DIALOG_MESSAGE DIALOG_PICKFILE

DIALOG_PRINTERSETUP DIALOG_PRINTJOB

DIALOG_READ_IMAGE DIALOG_WRITE_IMAGE
Dialogs Building IDL Applications

Chapter 28: Widgets 817
DIALOG_PRINTJOB

The DIALOG_PRINTJOB function opens an operating system-native dialog that
allows you to set the parameters for a printing job (such as the number of copies to
print). See “DIALOG_PRINTJOB” in the IDL Reference Guide for more
information.

DIALOG_READ_IMAGE

The DIALOG_READ_IMAGE function provides a graphical interface allowing the
user to select an image file and read it into an IDL variable. A preview of the selected
image is provided. See “DIALOG_READ_IMAGE” in the IDL Reference Guide for
more information.

DIALOG_WRITE_IMAGE

The DIALOG_WRITE_IMAGE function provides a graphical interface allowing the
user to save an IDL array variable as an image file, selecting a location and image file
type. See “DIALOG_WRITE_IMAGE” in the IDL Reference Guide for more
information.
Building IDL Applications Dialogs

818 Chapter 28: Widgets
Utilities

IDL provides a number of stand-alone “utilities” written in the IDL language. The
utility routines are widget applications that perform relatively complex operations;
they are designed to be used either independently or as part of a larger widget
application. Names of utility routines are prefaced with the letter “X”.

Utility routines can be called from any IDL application or from the IDL command
line. Although utility routines cannot be inserted directly into a widget application
(becoming part of the application’s widget hierarchy), they can be linked to a widget
application in such a way (via the GROUP keyword) that when the widget application
is iconized or destroyed, the utility is iconized or destroyed as well. Utility routines
can also be configured as modal applications, requiring that the user exit from the
utility before returning to the widget application that called it. See “Using Multiple
Widget Hierarchies” in Chapter 30 for further discussion of grouping and modal
behaviors.

The following utility routines are included with IDL:

XBM_EDIT

The XBM_EDIT utility is a graphical bitmap editor that allows you to create bitmap
arrays for use as labels for button widgets. Array definitions can be saved either as
array definition text files, for inclusion in IDL code, or as bitmap array data files,
which can be reopened in the XBM_EDIT utility. See “XBM_EDIT” in the IDL
Reference Guide for details.

XDISPLAYFILE

The XDISPLAYFILE utility allows you to display text files using a simple widget
interface. In addition to allowing users to read and optionally edit text files, the utility
allows you programmatically interact with the text widget. See “XDISPLAYFILE” in
the IDL Reference Guide for details.

XBM_EDIT XDISPLAYFILE XDXF

XFONT XINTERANIMATE XLOADCT

XMTOOL XOBJVIEW XPALETTE

XPCOLOR XPLOT3D XROI

XSURFACE XVAREDIT XVOLUME
Utilities Building IDL Applications

Chapter 28: Widgets 819
XDXF

The XDXF utility displays a DXF file in an XOBJVIEW viewer, and also displays a
dialog that contains block and layer information for the DXF file, allowing the user to
turn on and off the display of individual layers. See “XOBJVIEW” below and
“XDXF” in the IDL Reference Guide for details.

XFONT

The XFONT utility is a UNIX-only widget application that allows you to select an X
Windows font name, optionally resetting the current font to the selected font. See
“XFONT” in the IDL Reference Guide for details.

XINTERANIMATE

The XINTERANIMATE utility displays an animated sequence of images in a simple
widget interface using off-screen pixmaps or memory buffers. The speed and
direction of the display can be adjusted. See “XINTERANIMATE” in the IDL
Reference Guide for details.

XLOADCT

The XLOADCT utility provides a simple widget interface to the LOADCT
procedure. XLOADCT displays the current Direct Graphics colortable and shows a
list of available predefined color tables; clicking on the name of a color table causes
that color table to be loaded. See “XLOADCT” in the IDL Reference Guide for
details.

XMTOOL

The XMTOOL utility displays a simple widget interface for viewing widgets
currently being managed by the XMANAGER. See “XMTOOL” in the IDL
Reference Guide for details.
Building IDL Applications Utilities

820 Chapter 28: Widgets
XOBJVIEW

The XOBJVIEW utility is a complex widget interface that allows you to quickly and
easily view and manipulate IDL Object Graphics on screen. It displays objects in an
IDL widget with toolbar buttons and menus providing functionality for manipulating,
printing, and exporting the resulting graphic. The mouse can be used to rotate, scale,
or translate the overall model shown in a view, or to select graphic objects in the view.
See “XOBJVIEW” in the IDL Reference Guide for details.

Note
Two routines associated with the XOBJVIEW utility — XOBJVIEW_ROTATE and
XOBJVIEW_WRITE_IMAGE — do not provide a graphical interface themselves,
but act on an existing instance of the XOBJVIEW utility.

XPALETTE

The XPALETTE utility displays a widget interface that allows interactive creation
and modification of colortables using the RGB, CMY, HSV, or HLS color systems.
See “XPALETTE” in the IDL Reference Guide for details.

XPCOLOR

The XPCOLOR utility displays a simple widget interface that allows you to adjust
the value of the current Direct Graphics plotting color (foreground) using sliders, and
store the desired color in the global system variable, !P.COLOR. See “XPCOLOR” in
the IDL Reference Guide for details.

XPLOT3D

The XPLOT3D utility displays a 3D plot in an XOBJVIEW viewer. See
“XOBJVIEW” above and “XPLOT3D” in the IDL Reference Guide for details.

XROI

The XROI utility allows you to interactively define regions of interest (ROIs) in a
specified image file, and to obtain geometry and statistical data about these ROIs. See
“XROI” in the IDL Reference Guide for details.
Utilities Building IDL Applications

Chapter 28: Widgets 821
XSURFACE

The XSURFACE utility provides a simple graphical interface to the SURFACE and
SHADE_SURF commands. Because XSURFACE relies on IDL direct graphics
rather than object graphics, the image manipulation facilities are less sophisticated
than those of XOBJVIEW. See “XOBJVIEW” above and “XSURFACE” in the IDL
Reference Guide for details.

XVAREDIT

The XVAREDIT utility provides a simple widget-based editor for the value of any
IDL variable. See “XVAREDIT” in the IDL Reference Guide for details.

XVOLUME

The XVOLUME utility provides a complex widget interface for viewing and
interactively manipulating volume and isosurface data. See “XVOLUME” in the IDL
Reference Guide for details.

Note
Two routines associated with the XVOLUME utility — XVOLUME_ROTATE and
XVOLUME_WRITE_IMAGE — do not provide a graphical interface themselves,
but act on an existing instance of the XVOLUME utility.
Building IDL Applications Utilities

822 Chapter 28: Widgets
Utilities Building IDL Applications

Chapter 29:

Creating Widget
Applications
The following topics are covered in this chapter:
About Widget Applications 824
Widget Programming Concepts 825
Example 1: A Simple Widget Application 828
Widget Application Lifecycle 830
Manipulating Widgets 833
Working With Widget IDs 838
Widget User Values 840

Widget Event Processing 841
Example 2: Event Processing and User Values . 847
Managing Application State 849
Compound Widgets 853
Example 3: Compound Widget 856
Debugging Widget Applications 865
Building IDL Applications 823

824 Chapter 29: Creating Widget Applications
About Widget Applications

The flow of control in a widget application is fundamentally different than in other
IDL programs. A program written to be used from the IDL command line generally
accepts its inputs when the program is invoked. The program then proceeds in a well-
defined order to process those inputs and provide some output — a calculated value, a
plot, an image, etc. In contrast, widget applications are event driven. When initially
invoked, a widget application displays its user interface and waits for user input,
performing actions in the order specified by the user at runtime, rather than in the
order determined by the programmer.

This chapter discusses topics related to creating widget user interfaces, controlling
widgets, processing events generated by user interaction, and managing the
application state of a widget application. Chapter 30, “Widget Application
Techniques” explores the use of specific types of widgets in widget applications and
discusses methods for creating specific types of interfaces and applications.

Running the Example Code

The example code used in this chapter and in Chapter 30, “Widget Application
Techniques” is part of the IDL distribution. All of the examples developed in the text
of these chapters are included as .pro files in the examples/widgets subdirectory
of the IDL distribution. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
“!PATH” in the IDL Reference Guide manual for information on IDL’s path.

Other Examples of Widget Programming

In addition to the examples developed in this and the following chapter, a number of
simple examples of widget programming can be seen by running the IDL program
wexmaster.pro, located in the /examples/widgets/wexmast folder of the IDL
distribution. A widget interface with a pulldown menu of small widget applications
should appear.
About Widget Applications Building IDL Applications

Chapter 29: Creating Widget Applications 825
Widget Programming Concepts

This section discusses some basic ideas and concepts that are central to the process of
writing IDL widget applications.

Widget IDs

IDL widgets are uniquely identified via their widget IDs. The widget ID is a long
integer assigned to the widget when it is first created; this integer is returned as the
value of the widget creation function. For example, you might create a base widget
with the following IDL command:

base = WIDGET_BASE()

Here, the IDL variable base receives the widget ID of the newly-created top-level
base widget.

Routines within your widget application that need to retrieve data from widgets or
change their appearance need access to the widgets’ IDs. Techniques for passing
widget IDs between independent routines in your widget application are discussed in
“Working With Widget IDs” on page 838.

Widget Parent/Child Relationships

With one exception (described below), when you create a new widget using one of
the WIDGET_* functions, you specify the widget ID of the new widget’s parent
widget. This parent-child relationship defines a widget hierarchy.

For example, suppose you have created a base widget whose widget ID is contained
in the IDL variable base. The following IDL command creates a button widget that
is a child of the base widget whose widget ID is stored in the variable base:

button1 = WIDGET_BUTTON(base, VALUE='Test button')

In addition to being below base in the widget hierarchy, button1 appears inside
base1 when the base widget is realized on the screen.
Building IDL Applications Widget Programming Concepts

826 Chapter 29: Creating Widget Applications
The exception to this parent-child rule is a special instance of a base widget called a
top-level base. A top-level base is different from an “ordinary” base widget in the
following ways:

• It does not have a parent widget.

• It serves as the top of a widget hierarchy

• Its widget ID is included in the TOP field of every widget event structure
generated by other widgets in its hierarchy.

In practice, a widget application always begins with a top-level base. The fact that the
widget ID of the top-level base widget is always available in the event structure of
widget events is very useful for managing the state of a widget application. This topic
is discussed in depth in “Managing Application State” on page 849.

Instantiating and Displaying Widgets

IDL widgets provide a platform-independent abstraction layer on top of the graphical
interface toolkits of the different operating systems supported by IDL. This
abstraction layer allows you to create a graphical user interface once, and let IDL do
the work of translating and displaying the interface on different platforms.

When you use one of the widget creation routines, IDL creates a widget record that
represents one or more native widgets in the current platform’s user interface toolkit.
The widget record is used to contain all of the information needed by IDL to manage
the widget’s state. The platform-specific native widget that underlies the IDL widget
is not created (or instantiated) until you call the WIDGET_CONTROL procedure
with the REALIZE keyword (see “Manipulating Widgets” on page 833 for details on
using WIDGET_CONTROL). Between the time when the widget is created as an
IDL widget record and when it is realized as a platform-specific interface element,
you have control over many, but not all, aspects of the widget’s state. Some details of
the final realized widget’s state (such as its exact screen geometry) may remain
undetermined until the widget is instantiated.

It is important to note that unrealized widgets in a widget hierarchy can be
manipulated programmatically. Examples of attributes you can manipulate before
realization are the overall geometry of the user interface, widget values, and user
values. You can even retrieve widget values before the widgets are realized.
Unrealized widgets do not, however, generate widget events, since the actual
platform-specific user interface has yet to be created.
Widget Programming Concepts Building IDL Applications

Chapter 29: Creating Widget Applications 827
Once a widget has been realized, its corresponding platform-specific user interface
toolkit element is instantiated. The native toolkit determines the widget’s exact screen
geometry. If the widget is then mapped, it becomes visible on the computer screen,
can be manipulated by a user, and generates widget events.

Note
Widgets are mapped by default. This means that when you realize a widget
hierarchy, the widgets included in that hierarchy will usually be displayed on screen
immediately. You can control the visibility of widget hierarchies — before or after
realization — using the MAP keyword to WIDGET_CONTROL. See “Controlling
Widget Visibility” on page 834 for details.

Note also that widgets that are visible on screen can be made unavailable to the user
by setting the SENSITIVE keyword to WIDGET_CONTROL. See “Sensitizing
Widgets” on page 835 for details.
Building IDL Applications Widget Programming Concepts

828 Chapter 29: Creating Widget Applications
Example 1: A Simple Widget Application

The following example demonstrates the simplicity of widget programming. The
example program creates a base widget containing a single button, labelled “Done.”
When you position the mouse cursor over the button and click, the widget is
destroyed.

Note
If you are new to IDL widget programming, don’t be dismayed if parts of this
example are not immediately clear to you. As you read further through this chapter,
the principles of the event-driven programming model and IDL’s specific
implementation of that model will become clearer.

Note
This example is included in the file widget1.pro in the examples/widgets
subdirectory of the IDL distribution. You can either open the file in an IDL editor
window and compile and run the code using items on the Run menu, or simply
enter

widget1
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected.

PRO widget1_event, ev
IF ev.SELECT THEN WIDGET_CONTROL, ev.TOP, /DESTROY

END

PRO widget1
base = WIDGET_BASE(/COLUMN)
button = WIDGET_BUTTON(base, value='Done')
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'widget1', base

END

While this simple example does nothing particularly useful, it does illustrate some
basic concepts of event-driven programming. Let’s examine how the example is
constructed.

First, note that the “application” consists of two parts: an event handling routine and a
creation routine. Let’s first examine the second part — the creation routine —
contained in the widget1 procedure.

The widget1 procedure does the following:

1. Creates a top-level base widget whose widget ID is stored in the variable base.
All widget applications have at least one base.
Example 1: A Simple Widget Application Building IDL Applications

Chapter 29: Creating Widget Applications 829
2. Creates a button widget whose widget ID is stored in the variable button. The
button widget has base as its parent. The value “Done” is assigned to the
button. The value of a button widget is the text that appears on the button’s
face.

3. Realizes the widget hierarchy built on base by calling WIDGET_CONTROL
with the /REALIZE keyword. Realizing the widget hierarchy displays the
widget on your computer screen.

4. Invokes the XMANAGER routine to manage the widget event loop, providing
the name of the calling routine (widget1) and the widget ID of the top-level
base on which the widget hierarchy is built (base).

The widget1_event procedure is the event handling routine for the application. By
convention, the XMANAGER procedure looks for an event handling procedure with
the same name as the procedure that creates the widgets, with “_event” appended to
the end. (This default can be overridden by specifying an event handler directly using
the EVENT_HANDLER keyword to XMANAGER.) When an event is received by
XMANAGER, the event structure is passed to the widget1_event procedure via
the ev argument.

In this example, all the event handling routine does is check the event structure to see
if the event passed to it was a select event generated by the button widget. If a SELECT
event is received, the routine calls WIDGET_CONTROL with the DESTROY keyword to
destroy the widget hierarchy built on the top-level base widget (specified in the TOP
field of the event structure).

For further discussion of widget events and event structures, see “Widget Event
Processing” on page 841. For details about the event structures returned by different
widgets, see the documentation for each widget in the IDL Reference Guide.
Building IDL Applications Example 1: A Simple Widget Application

830 Chapter 29: Creating Widget Applications
Widget Application Lifecycle

When you create and use a widget application, you do the following things:

1. Construct the Widget Hierarchy

2. Provide an Event-Handling Routine

3. Realize the Widgets

4. Register the Program with the XMANAGER

5. Interact with the Application

6. Destroy the Widgets

Construct the Widget Hierarchy

You must first build a widget hierarchy using the WIDGET_* functions. Start by
creating a top-level base with the WIDGET_BASE function.

Combine other widget creation functions — WIDGET_BUTTON, CW_PDMENU,
etc. — to create and organize the user interface of your widget application. At this
point, the widgets are unrealized — they exist only as IDL widget records — and
nothing has been created or displayed on the screen.

Note
Widget applications can include multiple widget hierarchies headed by multiple
top-level base widgets. See “Using Multiple Widget Hierarchies” on page 873 for
more on creating a hierarchy of widget hierarchies.

Provide an Event-Handling Routine

In order for a widget application to do anything, you must provide a routine that
examines events, determines what action to take, and implements that action. Actions
may involve computation, graphics display, or updates to the widget interface itself.

For best performance, event processing routines must run and return to the calling
routine as quickly as possible. Widgets won’t respond to user input while the event-
processing routine is running. Widget-based programs should wait for user-generated
events, handle them as quickly as possible, and return to wait for more events. Event
processing is discussed in detail in “Widget Event Processing” on page 841.
Widget Application Lifecycle Building IDL Applications

Chapter 29: Creating Widget Applications 831
Event handling routines can manipulate widgets via the WIDGET_CONTROL
procedure. Possible actions include the following:

• Obtain or change the value of a widget (see “Widget Values” on page 792)
using the APPEND, GET_VALUE, and SET_VALUE keywords.

• Obtain or change the value of a widget’s user value using the GET_UVALUE
and SET_UVALUE keywords. (User values are discussed in “Widget User
Values” on page 840)

• Map and unmap widgets using the MAP keyword. Unmapped widgets are
removed from the screen and become invisible, but they still exist in memory.

• Change a widget’s sensitivity using the SENSITIVE keyword. A widget
indicates that it is insensitive by changing its appearance (often by graying
itself or displaying text with dashed lines) and ignoring any user input. It is
useful to make widgets insensitive at points where it would be inconvenient to
get events from them (for example, if your program is waiting for input from
another source).

• Change the settings of toggle buttons using the SET_BUTTON keyword.

• Push a widget hierarchy behind the other windows on the screen, or pull it in
front, using the SHOW keyword.

• Display the “hourglass” cursor while the application is busy and not able to
respond to user actions by setting the HOURGLASS keyword. (See
“Indicating Time-Consuming Operations” on page 835.)

Realize the Widgets

To convert the IDL widget records representing your widget hierarchy into a set of
platform-specific user interface toolkit elements, use the REALIZE keyword to the
WIDGET_CONTROL procedure. Unless you have specifically unmapped the
widgets before realizing them, the REALIZE keyword causes the widgets to be
displayed on screen. See “Manipulating Widgets” on page 833 for additional details.
Building IDL Applications Widget Application Lifecycle

832 Chapter 29: Creating Widget Applications
Register the Program with the XMANAGER

Your widget application waits for events to be reported to it and reacts as specified in
the event handling routine after being registered with the XMANAGER procedure.

Events are obtained by XMANAGER via the WIDGET_EVENT function and passed
to the calling routine (your event handler) in the form of an IDL structure variable.
Each type of widget returns a different type of structure, as described in the
documentation for the individual widget creation functions in the IDL Reference
Guide. Every event structure has three common elements: long integers named ID,
TOP, and HANDLER:

• ID is the widget ID of the widget generating the event.

• TOP is the widget ID of the top-level base containing the widget that generated
the event.

• HANDLER is important for event handler functions, which are discussed later in
this chapter.

When an event occurs, XMANAGER arranges for the event structure to be passed to
an event-handling procedure specified by the program, and the event handler takes
some appropriate action based on the event. This means that multiple widget
applications can run simultaneously — XMANAGER arranges for the events be
dispatched to the appropriate routine.

Interact with the Application

Once the widget application has been realized and registered with XMANAGER, the
user can interact with the application to accomplish whatever tasks the application is
designed to accomplish.

Destroy the Widgets

When the application has finished (usually when the user clicks on a “Done” or
“Quit” button), destroy the widget hierarchy using the DESTROY keyword to the
WIDGET_CONTROL procedure. This causes all resources related to the hierarchy to
be freed and removes it from the screen.
Widget Application Lifecycle Building IDL Applications

Chapter 29: Creating Widget Applications 833
Manipulating Widgets

IDL provides several routines that allow you to manipulate and manage widgets
programmatically:

• WIDGET_CONTROL allows you to realize widget hierarchies, manipulate
them, and destroy them.

• WIDGET_EVENT allows you to process events generated by a specific
widget hierarchy.

• WIDGET_INFO allows you to obtain information about the state of a specific
widget or widget hierarchy.

• XMANAGER provides an event loop and manages events generated by all
existing widget hierarchies.

• XREGISTERED allows you to test whether a specific widget is currently
registered with XMANAGER.

These widget manipulation routines are discussed in more detail in the following
sections.

WIDGET_CONTROL

The WIDGET_CONTROL procedure allows you to realize, manage, and destroy
widget hierarchies. It is often used to change the default behavior or appearance of
previously-realized widgets.

Keywords to WIDGET_CONTROL may affect only certain types of widgets, any
type of widget, or the widget system in general. See “WIDGET_CONTROL” in the
IDL Reference Guide manual for complete details. We discuss here only a few of the
more common uses of this procedure.

Realizing Widget Hierarchies

IDL widgets are actually widget records that represent platform-specific user
interface toolkit elements. In order to instantiate the platform-specific toolkit
elements, widgets must be realized with the following statement:

WIDGET_CONTROL, base, /REALIZE

where base is the widget ID of the top-level base widget for your widget hierarchy.
Building IDL Applications Manipulating Widgets

834 Chapter 29: Creating Widget Applications
Destroying Widget Hierarchies

The standard way to destroy a widget hierarchy is with the statement:

WIDGET_CONTROL, base, /DESTROY

where base is the widget ID of the top-level base widget of the hierarchy to be killed.
Usually, IDL programs that use widgets issue this statement in their event-handling
routine in response to the user’s clicking on a “Done” button in the application.

In addition, some window managers place a pulldown menu on the frame of the top-
level base widget that allows the user to kill the entire hierarchy. Using the window
manager to kill a widget hierarchy is equivalent to using the DESTROY keyword to
the WIDGET_CONTROL procedure.

When designing widget applications, you should always include a “Done” button (or
some other widget that allows the user to exit) in the application itself, since some
window managers do not provide the user with a kill option from the outer frame.

Retrieving or Changing Widget Values

You can use WIDGET_CONTROL to retrieve or change widget values using the
GET_VALUE and SET_VALUE keywords. Similarly, you can retrieve or change
widget user values with the GET_UVALUE and SET_UVALUE keywords.

For example, you could use the following commands to retrieve the value of a draw
widget whose widget ID is stored in the variable drawwid, and to make that draw
widget the current graphics window:

WIDGET_CONTROL, drawwid, GET_VALUE=draw
WSET, draw

Similarly, you could use the following command in an event handling procedure to
save the user value of the widget that generates an event into an IDL variable named
uval:

WIDGET_CONTROL, event.id, GET_UVALUE=uval

For more on widget user values, see “Widget User Values” on page 840.

Controlling Widget Visibility

You can display or remove realized widgets from the screen by mapping or
unmapping them. Unmapped widgets still exist in the widget hierarchy, but they are
not displayed and do not generate events.
Manipulating Widgets Building IDL Applications

Chapter 29: Creating Widget Applications 835
Set the MAP keyword to WIDGET_CONTROL equal to zero to hide a widget, or to a
nonzero value to display it again. For example, to hide the base1 widget and all its
child widgets from view, use the following command:

WIDGET_CONTROL, base1, MAP=0

By default, widgets are mapped automatically when they are realized. You can
prevent a widget from appearing on screen when you realize it by setting MAP=0
before realizing the widget hierarchy.

Note
While it is possible to call WIDGET_CONTROL, MAP=0 with the widget ID of
any widget, only base widgets can actually be unmapped. If you specify a widget ID
that is not from a base widget, IDL searches upward in the widget hierarchy until it
finds the closest base widget. The map operation is applied to that base.

Sensitizing Widgets

Use sensitivity to control when a user is allowed to manipulate a widget. When a
widget is sensitive, it has a normal appearance and can receive user input. When a
widget is insensitive, it ignores any input directed at it. Note that while most widgets
change their appearance when they become insensitive, some simply stop generating
events.

Set the SENSITIVE keyword equal to zero to desensitize a widget, or to a nonzero
value to make it sensitive. For example, you might wish to make a group of buttons
contained in a base whose widget ID is stored in the variable bgroup insensitive after
some user input. You would use the following command:

WIDGET_CONTROL, bgroup, SENSITIVE=0

Indicating Time-Consuming Operations

In an event driven environment, it is important that the interface be highly responsive
to the user’s manipulations. Widget event handlers should be written to execute
quickly and return. However, sometimes the event handler has no option but to
perform an operation that is slow. In such a case, it is a good idea to give the user
feedback that the system is busy. This is easily done using the HOURGLASS
keyword just before the expensive operation is started:

WIDGET_CONTROL, /HOURGLASS

This command causes IDL to turn on an hourglass-shaped cursor for all IDL widgets
and graphics windows. The hourglass remains active until the next event is processed,
at which point the previous cursor is automatically restored.
Building IDL Applications Manipulating Widgets

836 Chapter 29: Creating Widget Applications
WIDGET_EVENT

The WIDGET_EVENT function returns events for the widget hierarchy rooted at
Widget_ID. Events are generated when a button is pressed, a slider position is
changed, and so forth. In most cases, you will not use WIDGET_EVENT directly, but
instead will use the XMANAGER routine to manage widget events. Event processing
is discussed in detail in “Widget Event Processing” on page 841. See also
“WIDGET_EVENT” in the IDL Reference Guide manual for additional details.

WIDGET_INFO

The WIDGET_INFO function is used to obtain information about the widget
subsystem and individual widgets. You supply the widget ID of a widget for which
you want to retrieve some information, along with a keyword that specifies the type
of information. For example, to determine the index of the selected item in a list
widget whose widget ID is contained in the variable list, you would use a
command like the following:

listindex = WIDGET_INFO(list, /LIST_SELECT)

Finding Widget IDs using WIDGET_INFO

One noteworthy use of WIDGET_INFO is to locate the widget ID of a widget with a
specified user name. (A user name is a part of the widget’s widget record that
contains a text identifier, specified by the programmer.) See “Working With Widget
IDs” on page 838 for more information on this technique.

See “WIDGET_INFO” in the IDL Reference Guide manual for more information.

XMANAGER

The XMANAGER procedure provides the main event loop registration and widget
management. Calling XMANAGER “registers” a widget program with the
XMANAGER event handler. XMANAGER takes control of event processing until all
widgets have been destroyed.

Using XMANAGER allows you to run multiple widget applications and work at the
IDL command line at the same time. While it is possible to use WIDGET_EVENT
directly to manage events in your application, it is almost always easier to use
XMANAGER.

See “XMANAGER” in the IDL Reference Guide manual for complete details.
Manipulating Widgets Building IDL Applications

Chapter 29: Creating Widget Applications 837
XREGISTERED

The XREGISTERED function returns True if the widget specified by its argument is
currently registered with the XMANAGER.

One use of the XREGISTERED function is to control the number of instances of a
given widget application that run at a given time. For example, suppose that you have
a widget program that registers itself with the XMANAGER with the command:

XMANAGER, 'mywidget', base

You could limit this widget to one instantiation by adding the following line as the
first line (after the procedure definition statement) of the widget creation routine:

IF (XREGISTERED('mywidget') NE 0) THEN RETURN

See “XREGISTERED” in the IDL Reference Guide manual for complete details.
Building IDL Applications Manipulating Widgets

838 Chapter 29: Creating Widget Applications
Working With Widget IDs

Any widget application capable of doing real work will include one or more routines
that are separate from the routine that creates the widget hierarchy, designed to
handle and respond to user-generated events. Event processing routines — the
routines that process information contained in widget event structures and respond
accordingly — often retrieve information contained in the widget values of the
widgets that make up the interface, perform calculations, and modify the widget
interface itself in response to user actions.

Since a widget ID is required to retrieve information from or set values in a widget,
you will need a way for your event processing routines to retrieve the ID of a
specified widget. This section describes techniques you can use to pass widget IDs
between the routines in your widget application — most notably between the widget
creation routine (where widget IDs are generated) and the event processing routines.

Use the Widget Event Structure

Every time a user interacts with a widget using the mouse or keyboard, a widget event
structure is generated. Widget event structures contain the widget ID of the widget
that generated the event. In addition, widget event structures provide the widget ID of
the top-level base in the widget hierarchy to which the widget the generated the event
belongs.

Getting the widget ID of the appropriate widget from the event structure is almost
always the preferred method for passing a widget ID from one routine to another
within your application. Widget event processing is discussed in detail in “Widget
Event Processing” on page 841.

Pass the Widget ID Using a Widget User Value

The widget event structure always includes two widget IDs: the ID of the widget that
generated the event, and the ID of the top-level base widget. If you need to pass
multiple widget IDs between routines, it is often useful to place the widget ID values
in the user value of the top-level base widget. Widget user values are discussed in
“Widget User Values” on page 840.
Working With Widget IDs Building IDL Applications

Chapter 29: Creating Widget Applications 839
Use a User Name to Locate the Widget

One of the pieces of information you can specify when you create a widget is a user
name. You can associate a name with each widget in a specific hierarchy, and then
use that name to query the widget hierarchy and get the correct widget ID. To specify
a user name, set the UNAME keyword to the widget creation routine equal to a string
that can be used to identify the widget in your code.

To query the widget hierarchy, use the WIDGET_INFO function with the widget ID
of the top-level base widget and the FIND_BY_UNAME keyword. Note that user
names must be unique within the widget hierarchy, because the FIND_BY_UNAME
keyword returns the ID of the first widget with the specified name.

Pass the Widget ID Explicitly

In some cases, you may need to pass a specific widget ID available in one routine to a
second routine. In this case, you can specify the widget ID as a parameter when
calling the second routine from the first. While this method is not so general as using
the widget event structure, it is useful in some circumstances.

Use a COMMON Block

In rare cases, it may be useful to store widget IDs in a COMMON block, making
them available to all routines in the application. While using a COMMON block may
seem like a good strategy on first inspection, this method has several drawbacks.
Most importantly, using a COMMON block to hold widget IDs means that only one
instance of a given widget application can be running at once.
Building IDL Applications Working With Widget IDs

840 Chapter 29: Creating Widget Applications
Widget User Values

Every widget primitive and compound widget can carry a user-specified value of any
IDL data type and organization; that is, every widget contains a variable that can store
arbitrary information. This value is ignored by the widget and is for the programmer’s
convenience only.

The initial user value is specified using the UVALUE keyword to the widget creation
function. If no initial value is specified, the user value is undefined. Once the widget
exists, its user value can be examined and/or changed using the GET_UVALUE and
SET_UVALUE keywords to the WIDGET_CONTROL procedure.

Note
The widget user value should not be confused with the widget value, described in
“Widget Values” on page 792.

User Values Simplify Event Handling

User values can be used to simplify event-handling. If each widget has a distinct user
value, you need only check the user value of any event to determine which widget
generated it. In practice, this means you do not need to keep track of the widget IDs
of all the widgets in your widget hierarchy in order to determine what to do with a
given event.

User Values can be Accessible Throughout a Widget
Application

Another use for user variables is to simulate a variable that is available in more than
one IDL routine. For example, you can set the user value of a top-level base widget
equal to one or more widget IDs. You then have an easy way to pass the widget IDs
from your widget creation routine to your event handling routine.

We will take advantage of both of these aspects of user values in “Example 2: Event
Processing and User Values” on page 847.
Widget User Values Building IDL Applications

Chapter 29: Creating Widget Applications 841
Widget Event Processing

The concepts of events and event processing underlie every aspect of widget
programming. It is important to understand how IDL handles widget events in order
to use widgets effectively.

This section discusses the following topics:

• What are Widget Events?

• Structure of Widget Events

• Managing Widget Events with XMANAGER

• Event Processing and Callbacks

For a discussion of techniques you can use to detect and respond to specific types of
events, see “Working with Widget Events” in Chapter 30.

What are Widget Events?

A widget event is a message returned from the window system when a user
manipulates a widget. In response to an event, a widget program usually performs
some action (e.g., opens a file, updates a plot).

Structure of Widget Events

As events arrive from the window system, IDL saves them in a queue for the target
widget. The WIDGET_EVENT function delivers these events to the IDL program as
IDL structures. Every widget event structure has the same first three fields: these are
long integers named ID, TOP, and HANDLER:

• ID is the widget ID of the widget that generated the event.

• TOP is the widget ID of the top-level base containing ID.

• HANDLER is the widget ID of the widget associated with the event handling
routine. The importance of HANDLER will become apparent when we discuss
event routines and compound widgets, below.

Event structures for different widgets may contain other fields as well. The exact
form of the event structure for any given widget is described in the documentation for
that widget’s creation function in the IDL Reference Guide.
Building IDL Applications Widget Event Processing

842 Chapter 29: Creating Widget Applications
Managing Widget Events with XMANAGER

The XMANAGER procedure provides a convenient, simplified interface IDL’s event-
handling capabilities. At the highest level, creating a widget application consists of
the following steps:

1. Creating routines to react to widget events.

2. Creating the widgets that make up the application’s interface.

3. Realizing the widgets.

4. Calling XMANAGER to manage events flowing from the widget interface.

XMANAGER arranges for an event-handling procedure supplied by the application
to be called when events for it arrive. The application is shielded from the details of
calling the underlying WIDGET_EVENT function and interacting with other widget
applications that may be running simultaneously.

Note
While it is possible for a user-written program to call the WIDGET_EVENT
function directly, in practice this is very unusual. For details on how events are
handled at a low level, see “The WIDGET_EVENT Function” on page 844.

The file xmng_tmpl.pro, found in the lib subdirectory of the IDL distribution, is a
template for writing widget applications that use XMANAGER.

XMANAGER and Blocking

The term blocking is used to describe a situation in which processing by IDL is
suspended until some event or action takes place. Unless you specifically arrange
otherwise, IDL will only allow one user interface (the IDL command line or a single
widget application) to be active at one time. XMANAGER simplifies the process of
arranging things so that multiple user interfaces can run at the same time — that is,
managing events so that applications do not need to block in order to be assured of
receiving the correct event information.

IDL’s blocking behavior is discussed in detail in “XMANAGER” in the IDL
Reference Guide manual. In most cases, specifying the NO_BLOCK keyword when
calling XMANAGER will allow your application to “play nicely with others,” but
you should keep the following things in mind when writing widget applications:
Widget Event Processing Building IDL Applications

Chapter 29: Creating Widget Applications 843
Active Command Line

IDL can provide an active command line. If the command line is active, IDL will
execute commands entered at the command line even if one or more widget
applications are already running. In order for IDL to behave in this way, all widget
applications must be run via XMANAGER with the NO_BLOCK keyword set. See
“Active Command Line” under “XMANAGER” in the IDL Reference Guide manual
for details

Blocking and Non-Blocking Applications

By default, widget applications — even those managed with XMANAGER — will
block. To enable your application to run without blocking other widget applications
or the IDL command line, you must explicitly set the NO_BLOCK keyword to
XMANAGER when registering the application. Put another way, any running widget
application that does not have this keyword set will block all event processing for
widget applications and the IDL command line. See “Blocking vs. Non-blocking
Applications” under “XMANAGER” in the IDL Reference Guide manual for details.

Registering Applications Without Processing Their Events

In order to allow multiple widget applications to run simultaneously, each application
must be registered with XMANAGER, so it knows how to recognize events generated
by the application. In most cases, the registration step takes place automatically when
XMANAGER is called to begin processing events for the application.

In some cases, however, it may be useful to register an application with
XMANAGER before asking it to begin processing the application’s events. In these
cases, you can use the JUST_REG keyword to XMANAGER; the application is
added to XMANAGER’s list of known applications without starting event
processing, and XMANAGER returns immediately. See “JUST_REG vs.
NO_BLOCK” under “XMANAGER” in the IDL Reference Guide manual for details.

Tips on Working With XMANAGER

Because XMANAGER buffers you from direct handling of widget events, you cannot
explicitly specify an event-handling function or procedure for the top-level base using
the EVENT_FUNC or EVENT_PRO keywords to WIDGET_BASE or
WIDGET_CONTROL. Event handlers for top-level bases specified via these
keywords will be overwritten by XMANAGER.

Instead, provide the name of the event handler routine to XMANAGER via the
EVENT_HANDLER keyword. If you do not supply the name of an event handler via
the EVENT_HANDLER keyword, XMANAGER will construct a default name by
adding the suffix “_event” to the Name argument.
Building IDL Applications Widget Event Processing

844 Chapter 29: Creating Widget Applications
Note that this guideline applies only to top-level bases (base widgets created with no
parent widget). Child base widgets should use the EVENT_FUNC or EVENT_PRO
keywords to specify event handling routines, if necessary.

In addition, it is often convenient to specify the death-notification routine for the top-
level base of a widget application via the CLEANUP routine to XMANAGER rather
than via the KILL_NOTIFY keyword to WIDGET_BASE or WIDGET_CONTROL.
Either method will work, but the last routine specified is the routine that will be
called when the base widget is destroyed. Since the call to XMANAGER is often the
last call made when creating a widget application, using the CLEANUP keyword to
specify the routine to be called when the application is ends is preferred.

The XREGISTERED Function

The XMANAGER procedure allows multiple instances of a widget application to run
simultaneously. In some cases, however, you may wish to ensure that only a single
instance of application can run at a given time. An obvious example of this is an
application that uses a COMMON block to maintain its current state (see “Managing
Application State” on page 849).

The XREGISTERED function can be used in such applications to ensure that only a
single copy of the application run at a time. Place the following statement at the start
of the widget creation routine:

IF (XREGISTERED('routine_name') NE 0) THEN RETURN

where routine_name is the name of the widget application.

See “XREGISTERED” in the IDL Reference Guide manual for further information.

The WIDGET_EVENT Function

All widget event processing in IDL is eventually handled by the WIDGET_EVENT
function. Note that while we will discuss WIDGET_EVENT here for completeness,
in most cases you will not want to call WIDGET_EVENT directly. The
XMANAGER routine provides a convenient, simplified interface to
WIDGET_EVENT and allows IDL to take over the task of managing multiple widget
applications.

In its simplest form, the WIDGET_EVENT function is called with a widget ID
(usually, the ID of a base widget) as its argument. WIDGET_EVENT checks the
queue of undelivered events for that widget or any of its children. If an event is
present, it is immediately dequeued and returned. If no event is available,
WIDGET_EVENT blocks all other processing by IDL until an event arrives, and then
returns it. Typically, the request is made for a top-level base, so WIDGET_EVENT
returns events for any widget in the widget hierarchy rooted at that base widget.
Widget Event Processing Building IDL Applications

Chapter 29: Creating Widget Applications 845
This simple usage suffers from a major weakness. Since each call to
WIDGET_EVENT is looking for events from a specified widget hierarchy, it is not
possible to receive events for more than one widget hierarchy at a time. It is important
to be able to run multiple widget applications (each with a separate top-level base)
simultaneously. An example would be an image processing application, a colortable
manipulation tool, and an on-line help reader all running together.

One solution to this problem is to call WIDGET_EVENT with an array of widget
identifiers instead of a single ID. In this case, WIDGET_EVENT returns events for
any widget hierarchy in the list. This solution is effective, but it still requires that you
maintain a complete list of all interesting top-level base identifiers, which implies that
all cooperating applications need to know about each other.

The most powerful way to use WIDGET_EVENT is to call it without any arguments
at all. Called this way, it will return events for any currently-realized widgets that
have expressed an interest in being managed. (You specify that a widget wants to be
managed by setting the MANAGED keyword to the WIDGET_CONTROL
procedure.) This form of WIDGET_EVENT is especially useful when used in
conjuction with widget event callback routines, discussed in “Event Processing and
Callbacks” on page 845.

Event Processing and Callbacks

Previously, we mentioned that when IDL receives an event, the event is queued until a
call to WIDGET_EVENT is made (either explicitly by the user program or by
XMANAGER), whereupon the event is dequeued and returned. The following is a
more complete description of what actually happens in IDL’s event loop.

Events for a given widget are processed in the order that they are generated. The
event processing performed by WIDGET_EVENT consists of the following steps,
applied iteratively:

1. Wait for an event from one of the specified widgets to arrive.

2. Starting with the widget that generated the event, search up the widget
hierarchy for a widget with an associated event-handling procedure or
function.

Event-handling routines associated with widgets are known as callback
routines. Other cases where an IDL system routine (WIDGET_EVENT, in this
instance) calls a user-specified, user-written routine include routines specified
via the KILL_NOTIFY or NOTIFY_REALIZE keywords to the widget
creation functions and WIDGET_CONTROL, as well as the corollary
keywords to XMANAGER.
Building IDL Applications Widget Event Processing

846 Chapter 29: Creating Widget Applications
3. If an event-handling procedure is found, it is called with the event as its
argument. The HANDLER field of the event is set to the widget ID of the widget
associated with the handling procedure. When the procedure returns,
WIDGET_EVENT returns to the first step above and starts searching for
events. Hence, event-handling procedures are said to “swallow” events.

4. If an event-handling function is found, it is called with the event as its
argument. The HANDLER field of the event is set to the widget ID of the widget
associated with the handling function.

When the function returns, its value is examined. If the value is not a structure,
it is discarded and WIDGET_EVENT returns to the first step. This behavior
allows event-handling functions to selectively act like event-handling
procedures and “swallow” events.

If the returned value is a structure, it is checked to ensure that it has the
standard first three fields: ID, TOP, and HANDLER. If any of these fields is
missing, IDL issues an error. Otherwise, the returned value replaces the event
found in the first step and WIDGET_EVENT continues moving up the widget
hierarchy looking for another event handler routine, as described in step 2,
above.

In situations where an event structure is returned, event functions are said to
“rewrite” events. This ability to rewrite events is the basis of compound
widgets, which combine several widgets to give the appearance of a single,
more complicated widget. Compound widgets are an important widget
programming concept. For more information, see “Compound Widgets” on
page 853.

5. If an event reaches the top of a widget hierarchy without being swallowed by
an event handler, it is returned as the value of WIDGET_EVENT.

6. If WIDGET_EVENT was called without an argument, and there are no
widgets left on the screen that are being managed (as specified via the
MANAGED keyword to the WIDGET_CONTROL procedure) and could
generate events, WIDGET_EVENT ends the search and returns an empty event
(a standard widget event structure with the top three fields set to zero).
Widget Event Processing Building IDL Applications

Chapter 29: Creating Widget Applications 847
Example 2: Event Processing and User Values

The following example demonstrates how user values can be used to simplify event
processing and to pass values between routines. It creates a base widget with three
buttons and a text field that reports which button was pressed.

Note
If you are new to IDL widget programming, don’t be worried if parts of this
example are not immediately clear to you. As you read further through this chapter,
the principles of the event-driven programming model and IDL’s specific
implementation of that model will become clearer.

Note
This example is included in the file widget2.pro in the examples/widgets
subdirectory of the IDL distribution. You can either open the file in an IDL editor
window and compile and run the code using items on the Run menu, or simply
enter

widget2
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected.

PRO widget2_event, ev
WIDGET_CONTROL, ev.TOP, GET_UVALUE=textwid
WIDGET_CONTROL, ev.ID, GET_UVALUE=uval
CASE uval OF
'ONE' : WIDGET_CONTROL, textwid, SET_VALUE='Button 1 Pressed'
'TWO' : WIDGET_CONTROL, textwid, SET_VALUE='Button 2 Pressed'
'DONE': WIDGET_CONTROL, ev.TOP, /DESTROY

ENDCASE
END

PRO widget2
base = WIDGET_BASE(/COLUMN)
button1 = WIDGET_BUTTON(base, VALUE='One', UVALUE='ONE')
button2 = WIDGET_BUTTON(base, VALUE='Two', UVALUE='TWO')
text = WIDGET_TEXT(base, XSIZE=20)
button3 = WIDGET_BUTTON(base, value='Done', UVALUE='DONE')
WIDGET_CONTROL, base, SET_UVALUE=text
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'widget2', base

END
Building IDL Applications Example 2: Event Processing and User Values

848 Chapter 29: Creating Widget Applications
Let’s examine the creation routine, widget2, first. We first create a top-level base,
this time specifying the COLUMN keyword to ensure that the widgets contained in
the base are stacked vertically. We create two buttons with values “One” and “Two,”
and user values “ONE” and “TWO.” Remember that the value of a button widget is
also the button’s label. We create a text widget, and specify its width to be 20
characters using the XSIZE keyword. The last button is the “Done” button, with a the
user value “DONE.”

Next follow two calls to the WIDGET_CONTROL procedure. The first call sets the
user value of the top-level base widget equal to the widget ID of our text widget,
allowing easy access to the text widget from the event handling routine. The second
call realizes the top-level base and all its child widgets. Finally, we invoke the
XMANAGER to manage the widget application.

The widget2_event routine is slightly more complicated than the event handler in
“Example 1: A Simple Widget Application” on page 828, but it is still relatively
simple. We begin by using WIDGET_CONTROL to retrieve the widget ID of our text
widget from the user value of the top-level base. We can do this because the widget
ID of our top-level base is contained in the TOP field of the widget event structure. We
use the GET_UVALUE keyword to store the widget ID of the text widget in the
variable textwid.

Next, we use WIDGET_CONTROL with the GET_UVALUE keyword to retrieve the
user value of the widget that generated the event. Again, we can do this because we
know that the widget ID of the widget that generated the event is stored in the ID field
of the event structure. We then use a CASE statement to compare the user value of the
widget, now stored in the variable uval, with the list of possible user values to
determine which button was pressed and act accordingly.

In the CASE statement, we check to see if uval is the user value associated with
either button one or button two. If it is, we use WIDGET_CONTROL and the
SET_VALUE keyword to alter the value of the text widget, whose ID we stored in the
variable textwid. If uval is 'DONE', we recognize that the user has clicked on the
“Done” button and use WIDGET_CONTROL to destroy the widget hierarchy.
Example 2: Event Processing and User Values Building IDL Applications

Chapter 29: Creating Widget Applications 849
Managing Application State

A widget application is usually divided into at least two separate routines, one that
creates and realizes the application and another that handles events. These multiple
routines need shared access to certain types of information, such as the widget IDs of
the application’s widgets and data being used by the application. This shared
information is referred to as the application state.

Techniques for Preserving Application State

The following are some techniques you can use to preserve and share application
state data between routines.

Using COMMON Blocks

One obvious answer to this problem is to use a COMMON block to hold the state.
However, this solution is undesirable because it prevents more than a single copy of
the application from running at the same time. It is easy to imagine the chaos that
would ensue if multiple instances of the same application were using the same
common block without some sort of interlocking.

Using a State Structure in a User Value

A better solution to this problem is to use the user value of one of the widgets to store
state information for the application.Using this technique, multiple instances of the
same widget code can exist simultaneously. Since this user value can be of any type, a
structure can be used to store any number of state-related values.

For example, consider the following example widget code:

PRO my_widget_event, event
WIDGET_CONTROL, event.TOP, GET_UVALUE=state, /NO_COPY

Event-handling code goes here

WIDGET_CONTROL, event.TOP, SET_UVALUE=state, /NO_COPY
END

PRO my_widget
; Create some widgets
wBase = WIDGET_BASE(/COLUMN)
wDraw = WIDGET_DRAW(wBAse, XSIZE=300, YSIZE=300)

; Realize the base widget and retrieve the widget ID
; of the drawable area.
Building IDL Applications Managing Application State

850 Chapter 29: Creating Widget Applications
WIDGET_CONTROL, wBase, /REALIZE
WIDGET_CONTROL, wDraw, GET_VALUE=idxDraw

; Create a state structure variable and set the user
; value of the top-level base equal to the state variable.
state = {wDraw:wDraw, idxDraw:idxDraw}
WIDGET_CONTROL, wBase, SET_UVALUE=state

; Use XMANAGER to manage the widgets
XMANANAGER, 'my_widget', wBase

END

In this example, we store state information (the widget ID of the draw widget and the
index of the drawable area) in a structure variable, and set the user value of the top-
level base widget equal to that structure variable. This makes it possible to retrieve
the structure using the widget ID contained in the TOP field of any widget event
structure that arrives at the event handler routine.

Notice the use of the NO_COPY keyword to WIDGET_CONTROL in the example.
This keyword prevents IDL from duplicating the memory used by the user value
during the GET_UVALUE and SET_UVALUE operations. This is an important
efficiency consideration if the size of the state data is large. (In this example the use
of NO_COPY is not really necessary, as the state data consists only of the two long
integers that represent the widget IDs being passed in the state variable.)

While it is important to consider efficiency, the use of the NO_COPY keyword does
have the side effect of causing the user value of the widget to become undefined when
it is retrieved using the GET_UVALUE keyword. If the user value is not replaced
before the event handler exits, the next execution of the event routine will fail, since
the user value will be undefined.

Using a Pointer to the State Structure

A variation on the above technique uses an IDL pointer to contain the state variable.
This eliminates the duplication of data and the need for the use of the NO_COPY
keyword.

Consider the following example widget code:

PRO my_widget_event, event
WIDGET_CONTROL, event.TOP, GET_UVALUE=pState

Event-handling code goes here, accessing the state
structure via the retrieved pointer.

END

PRO my_widget_cleanup, wBase
Managing Application State Building IDL Applications

Chapter 29: Creating Widget Applications 851
; This routine is called when the application quits.
; Retrieve the state variable and free the pointer.
WIDGET_CONTROL, wBase, GET_UVALUE=pState
PTR_FREE, pState

END

PRO my_widget
; Create some widgets.
wBase = WIDGET_BASE(/COLUMN)
wDraw = WIDGET_DRAW(wBAse, XSIZE=300, YSIZE=300)

; Realize the base widget and retrieve the widget ID
; of the drawable area.
WIDGET_CONTROL, wBase, /REALIZE
WIDGET_CONTROL, wDraw, GET_VALUE=idxDraw

; Create a state structure variable.
state = {wDraw:wDraw, idxDraw:idxDraw}

; Place the state structure in a pointer and set the user
; value of the top-level base widget equal to the pointer.
pState = PTR_NEW(state, /NO_COPY)
WIDGET_CONTROL, wBase, SET_UVALUE=pState, /NO_COPY

; Call XMANAGER to manage the widgets, specifying the routine
; to be called when the application quits.
XMANANAGER, 'my_widget', wBase, CLEANUP='my_widget_cleanup'

END

Notice the following differences between this technique and the technique shown in
the previous example:

• This method eliminates the removal of the user value from the top-level base
widget by removing the use of the NO_COPY keyword with the
GET_UVALUE keyword to WIDGET_CONTROL. Since only the pointer (a
long integer) is passed to the event routine, the efficiency issues connected
with copying the value are small enough to ignore. (Note that we do use the
NO_COPY keyword when creating the pointer and when initially setting the
user value of the top-level base widget; since these statements are executed
only once, we don’t worry about the fact that the state or pState variables
become undefined.)

• The state structure contained in the pointer must now be referenced using
pointer-dereferencing syntax. For example, to refer to the idxDraw field of the
state structure within the event-handling routine, you would use the syntax

(*pState).idxDraw
Building IDL Applications Managing Application State

852 Chapter 29: Creating Widget Applications
• The pointer allocated to store the state structure must be freed when the widget
application quits. We do this by specifying a cleanup routine via the
CLEANUP keyword to XMANAGER. It is the cleanup routine’s responsibility
to free the pointer.

Each of the above techniques has advantages. Choose a method based on the
complexity of your application and your level of comfort with features like IDL
pointers and the NO_COPY keyword.
Managing Application State Building IDL Applications

Chapter 29: Creating Widget Applications 853
Compound Widgets

Widget primitives can be used to construct many varied user interfaces, but complex
programs written with them suffer the following drawbacks:

• Large widget applications become difficult to maintain. As an application
grows, it becomes more difficult to properly write and test. The resulting
program suffers from poor organization.

• Good ideas can be difficult to reuse. Most larger applications are constructed
from smaller sub-units. For example, a color table editor might contain control
panel, color selection and color-index selection sub-units. These sub-units are
often complicated tools that could be used profitably in other programs. To
reuse such sub-units, the programmer must understand the existing application
and then transplant the interesting parts into the new program — at best a
tedious and error-prone proposition.

Compound widgets solve these problems. A compound widget is a complete, self-
contained, reusable widget sub-tree that behaves to a large degree just like a primitive
widget. Complex widget applications written with compound widgets are much
easier to maintain than the same application written without them. Using compound
widgets is analogous to using subroutines and functions in programming languages.

Writing Compound Widgets

Compound widgets are written in the same way as any other widget application. They
are distinguished from regular widget applications in the following ways:

• Compound widgets usually have a base widget at the root of their hierarchies.
This base contains the subwidgets that make up the compound widget. From
the user’s point of view, this single widget is the compound widget — its
children are not programmatically accessible on their own.

Notice that the base widget at the root of a compound widget is not a top-level
base. When used, a compound widget must always have a parent widget.

• It is important that the compound widget not make use of the base’s user value.
In order to preserve the illusion that the compound widget works just like any
of the widget primitives, the user value of the compound widget’s top-level
base should be reserved for use by the caller of the compound widget. Instead,
the compound widget should use the user value of one of its child widgets.
Building IDL Applications Compound Widgets

854 Chapter 29: Creating Widget Applications
• The widget at the root of the compound widget’s hierarchy always has an event
handler function associated with it via the EVENT_FUNC keyword to the
widget creating function or the WIDGET_CONTROL procedure. This event
handler manages events from its sub-widgets and generates events for the
compound widget. By swallowing events from the widgets that comprise the
compound widget and generating events that represent the compound widget,
it presents the illusion that the compound widget is acting like a widget
primitive.

• If the compound widget has a value that can be set, it should be assigned a
value setting procedure via the PRO_SET_VALUE keyword to the widget
creating function or the WIDGET_CONTROL procedure.

• If the compound widget has a value that can be retrieved, it should be assigned
a value retrieving function via the FUNC_GET_VALUE keyword to the
widget creating function or the WIDGET_CONTROL procedure.

For an example of how a compound widget might be written, see “Example 3:
Compound Widget” on page 856.

The HANDLER Field of the Widget Event Structure

Recall that when WIDGET_EVENT finds an event to return, it moves up the widget
hierarchy looking for an event-handling routine registered to the widgets in between
its current position and the top-level base of the widget application. If such a routine
is found, it is called with the event as its argument, and the HANDLER field of this
event is set to the widget ID of the widget where the event routine was found. Since
compound widgets have event handlers associated with their root widget, the
HANDLER field gives the event handler the widget ID of the root widget. This allows
the event handler for a compound widget instance to easily locate the location of its
state information relative to this root.

Storing State Information

IDL programmers are often tempted to store the state information directly in the user
value of the root widget, but this is not a good idea. The user value of a compound
widget is reserved for the user of the widget, just like any basic widget. Therefore,
you should store the state information in the user value of one of the child widgets
below the root. As a convention, the user value of the first child is often used, leading
to event handlers structured as follows:

FUNCTION EVENT_FUNC, event
; Get state from the first child of the compound widget root:
child = WIDGET_INFO(event.HANDLER, /CHILD)
WIDGET_CONTROL, child, GET_UVALUE=state, /NO_COPY
Compound Widgets Building IDL Applications

Chapter 29: Creating Widget Applications 855
; Execute event-handling code here.

; Restore the state information before exiting routine:
WIDGET_CONTROL, child, SET_UVALUE=state, /NO_COPY

; Return result of function
RETURN, result

END

Sometimes, an application will find that it needs to use the user value of all its child
widgets for some other purpose, and there is no convenient place to keep the state
information. One way to work around this problem is to interpose an extra base
between the root base and the rest of the widgets:

ROOT = WIDGET_BASE(parent)
EXTRA = WIDGET_BASE(root)

In such an approach, the remaining widgets would all be children of EXTRA rather
than ROOT.
Building IDL Applications Compound Widgets

856 Chapter 29: Creating Widget Applications
Example 3: Compound Widget

The following example incorporates ideas from the previous sections to show how
you might approach the task of writing a compound widget. The widget is called
CW_DICE, and it simulates a single six-sided die. Figure 29-1 shows the appearance
of XDICE, an application that uses two instances of CW_DICE. XDICE is discussed
in “Using CW_DICE in a Widget Program” on page 862.

Note
cw_dice.pro can be found in the lib subdirectory of the IDL distribution.
xdice.pro can be found in the examples/widgets subdirectory of the IDL
distribution. You should examine these files for additional details and comments not
included here. We present sections of the code here for didactic purposes—there is
no need to re-create either of these files yourself.

The CW_DICE compound widget has the following features:

• It uses a button widget. The current value of the die is displayed as a bitmap
label on the button itself. When the user presses the button, the die “rolls” itself
by displaying a sequence of bitmaps and then settles on a final value. An event
is generated that returns this final value.

• Timer events are used to create the rolling effect. This allows the dice to give
the same appearance on machines of varying performance levels. (Timer
events are discussed in “Working with Widget Events” in Chapter 30.)

• The die can be set to a specific value via the SET_VALUE keyword to the
WIDGET_CONTROL procedure. If the desired value is outside of the range 1
through 6, the die is rolled as if the user had pressed the button and a final
value is selected randomly. Using WIDGET_CONTROL to set the value of the
widget in this manner does not cause an event to be issued — IDL’s convention
is that user actions cause events, while programmatic changes do not.

• The current value of the die can be obtained via the GET_VALUE keyword to
the WIDGET_CONTROL procedure.

Almost any compound widget will have an associated state. The following is the state
of CW_DICE:

1. The current value.

2. The number of times the die should “tumble” before settling on a final value.

3. The amount of time to take between tumbles.
Example 3: Compound Widget Building IDL Applications

Chapter 29: Creating Widget Applications 857
4. A count of how many tumbles are left before a final value is displayed, while a
roll is in progress.

5. The bitmaps to use for the 6 possible die values.

6. The seed to use for the random number generator.

The first four items are stored in a per-widget structure kept in one of the child
widget’s user values. Since the bitmaps never change, it makes sense to keep them in
a COMMON block to be accessed freely by all the CW_DICE routines. It also makes
sense to use a single random number seed for the entire CW_DICE class rather than
one per instance to avoid the situation where multiple dice, having been created at the
same time, have the same seed and thus display the same value on each roll.

Note
It is rare that the use of a COMMON block in a compound widget makes sense.
Notice, however, that we’re only keeping read-only data (bitmaps) or data that can
be overwritten at any time with no negative effects (random number generator
seed).

Given the above decisions, it is now possible to write the CW_DICE procedure:

;Value is an optional argument that lets the caller set the initial
;die value to a value between 1 and 6. UVALUE will simply be passed
;on to the root base of CW_DICE. The TUMBLE keywords let the user
;adjust the tumble count and period.
FUNCTION cw_dice, parent, value, UVALUE=uvalue, $

TUMBLE_CNT=tumble_cnt, TUMBLE_PERIOD=tumble_period

;This COMMON block holds the bitmaps and random number generator
;seed.
COMMON CW_DICE_BLK, seed, faces

;Provide defaults for the keywords.
IF ~ KEYWORD_SET(tumble_cnt) THEN tumble_cnt=10

;Guard against a nonsensical request.
IF (tumble_cnt LT 1) THEN tumble_cnt=10

;Default tumble period in seconds.
IF ~ KEYWORD_SET(tumble_period) THEN tumble_period=.05
IF (tumble_period lt 0) THEN tumble_period=.05
IF ~ KEYWORD_SET(uvalue) THEN uvalue=0

;Return to caller if an error occurs.
ON_ERROR, 2
Building IDL Applications Example 3: Compound Widget

858 Chapter 29: Creating Widget Applications
;Generate the die face bitmaps. The actual code for this is
;omitted here because it doesn’t add much to the example, but
;it can be found in the CW_DICE.PRO file.
faces=LONARR(192)

;Use RANDOMU to pick the initial value of the die unless the user
;provided one.
IF(N_ELEMENTS(value) EQ 0) THEN value = FIX(6*RANDOMU(seed) + 1)

;Construct a state variable for this instance.
state = { value:value, tumble_cnt:FIX(tumble_cnt), $

tumble_period:tumble_period, remaining:0 }

;Create the base widget, passing the UVALUE through for the
;caller. Notice that we also register an event function and
;GET/SET value routines which will be called by WIDGET_CONTROL
;on our behalf.
base = WIDGET_BASE(parent, UVALUE=uvalue, $

EVENT_FUNC='CW_DICE_EVENT', $
FUNC_GET_VALUE='CW_DICE_GET_VALUE', $
PRO_SET_VALUE='CW_DICE_SET_VALUE')

;Create the die, setting its bitmap to the current value.
die = WIDGET_BUTTON(base, VALUE=faces[*, *, value-1])

;Save the state in the first child’s user value. Notice the
;use of the NO_COPY keyword for efficiency.
WIDGET_CONTROL, WIDGET_INFO(base, /CHILD), $
SET_UVALUE=state, /NO_COPY

;The result of a compound widget is always the ID of its topmost
;widget.
RETURN, base

END

The above code makes reference to two routines named CW_DICE_SET_VAL and
CW_DICE_GET_VAL. By using the FUNC_GET_VALUE and PRO_SET_VALUE
keywords to WIDGET_BASE, WIDGET_CONTROL can call these routines
whenever the user makes a WIDGET_CONTROL, SET_VALUE or GET_VALUE
request:

;This is the SET_VALUE routine for CW_DICE. The number and type of
;the arguments is defined by WIDGET_CONTROL. Id is the widget ID of
;a CW_DICE, and value is the user’s requested value.
PRO cw_dice_set_val, id, value

COMMON CW_DICE_BLK, seed, faces
Example 3: Compound Widget Building IDL Applications

Chapter 29: Creating Widget Applications 859
;Get the ID of the first child of the CW_DICE widget. This is
;where the state information is stored.
stash = WIDGET_INFO(id, /CHILD)

;Get the state structure.
WIDGET_CONTROL, stash, GET_UVALUE=state, /NO_COPY

;If the value is outside the range [1,6] then roll the die as if
;the user pressed the button.
IF (value LT 1) OR (value GT 6) THEN BEGIN

;CW_DICE_ROLL rolls the dice. It’s a separate function because
;our event handler also needs to use it.
CW_DICE_ROLL, stash, state

ENDIF ELSE BEGIN
;If the value is in the range [1,6] then simply set the die
;to that value without rolling.
state.value=value

;Set the new bitmap on the button. We take advantage of the
;fact that stash must be the widget ID of the button widget,
;since the base only has one child.
WIDGET_CONTROL, stash, SET_VALUE=faces[*,*, value-1]

ENDELSE

;Restore the state in the child UVALUE.
WIDGET_CONTROL, stash, SET_UVALUE=state, /NO_COPY

END

;This is the GET_VALUE routine for CW_DICE. The number and type of
;the arguments is defined by WIDGET_CONTROL. Id is the widget ID of
;a CW_DICE. The return value of this function must be the current
;value of the compound widget, as defined by that widget.
FUNCTION cw_dice_get_val, id

;Get the ID of the first child of the CW_DICE widget. This is
;where the state information is stored.
stash = WIDGET_INFO(id, /CHILD)

;Get the state structure.
WIDGET_CONTROL, stash, GET_UVALUE=state, /NO_COPY

;Get the current value from the state structure.
ret = state.value
Building IDL Applications Example 3: Compound Widget

860 Chapter 29: Creating Widget Applications
;Restore the state in the child UVALUE.
WIDGET_CONTROL, stash, SET_UVALUE=state, /NO_COPY

RETURN, ret

END

CW_DICE_SET_VALUE makes reference to a procedure named CW_DICE_ROLL
that does the actual dice rolling. Rolling is implemented as follows:

1. If this is the initial call to CW_DICE_ROLL, then pick the final value that will
end up being displayed and enter this into the widget’s state. Hence,
WIDGET_CONTROL, /GET_VALUE reports the final value instead of one of
the intermediate “tumble” values no matter when it is called.

2. If this is not the final tumble, pick a random intermediate value and display
that. Then, make another timer event request for the next tumble.

3. If this is the final tumble, use the saved final value.

4. CW_DICE_ROLL works in cooperation with the event handler function for
CW_DICE. Each timer event causes the event handler to be called and the
event handler in turn calls CW_DICE_ROLL to process the next tumble.

;Roll the specified die. Dice is the widget ID of the button
;holding the bitmap, and state is the state as extracted from the
;CW_DICE UVALUE by the caller.
PRO cw_dice_roll, dice, state

COMMON CW_DICE_BLK, seed, faces

;First time.
IF (state.remaining EQ 0) THEN BEGIN

;Set the counter for the number of tumbles remaining.
state.remaining = state.tumble_cnt

;Determine final value now.
state.value = FIX(6*RANDOMU(seed)+1)

ENDIF

;Last time.
IF (state.remaining EQ 1) THEN BEGIN

;Use the previously-saved final result.
value = state.value

;Not the last time.
Example 3: Compound Widget Building IDL Applications

Chapter 29: Creating Widget Applications 861
ENDIF ELSE BEGIN

;Generate an intermediate value.
value = FIX(6 * RANDOMU(seed) + 1)

;Since this isn’t the last tumble, make the next timer request.
WIDGET_CONTROL, dice, TIMER=state.tumble_period

ENDELSE

;Display the correct bitmap.
WIDGET_CONTROL, dice, SET_VALUE=faces[*,*, value-1]

;Decrement tumble counter.
state.remaining = state.remaining-1

END

This leads us to the event handler function:

FUNCTION cw_dice_event, event

;The primary use for the HANDLER field of event structures is to
;make finding the root of a compound widget easy.
base = event.handler

;Get the ID of the first child of the CW_DICE widget. This is
;where the state information is stored.
stash = WIDGET_INFO(base, /CHILD)

;Get the state structure.
WIDGET_CONTROL, stash, GET_UVALUE=state, /NO_COPY

;Roll the die and display a new bitmap.
CW_DICE_ROLL, stash, state

;This event handler expects to see button press events generated
;from a user action as well as TIMER events from CW_DICE_ROLL. We
;only want to issue events for the button presses. Even though
;the die still has several tumbles left, we know that the final
;value is in the state now.
IF (TAG_NAMES(event, /STRUCTURE_NAME) NE 'WIDGET_TIMER') THEN $

;Create an event.
ret = { CW_DICE_EVENT, ID:base, TOP:event.top, $

HANDLER:0L, VALUE:state.value} $
ELSE ret = 0
;By not returning an event structure, we cause the event to be
;swallowed by WIDGET_EVENT.
Building IDL Applications Example 3: Compound Widget

862 Chapter 29: Creating Widget Applications
;Restore the state in the child UVALUE.
WIDGET_CONTROL, stash, SET_UVALUE=state, /NO_COPY

RETURN, ret

END

Using CW_DICE in a Widget Program

We can use CW_DICE to implement an application named XDICE. XDICE displays
two dice as well as a “Roll” button. Pressing either die causes it to roll individually.
Pressing the “Roll” button causes both dice to roll together. A text widget at the
bottom displays the current value.

Note
xdice.pro can be found in the examples/widgets subdirectory of the IDL
distribution. You can run the program from the IDL distribution by entering:

xdice
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected. You should examine the files for additional
details and comments not included here.

;Providing standard keywords usually found in other widget
;applications is a nice finishing touch. GROUP is easy to support
;since we just pass it to XMANAGER.
PRO xdice, GROUP=group

;Create the top-level base that holds everything else.
base = WIDGET_BASE(/COLUMN, TITLE='Pair O'' Dice')

;A button group compound widget is used to implement the Done and

Figure 29-1: The XDICE Example Program
Example 3: Compound Widget Building IDL Applications

Chapter 29: Creating Widget Applications 863
;Roll buttons. The SPACE keyword simply causes the buttons to be
;spread out from each other.
bgroup = CW_BGROUP(base, ['Done', 'Roll'], /ROW, SPACE=50)

;Create a row base to hold the dice. XPAD moves the first die
;away from the left side of the application and helps center the
;dice.
dice = WIDGET_BASE(base, /ROW, XPAD=20)

;The first die.
d1 = CW_DICE(dice)

;The second die.
d2 = CW_DICE(dice)

;We need the initial dice values to set the label appropriately.
;We could have specified initial values for the calls to CW_DICE
;above, but it seems better to let them be different on each
;invocation.
WIDGET_CONTROL, d1, GET_VALUE=d1v
WIDGET_CONTROL, d2, GET_VALUE=d2v

;Format the initial label text.
str=STRING(FORMAT='("Current Value: ",I1,", ",I1)', d1v, d2v)

;This label is used to textually display the current dice values.
label = WIDGET_LABEL(base, VALUE=str)

;Information that is needed in the event handler.
state = { bgroup:bgroup, d1:d1, d2:d2, label:label }

;Save useful information in the base UVALUE, and realize the
;application.
WIDGET_CONTROL, base, SET_UVALUE=state, /NO_COPY, /REALIZE

;Pass control to XMANAGER.
XMANAGER, 'xdice', base, GROUP=group

END

The following event handler is called by XMANAGER to process events for the
XDICE application:

PRO xdice_event, event

;Recover the state.
WIDGET_CONTROL, event.top, GET_UVALUE=state, /NO_COPY

;Either the Done or Roll button was pressed.
Building IDL Applications Example 3: Compound Widget

864 Chapter 29: Creating Widget Applications
IF (event.ID EQ state.bgroup) THEN BEGIN

;The Done button.
IF (event.VALUE EQ 0) THEN BEGIN

WIDGET_CONTROL, /DESTROY, event.TOP ;Destroy the
application.

;Return now to avoid trying to update the widget label we
;just destroyed.
RETURN

;The Roll button.
ENDIF ELSE BEGIN

;Roll the first die by asking for an out of range value.
WIDGET_CONTROL, state.d1, SET_VALUE=-1

;Roll the second die.
WIDGET_CONTROL, state.d2, SET_VALUE=-1

ENDELSE
ENDIF

;Get value of first die.
WIDGET_CONTROL, state.d1, GET_VALUE=d1v

;Get value of second die.
WIDGET_CONTROL, state.d2, GET_VALUE=d2v

;Format the initial label text.
str = STRING(FORMAT='("Current Value: ",I1,", ",I1)', d1v, d2v)

;Update the label.
WIDGET_CONTROL, state.label, SET_VALUE=str

;Restore the state.
WIDGET_CONTROL, event.TOP, SET_UVALUE=state, /NO_COPY

END
Example 3: Compound Widget Building IDL Applications

Chapter 29: Creating Widget Applications 865
Debugging Widget Applications

In addition to the “normal” debugging tasks associated with any IDL program, widget
applications also require you to debug errors in the widget event loop. If your widget
application experiences errors in an event handling routine, keep the following points
in mind:

• By default, XMANAGER catches errors and continues processing (see
“CATCH” in the IDL Reference Guide manual). If you are using XMANAGER
to manage your widget application (as in most cases you should), calling
XMANAGER with CATCH=0 will cause XMANAGER to halt when it
encounters an error.

Setting CATCH=0 is useful during debugging, but finished programs should
run with the default setting (CATCH=1) and refrain from setting it explicitly.

• CATCH is only effective if XMANAGER is blocking to dispatch errors.
During debugging, make sure to call XMANAGER with NO_BLOCK=0 (the
default).

Setting NO_BLOCK=0 is useful during debugging, but in many cases you will
want your finished program to set NO_BLOCK=1 in order to allow other
widget programs (and the IDL command line) to remain active while your
application is running.

If a widget application stops responding, you can restart event processing by doing
the following:

1. Enter RETALL at the IDL prompt to return to the main program level.

2. Optionally, modify the code to fix the error and re-compile.

3. If one or more of the applications you are running blocks the active command
line, enter XMANAGER at the IDL prompt in order to have it resume processing
events in the blocking mode. If all applications have NO_BLOCK=1 set, a call
to XMANAGER will immediately return, and can be safely omitted.
Building IDL Applications Debugging Widget Applications

866 Chapter 29: Creating Widget Applications
Debugging Widget Applications Building IDL Applications

Chapter 30:

Widget Application
Techniques
The following topics are covered in this chapter:
Working with Widget Events 868
Using Multiple Widget Hierarchies 873
Creating Menus . 876
Widget Sizing . 890
Tips on Creating Widget Applications . . . 896
Using Button Widgets 898

Using Draw Widgets 903
Using Property Sheet Widgets 916
Using Table Widgets 941
Using Tab Widgets 952
Using Tree Widgets 961
Enhancing Widget Application Usability . 967
Building IDL Applications 867

868 Chapter 30: Widget Application Techniques
Working with Widget Events

Widget events and the process of establishing a widget event loop for your
application are described in “Widget Event Processing” in Chapter 29. This section
discusses additional topics that may be useful when creating event-driven
applications, including:

• Interrupting the Event Loop

• Identifying Widget Type from an Event

• Keyboard Focus Events

• Timer Events

• Tracking Events

• Context Menu Events

Interrupting the Event Loop

Beginning with IDL version 5, IDL has the ability to process commands from the
IDL command line while simultaneously processing widget events. This means that
the IDL command line will remain active even when widget applications are running.

It is possible to interrupt the event function by sending the interrupt character
(Control-C). However, you may find that even after sending the interrupt character,
IDL does not immediately interrupt the event loop. IDL will interrupt the process that
is “on top”—that is, if several applications are running at once, the interrupt will be
handled by the first application to receive it.

If your widget application is the only active application, and sending the interrupt
does not cause it to break, move the mouse cursor across (or click on) one of the
widgets.

This works because when IDL is in the event function, it only checks for the interrupt
between event notifications from the window system. Such events do not necessarily
translate one-to-one into IDL widget events because the window system typically
generates a large number of events related to the window system’s operation that IDL
quietly handles. Moving the mouse cursor across the widgets typically generates
some of these events which gives IDL a chance to notice the interrupt and act on it.
Working with Widget Events Building IDL Applications

Chapter 30: Widget Application Techniques 869
Identifying Widget Type from an Event

Given a widget event structure, often you need to know what type of widget
generated it without having to match the widget ID in the event structure to all the
current widgets. This information is available by specifying the
STRUCTURE_NAME keyword to the TAG_NAMES function:

PRINT, 'Event structure type: ', TAG_NAMES(EVENT, /STRUCTURE_NAME)

This works because each widget type generates a different event structure. The event
structure generated by a given widget type is documented in the description of the
widget creation function in the IDL Reference Guide.

When using this technique, be aware that although all the basic widgets use named
structures for their events, many compound widgets return anonymous structures.
This technique does not work well in that case because anonymous structures lack a
recognizable name.

An alternative technique involves using the TYPE keyword to the WIDGET_INFO
function. This method is useful when the widget event name does not specify the
widget from which the event originated. Timer events are an example; although the
events originate from a widget, the event structure’s name is WIDGET_TIMER. The
following statement checks to see if the event is a timer event and, if it is, prints the
type code of the widget that generated the event.

IF ((TAG_NAMES(EVENT, /STRUCTURE) EQ 'WIDGET_TIMER') THEN $
PRINT, WIDGET_INFO(EVENT.ID, /TYPE)

Such a check would be useful if a given widget could generate either a timer event or
a “normal” event, and you wanted to differentiate between the two.

Note
Always check for a distinct type of widget event. RSI will continue to add new
widgets with new event structures, so it is important not to make assumptions about
the contents of a random widget event structure. The structure of existing widget
events will remain stable, (although new fields may be added) so checking for a
particular type of widget event will always work.

Keyboard Focus Events

Base, table, and text widgets can be set to generate keyboard focus events. Generating
and examining keyboard focus events allows you to determine when a given widget
has either gained or lost the keyboard focus—that is, when it is brought to the
foreground or when it is covered by another window.
Building IDL Applications Working with Widget Events

870 Chapter 30: Widget Application Techniques
Set the KBRD_FOCUS_EVENTS keyword to WIDGET_BASE, WIDGET_TABLE,
or WIDGET_TEXT to generate keyboard focus events. (You can also modify an
existing base, table, or text widget to generate keyboard focus events using the
KBRD_FOCUS_EVENTS keyword to WIDGET_CONTROL.) You can then use your
event-handling procedure to cache the widget ID of the last widget (with keyboard
focus events enabled) to have the keyboard focus. One situation where this is useful is
when you have an application menu (created with the MBAR keyword to
WIDGET_BASE) and you wish to perform an action in a text widget based on the
menu item selected. Although the event generated by the user’s menu selection has
the menu’s base as its top-level widget ID, if you generate and track keyboard focus
events for the text widget, you can “remember” which widget the action triggered by
the menu selection should affect. Note that in this example, keyboard focus events are
not generated for the menubar’s base.

Timer Events

In addition to the normal widget events discussed previously, IDL allows the user to
make timer event requests by using the TIMER keyword. Such events are useful in
many applications that are time dependent, such as animation. The syntax for making
such a request is:

WIDGET_CONTROL, Widget_Id, TIMER=interval_in_seconds

Widget_Id can be the ID of any type of widget. When such a request is made, IDL
generates a timer request after the requested time interval has passed. Timer events
consist of a structure with only the standard three fields — no additional information is
provided.

It is up to the programmer to differentiate between a normal event and a timer event
for a given widget. The usual way to solve this problem is to make timer requests for
widgets that do not otherwise generate events, such as base or label widgets.

Each timer request causes a single event to be generated. To generate a steady stream
of timer events, you must make a new timer request in the event handler routine each
time a timer event is delivered. The following example demonstrates how to check for
a timer event and generate a new timer event each time a timer event occurs:

PRO timer_example_event, ev

WIDGET_CONTROL, ev.ID, GET_UVALUE=uval
IF (TAG_NAMES(ev, /STRUCTURE_NAME) EQ 'WIDGET_TIMER') THEN BEGIN
PRINT, 'Timer Fired'
WIDGET_CONTROL, ev.TOP, TIMER=2

ENDIF

Working with Widget Events Building IDL Applications

Chapter 30: Widget Application Techniques 871
CASE uval OF
'timer' : BEGIN

WIDGET_CONTROL, ev.TOP, TIMER=2
END

'exit' : WIDGET_CONTROL, ev.TOP, /DESTROY
ELSE:
ENDCASE

END

PRO timer_example
base = WIDGET_BASE(/COLUMN, UVALUE='base')
b1 = WIDGET_BUTTON(base, VALUE='Fire event', UVALUE='timer')
b2 = WIDGET_BUTTON(base, VALUE='Exit', UVALUE='exit')
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'timer_example', base, /NO_BLOCK

END

See “Draw Widget Example” on page 909 for a larger example using timer events.

Tracking Events

Tracking events allow you to determine when the mouse pointer has entered or left
the area of the computer screen covered by a given widget. You can use tracking
events to allow your interface to react as the user moves the mouse pointer over
different interface elements. Tracking events are generated for a widget when the
widget creation routine is called with the TRACKING_EVENTS keyword set.

The event structure of a tracking event includes a field named ENTER that contains a
1 (one) if the mouse pointer entered the region covered by the widget, or 0 (zero) if
the mouse pointer left the region covered by the widget. The following example
demonstrates how to check for tracking events and modify the value of a button
widget when the mouse cursor is positioned over it.

PRO tracking_demo_event, event
IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_TRACKING') $
THEN BEGIN
IF (event.ENTER EQ 1) THEN BEGIN

WIDGET_CONTROL, event.ID, SET_VALUE='Press to Quit'
ENDIF ELSE BEGIN

WIDGET_CONTROL, event.ID, $
SET_VALUE='What does this button do?'

ENDELSE
ENDIF ELSE BEGIN
WIDGET_CONTROL, event.TOP, /DESTROY

ENDELSE
END
Building IDL Applications Working with Widget Events

872 Chapter 30: Widget Application Techniques
PRO tracking_demo
base = WIDGET_BASE(/COLUMN)
button = WIDGET_BUTTON(base, $
VALUE='What does this button do?', /TRACKING_EVENTS)

WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'tracking_demo', base

END

Context Menu Events

Base, list, text, table and tree widgets can be set to generate context menu events.
Generating and examining context menu events allows you to determine when the
user has clicked the right-hand mouse button over a given widget, which in turn
allows you to display a “context menu.” (Draw widgets can also generate events
when the right-hand mouse button is clicked, using the general BUTTON_EVENTS
mechanism.) See “Context-Sensitive Menus” on page 881 for a detailed description.
Working with Widget Events Building IDL Applications

Chapter 30: Widget Application Techniques 873
Using Multiple Widget Hierarchies

Using widgets, you can create IDL applications with graphical user interfaces.
Although widget applications are running “inside” IDL, a well-designed program can
behave and appear just like a stand-alone application.

While a simple application may consist of a single widget hierarchy headed by a
single top-level base widget, more complex applications can include multiple widget
hierarchies, each with their own top-level base. Widget applications that include
multiple widget hierarchies consist of a group of top-level base widgets organized
hierarchically. The individual widgets that make up the widget application’s interface
have as their parent widget either one of the top-level bases or a base that is a child of
one of the top-level bases.

Groups of widgets are defined by setting the GROUP_LEADER keyword when
creating the widget. Group membership controls how and when widgets are iconized,
which layer they appear in, and when they are destroyed.

Figure 30-1 depicts a widget application group hierarchy consisting of six top-level
bases in three groups: base 1 leads all six bases, base 2 leads bases 4 and 5, and base
3 leads base 6. What does this mean? Operations like inconization or destruction that
affect base 2 also affect bases 4 and 5. Operations that affect base 3 also affect base 6.
Operations that affect base 1 affect all six bases—that is, a group includes not only
those bases that explicitly claim one base as their leader, but also all bases led by
those member bases.

Figure 30-1: A widget application group hierarchy with six top-level bases.
Building IDL Applications Using Multiple Widget Hierarchies

874 Chapter 30: Widget Application Techniques
The following IDL commands would create this hierarchy:

base1 = WIDGET_BASE()
base2 = WIDGET_BASE(GROUP_LEADER=base1)
base3 = WIDGET_BASE(GROUP_LEADER=base1)
base4 = WIDGET_BASE(GROUP_LEADER=base2)
base5 = WIDGET_BASE(GROUP_LEADER=base2)
base6 = WIDGET_BASE(GROUP_LEADER=base3)

Widget Group Behaviors

Groups of widgets are displayed and destroyed according to the following principles:

Iconization

Bases and groups of bases can be iconized (or minimized) by clicking the system
minimize control. When a group leader is iconized, all members of the group are
minimized as well.

Layering

Layering is the process by which groups of widgets seem to share the same plane on
the display screen. Within a layer on the screen, widgets have a Z-order, or front-to-
back order, that defines which widgets appear to be on top of other widgets.

All widgets within a group hierarchy share the same layer—that is, when one group
member has the input focus, all members of the group hierarchy are displayed in a
layer that appears in front of all other groups or applications. Within the layer, the
widgets can have an arbitrary Z-order, determined by the programmer.

Destruction

When a group leader widget is destroyed, either programmatically or by clicking on
the system “close” button, all members of the group are destroyed as well.

See “Iconizing, Layering, and Destroying Groups of Top-Level Bases” under
“WIDGET_BASE” in the IDL Reference Guide manual for detailed information on
how group membership defines widget behavior on different platforms.

Floating bases

Top-level base widgets created with the FLOATING keyword set will float above
their group leaders, even though they share the same layer. Floating bases and their
group leaders are iconized in a single icon (on platforms where iconization is
possible). Floating bases are destroyed when their group leaders are destroyed.
Using Multiple Widget Hierarchies Building IDL Applications

Chapter 30: Widget Application Techniques 875
Modal bases

Top-level base widgets created with the MODAL keyword will float above their
group leaders, and will suspend processing in the widget application until they are
dismissed. (Dialogs are generally modal.) Modal bases cannot be iconized, and on
some platforms other bases cannot be moved or iconized while the modal dialog is
present. Modal bases cannot have scroll bars or menubars.

Menubars

Widget applications can have an application-specific menubar, created by the MBAR
keyword to WIDGET_BASE. Menus and menubars are discussed in detail in
“Creating Menus” on page 876.
Building IDL Applications Using Multiple Widget Hierarchies

876 Chapter 30: Widget Application Techniques
Creating Menus

Menus allow a user to select one or more options from a list of options. IDL widgets
allow you to build a number of different types of menus for your widget application.

This section discusses the following different types of menus:

• Button Groups

• Lists

• Pulldown Menus

• Menus on Top-Level Bases

• Context-Sensitive Menus

Button Groups

One approach to menu creation is to build an array of buttons. With a button menu, all
options are visible to the user all the time. To create a button menu, do the following:

1. Call the WIDGET_BASE function to create a base to hold the buttons. Use the
COLUMN and ROW keywords to determine the layout of the buttons.

2. Call the WIDGET_BUTTON function once for each button to be added to the
base created in the previous step.

Because menus of buttons are common, IDL provides a compound widget named
CW_BGROUP to create them. Using CW_BGROUP rather than a series of calls to
WIDGET_BUTTON simplifies creation of a menu of buttons and also simplifies
event handling by providing a single event structure for the group of buttons. For
example, the following IDL statements create a button menu with five choices:

values = ['One', 'Two', 'Three', 'Four', 'Five']
base = WIDGET_BASE()
bgroup = CW_BGROUP(base, values, /COLUMN)
WIDGET_CONTROL, base, /REALIZE

In this example, one call to CW_BGROUP replaces five calls to
WIDGET_BUTTON.
Creating Menus Building IDL Applications

Chapter 30: Widget Application Techniques 877
Exclusive or Nonexclusive Buttons

Buttons in button groups normally act as independent entities, returning a selection
event (a one in the select field of the event structure) or similar value when pressed.
Groups of buttons can also be made to act in concert, as either exclusive or non-
exclusive groups. In contrast to normal button groups, both exclusive and non-
exclusive groups display which buttons have been selected.

Exclusive button groups allow only one button to be selected at a given time. Clicking
on an unselected button deselects any previously-selected buttons. Non-exclusive
button groups allow any number of buttons to be selected at the same time. Clicking
on the same button repeatedly selects and deselects that button. The following code
creates three button groups. The first group is a “normal” button group as created in
the previous example. The next is an exclusive group, and the third is a non-exclusive
group.

values = ['One', 'Two', 'Three', 'Four', 'Five']
base = WIDGET_BASE(/ROW)
bgroup1 = CW_BGROUP(base, values, /COLUMN, $

LABEL_TOP='Normal', /FRAME)
bgroup2 = CW_BGROUP(base, values, /COLUMN, /EXCLUSIVE, $

LABEL_TOP='Exclusive', /FRAME)
bgroup3 = CW_BGROUP(base, values, /COLUMN, /NONEXCLUSIVE, $

LABEL_TOP='Nonexclusive', /FRAME)
WIDGET_CONTROL, base, /REALIZE

The widget created by this code is shown in the following figure:

Figure 30-2: Normal Menus (left), Exclusive Menus (center) and
Non-exclusive Menus (right)
Building IDL Applications Creating Menus

878 Chapter 30: Widget Application Techniques
Lists

A second approach to menu creation is to provide the user with a list of options in the
form of a scrolling or drop-down list. A scrolling list is always displayed, although it
may not show all items in the list at all times. A drop-down list shows only the
selected item until the user clicks on the list, at which time it displays the entire list.
Both lists allow only a single selection at a time.

The following example code uses the WIDGET_LIST and WIDGET_DROPLIST functions
to create two menus of five items each. While both lists contain five items, the
scrolling list displays only three at a time, because we specify this with the YSIZE
keyword.

values = ['One', 'Two', 'Three', 'Four', 'Five']
base = WIDGET_BASE(/ROW)
list = WIDGET_LIST(base, VALUE=values, YSIZE=3)
drop = WIDGET_DROPLIST(base, VALUE=values)
WIDGET_CONTROL, base, /REALIZE

The widget created by this code is shown in the following figure:

Pulldown Menus

A third approach to menu creation involves menus that appear as a single button until
the user selects the menu, at which time the menu pops up to display the list of
possible selections. Buttons in such a pulldown menu can activate other pulldown
menus to any desired depth. The method for creating a pulldown menu is as follows:

1. The topmost element of any pulldown menu is a button, created with the
MENU keyword to the WIDGET_BUTTON function.

Figure 30-3: Scrolling and drop-down lists.
Creating Menus Building IDL Applications

Chapter 30: Widget Application Techniques 879
2. The top-level button has one or more child widget buttons attached. (That is,
one or more buttons specify the first button’s widget ID as their “parent.”)
Each button can either be used as is, in which case pressing it causes an event
to be generated, or it can be created with the MENU keyword and have further
child widget buttons attached to it. If it has child widgets, pushing it causes a
pulldown menu containing the child buttons to pop into view.

3. Menu buttons can be the parent of other buttons to any desired depth.

Because pulldown menus are common, IDL provides a compound widget named
CW_PDMENU to create them. Using CW_PDMENU rather than a series of calls to
WIDGET_BUTTON simplifies creation of a pulldown menu in the same way the
CW_BGROUP simplifies the creation of button menus.

The following example uses CW_PDMENU to create a pulldown menu. First, we
create an array of anonymous structures to contain the menu descriptions.

desc = REPLICATE({ flags:0, name:'' }, 6)

The desc array contains six copies of the empty structure. Each structure has two
fields: flags and name. Next, we populate these fields with values:

desc.flags = [1, 0, 1, 0, 2, 2]
desc.name = ['Operations', 'Predefined', 'Interpolate', $

'Linear', 'Spline', 'Quit']

The value of the flags field specifies the role of each button. In this example, the first
and third buttons start a new sub-menu (values are 1), the second and fourth buttons
are plain buttons with no other role (values are 0), and the last two buttons end the
current sub-menu and return to the previous level (values are 2). The value of the
name field is the value (or label) of the button at each level.

base = WIDGET_BASE()
menu = CW_PDMENU(base, desc)
WIDGET_CONTROL, base, /REALIZE

The format of the menu description used by CW_PDMENU in the above example
requires some explanation. CW_PDMENU views a menu as consisting of a series of
buttons, each of which can optionally lead to a sub-menu. The description of each
button consists of a structure supplying its name and a flag field that tells what kind
of button it is (starts a new sub-menu, ends the current sub-menu, or a plain button
within the current sub-menu). The description of the complete menu consists of an
array of such structures corresponding to the flattened menu.
Building IDL Applications Creating Menus

880 Chapter 30: Widget Application Techniques
Compare the description used in the code above with the result shown in the
following figure.

Menus on Top-Level Bases

A fourth approach to providing menus in your widget application is to attach the
menus directly to the top-level base widget. Menus attached to a top-level base
widget are created just like pulldown menus created from button widgets, but they do
not appear as buttons. Menus created in this way are children of a special sub-base of
the top-level base, created by specifying the MBAR keyword when the top-level base
is created.

For example, the following code creates a top-level base widget and attaches a menu
titled MENU1 to it. MENU1 contains the choices ONE, TWO, and THREE.

base = WIDGET_BASE(MBAR=bar)
menu1 = WIDGET_BUTTON(bar, VALUE='MENU1', /MENU)
button1 = WIDGET_BUTTON(menu1, VALUE='ONE')
button2 = WIDGET_BUTTON(menu1, VALUE='TWO')
button3 = WIDGET_BUTTON(menu1, VALUE='THREE')
draw = WIDGET_DRAW(base, XSIZE=100, YSIZE=100)
WIDGET_CONTROL, base, /REALIZE

Figure 30-4: Pulldown menus created with CW_PDMENU.
Creating Menus Building IDL Applications

Chapter 30: Widget Application Techniques 881
The resulting widget is shown in the following figure:

Context-Sensitive Menus

Context-sensitive menus (also referred to as context menus or pop-up menus) are
hidden until a user performs an action to display the menu. When summoned, the
appearance of a context menu is similar to that of a menu created in a floating, modal
base. The behavior of a context menu is the same as that of a menu on a menu bar;
when the user clicks one of the menu’s buttons, a button event is generated and the
menu is dismissed. If the user clicks outside the context menu, it is dismissed without
generating any events.

Figure 30-5: Menus attached to a top-level base.

Figure 30-6: Widget Context Menus.
Building IDL Applications Creating Menus

882 Chapter 30: Widget Application Techniques
By convention, context-sensitive menus in IDL widget applications are displayed
when the user clicks the right mouse button. Several IDL widget primitives — base,
draw, list, table, text, and tree widgets — can be configured to generate events when
this occurs. The mechanism used to generate right mouse button events is different
for draw widgets than for the other types; these differences are discussed below.

Note
While it is customary to display context-sensitive menus when the user clicks the
right mouse button, IDL’s mechanism for displaying the menus is quite general, and
can be invoked under many circumstances. Examples in this section will discuss the
common usage.

To create a context-sensitive menu in a widget application, do the following:

1. Create a Context Menu

2. Generate and Handle Context Events

3. Display the Context Menu

4. Process Button Events

Create a Context Menu

Context menus are contained within a special base widget created with the
CONTEXT_MENU keyword. A base widget used as the base for a context menu
must have as its parent widget one of the following widget types:

• Base widget

• Draw widget

• List widget

• Property sheet widget

• Table widget

• Text widget

• Tree widget

The process for creating a context menu is similar to that for creating a menu for a
top-level base (a menubar). Create menu entries on the base widget using the
WIDGET_BUTTON function. Context menu entries can display sub-menus (using
the MENU keyword to WIDGET_BUTTON or the CW_PDMENU compound
widget) or appear as separators (using the SEPARATOR keyword to
WIDGET_BUTTON).
Creating Menus Building IDL Applications

Chapter 30: Widget Application Techniques 883
The following code snippet illustrates a very simple context menu attached to a base
widget:

topLevelBase = WIDGET_BASE(/CONTEXT_EVENTS)
contextBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU)
button1 = WIDGET_BUTTON(contextBase, VALUE='First button')
button2 = WIDGET_BUTTON(contextBase, VALUE='Second button')

Generate and Handle Context Events

Generating Right Mouse Button Events

In order to display the context menu at the appropriate time, the widget that serves as
the parent for the context menu base must be configured to generate an event when
the user clicks the right mouse button over that widget. For base, list, property sheet,
table, text, and tree widgets, this is accomplished by setting the
CONTEXT_EVENTS keyword when creating the widget, or by enabling context
events by setting the CONTEXT_EVENTS keyword to WIDGET_CONTROL. When
a user clicks the right mouse button over an appropriately configured base, list, text,
or tree widget, a widget event with the following structure is generated:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L,
 ROW:0L, COL:0L}

The first three fields are the standard fields found in every widget event. The X and Y
fields give the device coordinates at which the event occurred, measured from the
upper left corner of the base widget. The ROW and COL fields return meaningful
information for table widgets and values of zero (0) for other widgets.

For table widgets, ROW and COL indicate the zero-based index of the cell that was
clicked on when the context menu was initiated. The upper-left data cell has a row
and column index of 0,0. Row and column headers have indices of -1. If the context
menu event takes place outside of all table cells and headers, then both ROW and
COL will have values of -1.

Note
When working with context menu events, it is important to notice that the event
structure does not have a TYPE field, so special code is needed for the property
sheet event handler. Instead of keying off the TYPE field, use the structure's name.
An example is provided in the WIDGET_PROPERTYSHEET “Example” section
in the IDL Reference Guide.
Building IDL Applications Creating Menus

884 Chapter 30: Widget Application Techniques
For draw widgets, button events are handled differently. Set the BUTTON_EVENTS
keyword to WIDGET_DRAW (or the DRAW_BUTTON_EVENTS keyword to
WIDGET_CONTROL) to generate widget events with the following structure:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0L, Y:0L,
PRESS:0B, RELEASE:0B, CLICKS:0, MODIFIERS:0L, CH:0, KEY:0L }

The first three fields are the standard fields found in every widget event. The X and Y
fields give the device coordinates at which the event occurred, measured from the
lower left corner of the drawing area. PRESS and RELEASE are bitmasks that
represent which of the left, center, or right mouse button was pressed: that is, a value
of 1 (one) represents the left button, 2 represents the middle button, and 4 represents
the right button. (See “Widget Events Returned by Draw Widgets” in the IDL
Reference Guide manual for a complete description of the WIDGET_DRAW event
structure.)

Detecting Right Mouse Button Events

Once the parent widget of your context menu is configured to generate events when
the user clicks the right mouse button, you must detect the events in your event
handler routine. For base, list, text, and tree widgets, your event handler should
examine the event structure name to determine the type of event; if the event is of
type WIDGET_CONTEXT, you know that the right mouse button was pressed.

To detect a right mouse button click in a base, list, text, or tree widget (with context
events enabled), use the following test:

IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT') THEN
BEGIN

; process event here
ENDIF

For draw widgets, your event handler should examine the WIDGET_DRAW event
structure; if the value of the RELEASE field is equal to four, you know that the right
mouse button was pressed and released.

To detect a right mouse button click in a draw widget (with button events enabled),
use the following test:

IF (event.release EQ 4) THEN BEGIN
; process event here

ENDIF
Creating Menus Building IDL Applications

Chapter 30: Widget Application Techniques 885
Note that in a complex widget application, your event handler may first need to
determine whether the event came from a draw widget. In this case, you may need a
test that looks like this:

IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_DRAW') THEN BEGIN
IF (event.release EQ 4) THEN BEGIN
; process event here

ENDIF
ENDIF

Display the Context Menu

When your event handler routine detects a right mouse button click, use the
WIDGET_DISPLAYCONTEXTMENU procedure to display the context menu. This
routine takes as its parameters the widget ID of the widget for which the context
menu is to be displayed, the X and Y coordinates at which the menu should be
displayed, and the widget ID of the context menu base widget that holds the context
menu. See “WIDGET_DISPLAYCONTEXTMENU” in the IDL Reference Guide
manual for additional information.

In all cases, the ID field of the event structure generated by the right mouse button
click contains the widget ID of the widget whose context menu is to be displayed.
Similarly, the event structure contains the location of the mouse click in the X and Y
fields; in most cases, this is where you will want to display the context menu.

The following code fragment would display a context menu held in a base widget
whose widget ID is contextBase at the location of the user’s right mouse click:

WIDGET_DISPLAYCONTEXTMENU, event.ID, event.X, $
event.Y, contextBase

In a simple application with only one context menu, you know the widget ID of the
context menu base widget to be displayed. In a real application, however, it is likely
that more than one context menu exists. See “Determining Which Context Menu to
Display”, below, for tips on dealing with multiple context menus.

Process Button Events

Once the context menu is displayed, processing events that flow from it is the same as
processing events from any other menu. The individual buttons that make up the
menu can have event handler routines associated with them; these routines are then
invoked when the user clicks on one of the menu buttons. See the “Context Menu
Example” below for a simple illustration of menu button event processing.
Building IDL Applications Creating Menus

886 Chapter 30: Widget Application Techniques
Determining Which Context Menu to Display

In a real application, you may have multiple context menus available to display when
the user right-clicks on different portions of the user interface. One way to handle this
situation is to have your event handler keep track of which context menu should be
displayed for each widget. Consider a widget hierarchy that contains a text widget
and a list widget, both of which have associated context menus:

topLevelBase = WIDGET_BASE(/COLUMN, XSIZE = 120, YSIZE = 80)
wText = WIDGET_TEXT(topLevelBase, VALUE="Context Menu Test", $

/CONTEXT_EVENTS)
wList = WIDGET_LIST(topLevelBase, VALUE=['one','two', 'three'], $

/CONTEXT_EVENTS)
contextBase1 = WIDGET_BASE(wText, /CONTEXT_MENU, $

UNAME="tContextMenu")
contextBase2 = WIDGET_BASE(wList, /CONTEXT_MENU, $

UNAME="lContextMenu")

Now the application’s event handler, after detecting a right mouse button click with
the

IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT')

test, must somehow determine whether the user had clicked on the text widget or the
list widget. To make this determination, you could use the WIDGET_INFO function
to search the widget hierarchy starting with the widget at the top of the event structure
for a widget with the correct UNAME value:

IF (WIDGET_INFO(event.id, FIND_BY_UNAME = 'tContextMenu') GT 0) $
THEN BEGIN
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, event.y, $
WIDGET_INFO(event.id, FIND_BY_UNAME = 'tContextMenu')

ENDIF
IF (WIDGET_INFO(event.id, FIND_BY_UNAME = 'lContextMenu') GT 0) $

THEN BEGIN
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, event.y, $
WIDGET_INFO(event.id, FIND_BY_UNAME = 'lContextMenu')

ENDIF

While this method will always work, it may involve a substantial amount of code, and
must search the widget hierarchy multiple times to find the widget ID of the base for
the context menu. If, however, your application has at most one context menu for
each base, draw, list, or text widget, you can streamline the code significantly by
using a common UNAME value for all of the context menus. For example, if the
definitions of the context menu bases change to this:

contextBase1 = WIDGET_BASE(wText, /CONTEXT_MENU, $
UNAME="contextMenu")

contextBase2 = WIDGET_BASE(wList, /CONTEXT_MENU, $
Creating Menus Building IDL Applications

Chapter 30: Widget Application Techniques 887
UNAME="contextMenu")

then the code detecting and displaying the context menu becomes:

contextBase = WIDGET_INFO(event.ID, FIND_BY_UNAME = 'contextMenu')

WIDGET_DISPLAYCONTEXTMENU, event.ID, event.X, $
event.Y, contextBase

Since the context menu base is a child of the text or list widget, the call to
WIDGET_INFO finds the appropriate base by searching for the UNAME value
“contextMenu”, starting at the widget specified by event.ID.

Context Menu Example

The following example defines a simple application with two context menus, one
each for a list widget and a text widget. When a menu item on one of the context
menus is selected, IDL prints an informational message.

Note
This example is included in the file context_menu_example.pro in the
examples/widgets subdirectory of the IDL distribution. You can either open the
file in an IDL editor window and compile and run the code using items on the Run
menu, or simply enter

context_menu_example

at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected.

; Define event handlers for context menu button events
PRO CME_11Event, event

PRINT, ' '
PRINT, 'Context Menu 1 Selection 1 pressed'

END

PRO CME_12Event, event
PRINT, ' '
PRINT, 'Context Menu 1 Selection 2 pressed'

END

PRO CME_21Event, event
PRINT, ' '
PRINT, 'Context Menu 2 Selection 1 pressed'

END

PRO CME_22Event, event
PRINT, ' '
PRINT, 'Context Menu 2 Selection 2 pressed'

END
Building IDL Applications Creating Menus

888 Chapter 30: Widget Application Techniques
; Define main event handler
PRO context_menu_example_event, event

; Test for context menu events
IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT') $
THEN BEGIN
; Obtain the widget ID of the context menu base.
contextBase = WIDGET_INFO(event.ID, $

FIND_BY_UNAME = 'contextMenu')
; Display the context menu and send its events to the
; other event handler routines.
WIDGET_DISPLAYCONTEXTMENU, event.ID, event.X, $

event.Y, contextBase
ENDIF

; Test for button event to end application
IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_BUTTON') $
THEN BEGIN
WIDGET_CONTROL, event.top, /DESTROY

ENDIF

END

; Create GUI
PRO context_menu_example

topLevelBase = WIDGET_BASE(/COLUMN, XSIZE = 120, YSIZE = 80)
wText = WIDGET_TEXT(topLevelBase, VALUE="Context Menu Test", $
/CONTEXT_EVENTS, /ALL_EVENTS)

wList = WIDGET_LIST(topLevelBase, VALUE=['one','two','three'], $
/CONTEXT_EVENTS)

contextBase1 = WIDGET_BASE(wText, /CONTEXT_MENU, $
UNAME="contextMenu")

contextBase2 = WIDGET_BASE(wList, /CONTEXT_MENU, $
UNAME="contextMenu")

doneButton = WIDGET_BUTTON(topLevelBase, VALUE="Done")

; Initialize the buttons of the context menus.
cb11 = WIDGET_BUTTON(contextBase1, VALUE = 'Text selection 1', $
EVENT_PRO = 'CME_11Event')

cb12 = WIDGET_BUTTON(contextBase1, VALUE = 'Text selection 2', $
EVENT_PRO = 'CME_12Event')

cb21 = WIDGET_BUTTON(contextBase2, VALUE = 'List selection 1', $
EVENT_PRO = 'CME_21Event')

cb22 = WIDGET_BUTTON(contextBase2, VALUE = 'List selection 2', $
EVENT_PRO = 'CME_22Event')

; Display the GUI.
WIDGET_CONTROL, topLevelBase, /REALIZE
Creating Menus Building IDL Applications

Chapter 30: Widget Application Techniques 889
; Handle the events from the GUI.
XMANAGER, 'context_menu_example', topLevelBase

END

Additional Examples

The following additional examples using the context menu in various situations can
be found in the widgets subdirectory of the examples subdirectory of the IDL
distribution:

• context_tlbase_example.pro

• context_draw_example.pro

• context_list_example.pro

• context_text_example.pro
Building IDL Applications Creating Menus

890 Chapter 30: Widget Application Techniques
Widget Sizing

This section explains how IDL widgets size themselves, widget geometry concepts,
and how to explicitly size and position widgets.

Widget Geometry Terms and Concepts

Widget size and layout is determined by many interrelated factors. In the following
discussion, the following terms are used:

• Geometry: The size and position of a widget.

• Natural Size: The natural, or implicit, size of a widget is the size a widget has
if no external constraints are placed on it. For example, a label widget has a
natural size that is determined by the size of the text it is displaying and space
for margins. These values are influenced by such things as the size of the font
being displayed and characteristics of the low-level (i.e., operating-system
level) widget or control used to implement the IDL widget.

• Explicit Size: The explicit, or user-specified, size of a widget is the size set
when an IDL programmer specifies one of the size keywords to an IDL widget
creation function or WIDGET_CONTROL.

How Widget Geometry is Determined

IDL uses the following rules to determine the geometry of a widget:

• The explicit size of a widget, if one is specified, takes precedence over the
natural size. That is, the user-specified size is used if available.

• If an explicit size is not specified, the natural size of the widget—at the time
the widget is realized—is used. Once realized, the size of a widget does not
automatically change when the value of the widget changes, unless the
widget’s dynamic resize property has been set. Dynamic resizing is discussed
in more detail below. Note that any realized widget can be made to change its
size by calling WIDGET_CONTROL with any of the sizing keywords.

• Children of a “bulletin board” base (i.e., a base that was created without setting
the COLUMN or ROW keywords) have an offset of (0,0) unless an offset is
explicitly specified via the XOFFSET or YOFFSET keywords.
Widget Sizing Building IDL Applications

Chapter 30: Widget Application Techniques 891
• The offset keywords to widgets that are children of ROW or COLUMN bases
are ignored, and IDL calculates the offsets to lay the children out in a grid. This
calculation can be influenced by setting any of the ALIGN or BASE_ALIGN
keywords when the widgets are created.

Dynamic Resizing

Realized widgets, by default, do not automatically resize themselves when their
values change. This is true whether the widget was created with an explicit size or the
widget was allowed to size itself naturally. This behavior makes it easy to create
widget layouts that don’t change size too frequently or “flicker” due to small changes
in a widget’s natural size.

This default behavior can be changed for label, button, and droplist widgets. Set the
DYNAMIC_RESIZE keyword to WIDGET_LABEL, WIDGET_BUTTON, or
WIDGET_DROPLIST to make a widget that automatically resizes itself when its
value changes. Note that the XSIZE and YSIZE keywords should not be used with
DYNAMIC_RESIZE. Setting explicit sizing values overrides the dynamic resize
property and creates a widget that will not resize itself.

Explicitly Specifying the Size and Location of
Widgets

The XSIZE (and SCR_XSIZE), YSIZE (and SCR_YSIZE), XOFFSET, and
YOFFSET keywords, when used with a standard base widget parent (a base created
without the COLUMN or ROW keywords—also called a “bulletin board” base),
allow you to specify exactly how the child widgets should be positioned. Sometimes
this is a very useful option. However, in general, it is best to avoid this style of
programming. Although these keywords are usually honored, they are merely hints to
the widget toolkit and might be ignored.

Note
Draw widgets are the exception to this recommendation. In almost all cases, you
will want to set the size of draw widgets explicitly, using the sizing keywords.
Building IDL Applications Widget Sizing

892 Chapter 30: Widget Application Techniques
Explicitly specifying the size and offset makes a program inflexible and unable to run
gracefully on various platforms. Often, a layout of this type will look good on one
platform, but variations in screen size and how the toolkit works will cause widgets to
overlap and not look good on another platform. The best way to handle this situation
is to use nested row and column bases to hold the widgets and let the widgets arrange
themselves. Such bases are created using the COLUMN and ROW keywords to the
WIDGET_BASE function.

Sizing Keywords

When explicitly setting the size of a widget, IDL allows you to control three aspects
of the size:

• The virtual size is the size of the potentially viewable area of the widget. The
virtual size may be larger than the actual viewable area on your screen. The
virtual size of a widget is determined by either the widget’s value, or the
XSIZE and YSIZE keywords to the widget creation routine.

• The viewport size is the size of the viewable area on your screen. If the
viewport size is smaller than the virtual size, scroll bars may be present to
allow you to view different sections of the viewable area. When creating
widgets for which scroll bars are appropriate, you can add scroll bars by setting
the either SCROLL keyword or the APP_SCROLL keyword to the widget
creation routine. (For information on the difference, see “Scrolling Draw
Widgets” on page 905.) You can explicitly set the size of the viewport area
using the X_SCROLL_SIZE and Y_SCROLL_SIZE keywords when creating
base, draw, and table widgets.

• The screen size is the size of the widget on your screen. You can explicitly
specify a screen size using the SCR_XSIZE and SCR_YSIZE keywords to the
widget creation routine. Explicitly-set viewport sizes (set with
X_SCROLL_SIZE or Y_SCROLL_SIZE) are ignored if you specify the
screen size.

The following code shows an example of the WIDGET_DRAW command:

draw = WIDGET_DRAW(base, XSIZE=384, YSIZE=384,$
X_SCROLL_SIZE=192, Y_SCROLL_SIZE = 192, SCR_XSIZE=200)
Widget Sizing Building IDL Applications

Chapter 30: Widget Application Techniques 893
This results in the following:

In this case, the XSIZE and YSIZE keywords set the virtual size to 384 x 384 pixels.
The X_SCROLL_SIZE and Y_SCROLL_SIZE keywords set the viewport size to 192
x 192 pixels. Finally, the SCR_XSIZE keyword overrides the X_SCROLL_SIZE
keyword and forces the screen size of the widget (in the X-dimension) to 200 pixels,
including the scroll bar.

Controlling Widget Size after Creation

A number of keywords to the WIDGET_CONTROL procedure allow you to change
the size of a widget after it has been created. (You will find a list of the keywords to
WIDGET_CONTROL that apply to each type of widget at the end of the widget
creation routine documentation.) Note that keywords to WIDGET_CONTROL may
not control the same parameters as their counterparts associated with widget creation
routines. For example, while the XSIZE and YSIZE keywords to WIDGET_DRAW
control the virtual size of the draw widget, the XSIZE and YSIZE keywords to
WIDGET_CONTROL (when called with the widget ID of a draw widget) control the
viewport size of the draw widget. See the IDL Reference Guide for details.

Figure 30-7: Visual description of widget sizes.

Virtual Size (XSIZE & YSIZE)

Screen Size (SCR_XSIZE)

V
ie

w
 S

iz
e

(Y
_S

C
R

O
L

L
_S

IZ
E

)

Virtual Size (XSIZE & YSIZE)
Building IDL Applications Widget Sizing

894 Chapter 30: Widget Application Techniques
Units of Measurement

You can specify the unit of measurement used for most widget sizing operations.
When using a widget creation routine, or when using WIDGET_CONTROL or
WIDGET_INFO, set the UNITS keyword equal to 0 (zero) to specify that all
measurements are in pixels (this is the default), to 1 (one) to specify that all
measurements are in inches, or to 2 (two) to specify that all measurements are in
centimeters.

Note
The UNITS keyword does not affect all sizing operations. Specifically, the value of
UNITS is ignored when setting the XSIZE or YSIZE keywords to WIDGET_LIST,
WIDGET_TABLE, or WIDGET_TEXT.

Finding the Size of the Screen

When creating the top-level base for an application, sometimes it is useful to know
the size of the screen. This information is available via the GET_SCREEN_SIZE
function. GET_SCREEN_SIZE returns a two-element floating-point array specifying
the size of the screen, in pixels. See “GET_SCREEN_SIZE” in the IDL Reference
Guide manual for details.

Preventing Layout Flicker

After a widget hierarchy has been realized, adding or destroying widgets in that
hierarchy causes IDL to recalculate and set new geometries for every widget in the
hierarchy. When a number of widgets are added or destroyed, these calculations
occur between each change to the hierarchy, resulting in unpleasant screen “flashing”
as the user sees a brief display of each intermediate widget configuration. This
behavior can be eliminated by using the UPDATE keyword to WIDGET_CONTROL.

The top-level base of every widget hierarchy has an UPDATE attribute that
determines whether or not changes to the hierarchy are displayed on screen. Setting
UPDATE to 0 turns off immediate updates and allows you to make a large number of
changes to a widget hierarchy without updating the screen after each change. After all
of your changes have been made, setting UPDATE to 1 causes the final widget
configuration to be displayed on screen.

For example, consider the following main-level program that realizes an unmapped
base, then adds 200 button widgets to the previously-realized base:

time = SYSTIME(1)
b = WIDGET_BASE(/COLUMN, XSIZE=400, YSIZE=400, MAP=0)
WIDGET_CONTROL, b, /REALIZE
Widget Sizing Building IDL Applications

Chapter 30: Widget Application Techniques 895
FOR i = 0, 200 DO button = WIDGET_BUTTON(b, VALUE=STRING(i))
WIDGET_CONTROL, b, /MAP
PRINT, 'time used: ', SYSTIME(1) - time
END

This program takes over 50 seconds to run on an HP 9000/720 workstation. If the
base had been mapped, the user would see the base “flashing” as each button was
added to the base. Altering the example to use the UPDATE keyword reduces the
execution time to 0.7 seconds and eliminates the flashing:

time = SYSTIME(1)
b = WIDGET_BASE(/COLUMN, XSIZE=400, YSIZE=400, MAP=0)
WIDGET_CONTROL, b, /REALIZE, UPDATE=0
FOR i = 0, 200 DO button = WIDGET_BUTTON(b, VALUE=STRING(i))
WIDGET_CONTROL, b, /MAP, /UPDATE
PRINT, 'time used: ', SYSTIME(1) - time
END

Note
Do not attempt to resize a widget on the Windows platform while UPDATE is
turned off. Doing so may prevent IDL from updating the screen properly.
Building IDL Applications Widget Sizing

896 Chapter 30: Widget Application Techniques
Tips on Creating Widget Applications

The following are some ideas to keep in mind when writing widget applications in
IDL.

• When writing new applications, decompose the problem into sub-problems
and write reusable compound widgets to implement them. In this way, you will
build a collection of reusable widget solutions to general problems instead of
hard-to-modify, monolithic programs.

• Use the GROUP_LEADER keyword to WIDGET_BASE to define the
relationships between parts of your application. Group leadership/membership
relationships make it easy to group widgets appropriately for iconization,
layering, and destruction.

• Use the MBAR keyword to WIDGET_BASE to create application-specific
menubars. Use keyboard focus events to track which widget menu options
should affect.

• Use existing compound widgets when possible. In particular, use the
CW_BGROUP and CW_PDMENU compound widgets to create menus. These
functions are easier to use than writing the menu code directly, and your intent
will be more quickly understood by others reading your code.

• The many advantages of the XMANAGER procedure dictate that all widget
programs should use it. There are few if any reasons to call the
WIDGET_EVENT procedure directly.

• Use CATCH to handle any unanticipated errors. The CATCH branch can free
any pointers, pixmaps, logical units, etc., to which the calling routine will not
have access, and restore IDL session-wide settings like color tables and system
variables that were locally modified.

• It can be difficult to write 100% portable widget code that looks good on all
platforms, so let IDL do the layout for you when possible. If all else fails, it is
possible to use the value of the WIDGET_INFO function to execute special-
case code for each platform’s user interface toolkit. It is desirable, however, to
avoid large-scale special-case programming because this makes maintenance
of the finished program more difficult. See “Portability Issues” below for
additional suggestions.
Tips on Creating Widget Applications Building IDL Applications

Chapter 30: Widget Application Techniques 897
Portability Issues

Although IDL widgets are essentially the same on all supported platforms, there are
some differences that can complicate writing applications that work well everywhere.
The following hints should help you write such applications:

• Avoid specifying the absolute size and location of widgets whenever possible.
(That is, avoid using the XSIZE, YSIZE, XOFFSET, and YOFFSET
keywords.) The different user interface toolkits used by different platforms
create widgets with slightly different sizes and layouts, so it is best to use bases
that order their child widgets in rows or columns and stay away from explicit
positioning. If you must use these keywords, try to isolate the affected widgets
in a sub-base of the overall widget hierarchy to minimize the overall effect.

• When using a bitmap to specify button labels, be aware that some toolkits
prefer certain sizes and give sub-optimal results with others.

• Try to place text, label, and list widgets in locations where their absolute size
can vary without making the overall application look bad. The fonts used by
the different toolkits have different physical sizes that can cause these widgets
to have different proportions.

It is reasonably easy to write applications that will work in all environments without
having to resort to much special-case programming. It is very helpful to have a
machine running each environment available so that the design can be tested on each
iteratively until a suitable layout is obtained.
Building IDL Applications Tips on Creating Widget Applications

898 Chapter 30: Widget Application Techniques
Using Button Widgets

Button widgets allow users to respond to “yes-or-no” type questions via the widget
interface. While button widgets are generally fairly simple to understand and use,
there are numerous options that allow you to fine-tune the appearance and behavior of
buttons in your interface. This section discusses some useful ideas and techniques for
using button widgets. See “WIDGET_BUTTON” in the IDL Reference Guide manual
for a complete description of the function used to create button widgets.

This section discusses the following topics:

• “Bitmap Button Labels” on page 898

• “Tooltips” on page 901

• “Exclusive and Non-Exclusive Buttons” on page 901

Bitmap Button Labels

In addition to setting the VALUE of a button widget to a text string, you can use a
bitmap image as the label for the button. To us a bitmap image, set VALUE to one of
the following:

• The path to a bitmap image file, if the BITMAP keyword is also specified.

• An n x m byte array converted to a bitmap byte array using the CVTTOBM
function, which displays as a black-and-white bitmap image.

• An n x m x 3 byte array, which displays as a 24-bit color bitmap image.

The following sections describe the process of creating bitmap files, black-and-white
arrays, and color arrays for use as bitmap button labels.

Creating Bitmap Files for Buttons

You can produce appropriate bitmap files (for use with the BITMAP keyword to
WIDGET_BUTTON) using any bitmap editor available on your operating system. Be
sure to save the file as a .bmp file.

Additionally, on Windows, you can create a bitmap using the IDL GUIBuilder
Bitmap Editor, which creates 16-color bitmaps for buttons. The Bitmap Editor can
read and write bitmap files (*.bmp). Using the editor, you can create your own
bitmaps, or you can open existing bitmap files and modify them. Open the Bitmap
Editor from the Properties dialog for a created button. For more information, see
“Using the Bitmap Editor” in Chapter 27 of the Building IDL Applications manual.
Using Button Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 899
Transparent Bitmaps

For 16- and 256-color bitmaps included using the BITMAP keyword, IDL uses the
color of the pixel in the lower left corner as the transparent color. All pixels of this
color become transparent, allowing the button color to show through. This allows you
to use bitmaps that do not appear to be rectangular. If you have a rectangular bitmap
that you want to use as a button label, you must either draw a border of a different
color around the bitmap or save the bitmap as a 24-bit (TrueColor) image. If your
bitmap also contains text, make sure the border you draw is a different color than the
text, otherwise the text color will become transparent.

Note
The IDL GUIBuilder’s bitmap editor creates 16-color bitmaps.

Note on 8-bit X Windows Displays

Displaying bitmap buttons on 8-bit color X Windows displays may require using
additional X colormap colors to allocate colors used by the bitmaps. If the required
colormap colors are not available, the button bitmap may not display properly.

Creating Black-and-White Bitmap Arrays for Buttons

You can produce appropriate black-and-white bitmap arrays in IDL in the following
ways:

• Create a black and white bitmap using an external bitmap editor, and read it
into an IDL byte array using the appropriate procedure (READ_BMP,
READ_JPEG, etc.) and convert the byte array to a bitmap byte array using the
CVTTOBM function.

• On an X-Window system, use the X11 bitmap utility to create a black and
white bitmap byte array and read it in to IDL using the READ_X11_BITMAP
routine.

• Create a black and white bitmap using the XBM_EDIT procedure. This
procedure offers several alternatives for the form of the final bitmap.

• Create an n x m byte array using the BYTARR function and modify array
elements using array operations. Use CVTTOBM to convert the array to a
bitmap byte array.
Building IDL Applications Using Button Widgets

900 Chapter 30: Widget Application Techniques
Creating Color Bitmap Arrays for Buttons

You can produce appropriate color bitmap arrays in IDL in the following ways:

• Create a 24-bit color image using an external bitmap editor, and read it into an
IDL byte array using the appropriate procedure (READ_BMP, READ_JPEG,
etc.). Remember that the image array must be interleaved by plane (n x m 3),
with the planes in the order red, green, blue. Note that image files created by
image editors are often interleaved by pixel rather than by plane; use the
TRANSPOSE function to reformat the array.

For example, if you read a 24-bit color image into an array using the
READ_BMP function, the resulting array will be interleaved by pixel (with
dimensions 3 x n x m), with planes in the order blue, green, red. To create an
array in the proper format for use as a button bitmap, use the following IDL
commands:

button_image = READ_BMP('bitmap_file.bmp', /RGB)
button_image = TRANSPOSE(button_image, [1,2,0])
...
button = WIDGET_BUTTON(base, VALUE=button_image)

Here, the RGB keyword to READ_BMP reorders the color planes to be in the
order red, green, blue; the call to TRANSPOSE puts the array in the proper
format for use in a bitmap button.

• Create an n x m x 3 byte array using the BYTARR function and modify the
array elements using array operations.

Although IDL places no restriction on the size of bitmap allowed, the various toolkits
may prefer certain sizes.
Using Button Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 901
Tooltips

You can specify a “tooltip” — a short text string that will appear when the mouse
pointer hovers over a button widget — by specifying the string as the value of the
TOOLTIP keyword to WIDGET_BUTTON.

Note
Tooltips cannot be created for menu sub-items. The topmost button of a pulldown
menu can, however, have a tooltip.

Exclusive and Non-Exclusive Buttons

By default, when a user clicks on a button widget, the button appears to be depressed
while the user holds down the mouse button, but the button returns to the undepressed
appearance when the user releases the mouse button. While such “normal” buttons
visually reflect the state of the button (depressed or undepressed), normal buttons are
used to gather a single piece of information: whether the user clicked on the button or
not.

Buttons placed into exclusive or non-exclusive bases (created via the EXCLUSIVE
or NONEXCLUSIVE keywords to WIDGET_BASE procedure) are created as two-
state “toggle” buttons. Visually, when a user clicks on an exclusive or nonexclusive
button, it remains in the depressed state, either until the user clicks on it again or (in
the case of exclusive buttons) until another button in the group is depressed. Buttons
that toggle in this manner can be used to gather information about a quantity that has
two possible states.

Figure 30-8: A tool tip.
Building IDL Applications Using Button Widgets

902 Chapter 30: Widget Application Techniques
Exclusive and nonexclusive buttons differ in the following way:

• If a base is created with the EXCLUSIVE keyword, only one button on the
base can be selected at a given time. If one button is selected and another
button pressed, the first button becomes unselected.

• If a base is created with the NONEXCLUSIVE keyword, any number of
buttons can be selected at a given time. Pressing one button has no effect on the
selected/unselected state of other buttons on the base.

Exclusive and nonexclusive buttons take on different appearances, depending on the
type of button and on the windowing toolkit in use (Microsoft Windows or Motif).

Often, it is easier to create groups of buttons (normal, exclusive, or nonexclusive)
using the CW_BGROUP compound widget than it is to program them yourself from
base and button widgets and manage the events from each button individually. See
“Button Groups” on page 876 and “CW_BGROUP” in the IDL Reference Guide
manual for additional information on using button groups.
Using Button Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 903
Using Draw Widgets

Draw widgets are graphics windows that appear as part of a widget hierarchy rather
than appearing as an independent window. Like other graphics windows, draw
widgets can be created to use either Direct or Object graphics. (See Chapter 16,
“Graphics” in the Using IDL manual for a discussion of IDL’s two graphics modes.)
Draw widgets allow designers of IDL graphical user interfaces to take advantage of
the full power of IDL graphics in their displays. See “WIDGET_DRAW” in the IDL
Reference Guide manual for a complete description of the function used to create
draw widgets.

This section discusses the following topics:

• “Using Direct Graphics in Draw Widgets” on page 904

• “Using Object Graphics in Draw Widgets” on page 905

• “Scrolling Draw Widgets” on page 905

• “Context Events in Draw Widgets” on page 908

• “Draw Widget Example” on page 909

• “Button, Motion, and Keyboard Events” on page 912

Figure 30-9: An IDL draw widget displaying a shaded surface.
Building IDL Applications Using Draw Widgets

904 Chapter 30: Widget Application Techniques
Using Direct Graphics in Draw Widgets

By default, draw widgets use IDL Direct graphics. (To create a draw widget that uses
Object graphics, set the GRAPHICS_LEVEL keyword to WIDGET_DRAW equal to
two; see “Using Object Graphics in Draw Widgets” on page 905.) Once created, draw
widgets using Direct graphics are used in the same way as standard Direct graphics
windows created using the WINDOW procedure.

All IDL Direct graphics windows are referred to by a window number. Unlike
windows created by the WINDOW procedure, the window number of a Direct
graphics draw widget cannot be assigned by the user. In addition, the window number
of a draw widget is not assigned until the draw widget is actually realized, and thus
cannot be returned by WIDGET_DRAW when the widget is created. Instead, you
must use the WIDGET_CONTROL procedure to retrieve the window number, which
is stored in the value of the draw widget, after the widget has been realized.

Unlike normal graphics windows, creating a draw widget does not cause the current
graphics window to change to the new widget. You must use the WSET procedure to
explicitly make the draw widget the current graphics window. The following IDL
statements demonstrate the required steps:

;Create a base widget.
base = WIDGET_BASE()

;Attach a 256 x 256 draw widget.
draw = WIDGET_DRAW(base, XSIZE = 256, YSIZE = 256)

;Realize the widgets.
WIDGET_CONTROL, /REALIZE, base

;Obtain the window index.
WIDGET_CONTROL, draw, GET_VALUE = index

;Set the new widget to be the current graphics window
WSET, index

If you attempt to get the value of a draw widget before the widget has been realized,
WIDGET_CONTROL returns the value -1, which is not a valid index.
Using Draw Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 905
Using Object Graphics in Draw Widgets

To create a draw widget that uses Object graphics, set the GRAPHICS_LEVEL
keyword to WIDGET_DRAW equal to two. Once created, draw widgets using Object
graphics are used in the same way as standard IDLgrWindow objects.

All IDL Object graphics windows (that is, IDLgrWindow objects) are referred to by
an object reference. Since you do not explicitly create the IDLgrWindow object used
in a draw widget, you must retrieve the object reference by using the
WIDGET_CONTROL procedure to get the value of the draw widget. As with Direct
graphics draw widgets, the window object is not created—and thus the object
reference cannot be retrieved—until after the draw widget is realized. If you attempt
to retrieve the object reference for a draw widget’s IDLgrWindow object before the
draw widget is realized, IDL returns a null object.

Scrolling Draw Widgets

Another difference between a draw widget and either a graphics window created with
the WINDOW procedure or an IDLgrWindow object is that draw widgets can include
scroll bars. Setting the APP_SCROLL keyword or the SCROLL keyword to the
WIDGET_DRAW function causes scrollbars to be attached to the drawing widget,
which allows the user to view images or graphics larger than the visible area.

Differences Between SCROLL and APP_SCROLL

The amount of memory used by a draw widget is directly related to the size of the
drawable area of the widget. If a draw widget does not have scroll bars, the entire
drawable area is viewable. In this case, the size of the drawable area is controlled by
the XSIZE and YSIZE keywords to WIDGET_DRAW.

With the addition of scroll bars, it is possible to display an image that is larger than
the viewable area (the viewport) of the draw widget. IDL provides two options for
dealing with images larger than the viewport:

1. Create the draw widget using the SCROLL keyword. This method creates a
draw widget whose drawable area is specified by the XSIZE and YSIZE
keywords, and whose viewable area is specified by the X_SCROLL_SIZE and
Y_SCROLL_SIZE keywords. Since the entire image is kept in memory, IDL
can display the appropriate portions automatically when the scroll bars are
adjusted.
Building IDL Applications Using Draw Widgets

906 Chapter 30: Widget Application Techniques
2. Create the draw widget using the APP_SCROLL keyword. This method
creates a draw widget whose drawable area is the same size as its viewable area
(specified by the X_SCROLL_SIZE and Y_SCROLL_SIZE keywords), but
which can be different from the virtual drawable area (specified by the XSIZE
and YSIZE keywords) that is equal to the full size of the image. In this case,
only the portion of the image that is currently visible in the viewport is kept in
memory; the IDL programmer must use viewport events to determine when the
scroll bars have been adjusted and display the appropriate portion of the full
image.

The concept of a virtual drawable area allows you to display portions of very large
images in a draw widget without the need for enough memory to display the entire
image. The price for this facility is the need to manually handle display of the correct
portion of the image in an event-handling routine.

Example Using SCROLL

The following code creates a simple scrollable draw widget and displays an image.

Note
This example is included in the file draw_scroll.pro in the
examples/widgets subdirectory of the IDL distribution. You can either open the
file in an IDL editor window and compile and run the code using items on the Run
menu, or simply enter

draw_scroll
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected. You may need to enter DEVICE, RETAIN=2
at the IDL command prompt before running this example.

; Event-handler routine. Does nothing in this example.
PRO draw_scroll_event, ev

END

; Widget creation routine.
PRO draw_scroll

; Read an image for use in the example.
READ_JPEG, FILEPATH('muscle.jpg', $
SUBDIR=['examples', 'data']), image

; Create the base widget.
base = WIDGET_BASE()

; Create the draw widget. The size of the viewport is set to
Using Draw Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 907
; 200x200 pixels, but the size of the drawable area is
; set equal to the dimensions of the image array using the
; XSIZE and YSIZE keywords.
draw = WIDGET_DRAW(base, X_SCROLL_SIZE=200, Y_SCROLL_SIZE=200, $
XSIZE=(SIZE(image))[1], YSIZE=(SIZE(image))[2], /SCROLL)

; Realize the widgets.
WIDGET_CONTROL, base, /REALIZE

; Retrieve the window ID from the draw widget.
WIDGET_CONTROL, draw, GET_VALUE=drawID

; Set the draw widget as the current drawable area.
WSET, drawID

; Load the image.
TVSCL, image

; Call XMANAGER to manage the widgets.
XMANAGER, 'draw_scroll', base, /NO_BLOCK

END

In this example, the drawable area created for the draw widget is the full size of the
displayed image. Since IDL handles the display of the image as the scroll bars are
adjusted, no event-handling is necessary to update the display.

Example using APP_SCROLL

We can easily rework the previous example to use the APP_SCROLL keyword rather
than the SCROLL keyword. Using APP_SCROLL has the following consequences:

1. IDL no longer automatically displays the appropriate portion of the image
when the scroll bars are adjusted. As a result, we must add code to our event-
handling procedure to check for the viewport event and display the appropriate
part of the image. Here is the new event-handler routine:

; Event-handler routine.
PRO draw_app_scroll_event, ev

COMMON app_scr_ex, image

IF (ev.TYPE EQ 3) THEN TVSCL, image, 0-ev.X, 0-ev.Y

END
Building IDL Applications Using Draw Widgets

908 Chapter 30: Widget Application Techniques
First, notice that since we need access to the image array in both the widget
creation routine and the event handler, we place the array in a COMMON
block. This is appropriate since the image data itself is not altered by the
widget application.

Second, we check the TYPE field of the event structure to see if it is equal to 3,
which is the code for a viewport event. If it is, we use the values of the X and Y
fields of the event structure as the Position arguments to the TVSCL routine to
display the appropriate portion of the image array.

2. We must add the COMMON block to the widget creation routine.

3. We change the call to WIDGET_DRAW to include the APP_SCROLL
keyword rather than the SCROLL keyword. In this context, the values of the
XSIZE and YSIZE keywords are interpreted as the size of the virtual drawable
area, rather than the actual drawable area.

Note
The modified example is included in the file draw_app_scroll.pro in the
examples/widgets subdirectory of the IDL distribution.

On the surface the two examples appear identical. The difference is that the example
using APP_SCROLL uses only the memory necessary to create the smaller drawable
area described by the size of the viewport, whereas the example using SCROLL uses
the memory necessary to create the full drawable area described by the XSIZE and
YSIZE keywords. While the example image is not so large that this makes much
difference, if the image contained several hundred million pixels rather than a few
hundred thousand, the memory saving could be significant.

Context Events in Draw Widgets

The WIDGET_DRAW function does not have a CONTEXT_EVENTS keyword to
specify that context menu events be generated when the user clicks the right mouse
button over a drawable area. Instead, the event structure generated by draw widgets
when the BUTTON_EVENTS keyword is set includes the PRESS and RELEASE
fields, both of which contain information regarding which mouse button was pressed.

See “Context-Sensitive Menus” on page 881 for techniques used to simulate the
generation of context menu events with draw widgets.
Using Draw Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 909
Draw Widget Example

The following example program creates a small widget application consisting of a
draw widget and a droplist menu. One of three plots is displayed in the draw widget
depending on the selection made from the droplist. To add to dynamic behavior, we
will use timer events to change the color table used in the draw window every three
seconds.

Note
This example is included in the file draw_widget_example.pro in the
examples/widgets subdirectory of the IDL distribution. You can either open the
file in an IDL editor window and compile and run the code using items on the Run
menu, or simply enter

draw_widget_example
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected.

; Event-handler routine
PRO draw_widget_example_event, ev

; We need to save the value of the seed variable for the random
; number generator between calls to the event-handling routine.
; We do this using a COMMON block.

COMMON dwe, seed

; Retrieve the anonymous structure contained in the user value of
; the top-level base widget. This structure contains the
; following fields:
; drawID: the widget ID of the draw widget
; labelID: the widget ID of the label widget that will hold
; the color table name.
; sel_index: the index of the current selection in the
; droplist
; ctable: the index of the current color table.

WIDGET_CONTROL, ev.TOP, GET_UVALUE=stash

; Set the draw widget as the current IDL drawable.

WSET, stash.drawID

; Check the type of event structure returned. If it is a timer
; event, change the color table index to a random number between
; 0 and 40, then set the value of the label widget to the name of
; the new color table.
Building IDL Applications Using Draw Widgets

910 Chapter 30: Widget Application Techniques
; (See “Identifying Widget Type from an Event” on page 869 for
; more on identifying widget types from returned event
; structures.)

IF (TAG_NAMES(ev, /STRUCTURE_NAME) EQ 'WIDGET_TIMER') THEN BEGIN
LOADCT, GET_NAMES=ctnames
stash.ctable = FIX(RANDOMU(seed)*41)
LOADCT, stash.ctable, /SILENT
WIDGET_CONTROL, stash.labelID, $

SET_VALUE='Color Table: ' + ctnames[stash.ctable]
WIDGET_CONTROL, ev.ID, TIMER=3.0

ENDIF

; If the event is a droplist event, change the value of the
; variable 'selection' to the new index value.

IF (TAG_NAMES(ev, /STRUCTURE_NAME) EQ 'WIDGET_DROPLIST') $
THEN BEGIN
stash.sel_index=ev.index

ENDIF

; Reset the user value of the top-level base widget to the
; modified stash structure.

WIDGET_CONTROL, ev.TOP, SET_UVALUE=stash

; Display a plot, surface, or shaded surface, or destroy the
; widget application, depending on the value of the 'selection'
; variable.

CASE stash.sel_index OF
0: PLOT, DIST(150)
1: SURFACE, DIST(150)
2: SHADE_SURF, DIST(150)
3: WIDGET_CONTROL, ev.TOP, /DESTROY

ENDCASE

END

PRO draw_widget_example

; Define the values for the droplist widget and define the
; initially selected index to show a shaded surface.
select = ['Plot', 'Surface', 'Shaded Surface', 'Done']
sel_index = 2

; Create a base widget containing a draw widget and a sub-base
; containing a droplist menu and a label widget.
base = WIDGET_BASE(/COLUMN)
Using Draw Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 911
draw = WIDGET_DRAW(base, XSIZE=350, YSIZE=350)
base2 = WIDGET_BASE(base, /ROW)
dlist = WIDGET_DROPLIST(base2, VALUE=select)
label = WIDGET_LABEL(base2, XSIZE=200)

; Realize the widget hierarchy, then retrieve the widget ID of
; the draw widget.
WIDGET_CONTROL, base, /REALIZE
WIDGET_CONTROL, draw, GET_VALUE=drawID

; Set the timer value of the draw widget.
WIDGET_CONTROL, draw, TIMER=0.0

; Set the droplist to display the proper selection index.
WIDGET_CONTROL, dlist, SET_DROPLIST_SELECT=sel_index

; Store the widget ID of the draw widget, the widget ID of
; the label widget, the droplist selection index, and the
; initial color table index in an anonymous structure, and
; set the user value of the top-level base widget to this
; structure.
stash = { drawID:drawID, labelID:label, $

sel_index:sel_index, ctable:0}
WIDGET_CONTROL, base, SET_UVALUE=stash

; Register the widget with the XMANAGER.
XMANAGER, 'draw_widget_example', base, /NO_BLOCK

; Set some display device parameters.
DEVICE, RETAIN=2, DECOMPOSED=0

END

The intent of this example is to demonstrate the use of draw widgets, menus, and
timer events with a minimum of other complicating issues. However, it is easy to
imagine applications wherein a graphics window containing a plot or some other
information is updated periodically by a timer. The method used here can be easily
applied to more realistic situations.
Building IDL Applications Using Draw Widgets

912 Chapter 30: Widget Application Techniques
Button, Motion, and Keyboard Events

To go beyond merely displaying an image in a draw widget and allow the user to
interact in some way with the displayed image, you must configure the draw widget
to generate either button, motion, or keyboard events:

• Button events are enabled by setting the BUTTON_EVENTS keyword to
WIDGET_DRAW. Once enabled, button events are generated when the user
clicks on the draw widget.

• Motion events are enabled by setting the MOTION_EVENTS keyword to
WIDGET_DRAW. Once enabled, motion events are generated whenever the
cursor moves over the draw widget.

• Keyboard events are enabled by setting the KEYBOARD_EVENTS keyword
to WIDGET_DRAW. Once enabled, events are generated when the draw
widget has focus and a keyboard key is pressed.

The following example uses motion events to update the values of several label
widgets as the mouse cursor moves over an image in a draw widget. This and several
other features are discussed in the section following the code.

Note
This example is included in the file draw_widget_data.pro in the
examples/widgets subdirectory of the IDL distribution. You can either open the
file in an IDL editor window and compile and run the code using items on the Run
menu, or simply enter

draw_widget_data
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected. You may need to enter DEVICE,
DECOMPOSED=1 at the IDL command prompt before running this example.

; Event-handling procedure.
PRO draw_widget_data_event, ev

; Retrieve the anonymous structure contained in the user value of
; the top-level base widget.

WIDGET_CONTROL, ev.TOP, GET_UVALUE=stash

; If the event is generated in the draw widget, update the
; label values with the current cursor position and the value
; of the data point under the cursor. Note that since we have
; passed a pointer to the image array rather than the array
; itself, we must dereference the pointer in the 'image' field
; of the stash structure before getting the subscripted value.
Using Draw Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 913
IF (TAG_NAMES(ev, /STRUCTURE_NAME) eq 'WIDGET_DRAW') THEN BEGIN
WIDGET_CONTROL, stash.label1, $

SET_VALUE='X position: ' + STRING(ev.X)
WIDGET_CONTROL, stash.label2, $

SET_VALUE='Y position: ' + STRING(ev.Y)
WIDGET_CONTROL, stash.label3, $

SET_VALUE='Hex Value: ' + $
STRING((*stash.imagePtr)[ev.X, ev.Y], FORMAT='(Z12)')

ENDIF

; If the event is generated in a button, destroy the widget
; hierarchy. We know we can use this simple test because there
; is only one button in the application.

IF (TAG_NAMES(ev, /STRUCTURE_NAME) eq 'WIDGET_BUTTON') THEN BEGIN
WIDGET_CONTROL, ev.TOP, /DESTROY

ENDIF

END

; Widget creation routine.
PRO draw_widget_data

; Define a monochrome image array for use in the application.
READ_PNG, FILEPATH('mineral.png', $
SUBDIR=['examples', 'data']), image

; Place the image array in a pointer heap variable, so we can
; pass the pointer to the event routine rather than passing the
; entire image array.
imagePtr=PTR_NEW(image, /NO_COPY)

; Retrieve the size information from the image array.
im_size=SIZE(*imagePtr)

; Create a base widget to hold the application.
base = WIDGET_BASE(/COLUMN)

; Create a draw widget based on the size of the image, and
; set the MOTION_EVENTS keyword so that events are generated
; as the cursor moves across the image. Setting the BUTTON_EVENTS
; keyword rather than MOTION_EVENTS would require the user to
; click on the image before an event is generated.
draw = WIDGET_DRAW(base, XSIZE=im_size[1], YSIZE=im_size[2], $
/MOTION_EVENTS)

; Create 'Done' button.
button = WIDGET_BUTTON(base, VALUE='Done')
Building IDL Applications Using Draw Widgets

914 Chapter 30: Widget Application Techniques
; Create label widgets to hold the cursor position and
; Hexadecimal value of the pixel under the cursor.
label1 = WIDGET_LABEL(base, XSIZE=im_size[1]*.9, $
VALUE='X position:')

label2 = WIDGET_LABEL(base, XSIZE=im_size[1]*.9, $
VALUE='Y position:')

label3 = WIDGET_LABEL(base, XSIZE=im_size[1]*.9, $
VALUE='Hex Value:')

; Realize the widget hierarchy.
WIDGET_CONTROL, base, /REALIZE

; Retrieve the widget ID of the draw widget. Note that the widget
; hierarchy must be realized before you can retrieve this value.
WIDGET_CONTROL, draw, GET_VALUE=drawID

; Create an anonymous array to hold the image data and widget IDs
; of the label widgets.
stash = { imagePtr:imagePtr, label1:label1, label2:label2, $

label3:label3 }

; Set the user value of the top-level base widget equal to the
; 'stash' array.
WIDGET_CONTROL, base, SET_UVALUE=stash

; Make the draw widget the current IDL drawable area.
WSET, drawID

; Draw the image into the draw widget.
TVSCL, *imagePtr

; Call XMANAGER to manage the widgets.
XMANAGER, 'draw_widget_data', base, /NO_BLOCK

END

The following things about this example are worth noting:

• Since we use the image data in both the widget creation routine (where we
display the image) and the event-handler routine (where we retrieve the value
of the data point under the cursor), we need access to the variable that holds the
image in both places. We could pass the entire image array from the creation
routine to the event-handler in the stash structure, but since the image could
be large, we choose to pass a pointer to the image instead. This means we must
dereference the pointer variable every time we need to use the image data. For
more information on pointers and how to dereference them, see Chapter 8,
“Pointers”.
Using Draw Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 915
• In this example we have set the MOTION_EVENTS keyword to
WIDGET_DRAW; this causes events to be generated continuously as the
cursor moves across the draw widget. We could have set the
BUTTON_EVENTS keyword instead; this would force the user to click the
draw widget in order to update the text fields.
Building IDL Applications Using Draw Widgets

916 Chapter 30: Widget Application Techniques
Using Property Sheet Widgets

The purpose of a property sheet is to enable the user to view and edit the properties of
an object subclassed from the IDLitComponent class. (All IDLgr* and IDLit* objects
subclass from the IDLitComponent class.)

For example, a user may have rendered data as a surface. Using IDL’s iSurface tool,
the user can select the surface and bring up a property sheet that lists all of the
surface's properties, including color, shading method, etc. To change the color, the
user can go to the property sheet, select the color property, bring up the color picker,
and select a new color. The name of the changed property is placed into an IDL event.
It is in the processing of this event that the object is updated. An existing property
sheet can be assigned a new component, which causes it to reload with the new list of
properties and their values.

The following topics show how to use the property sheet widget with the iTool’s
paradigm:

• “Registering Properties”

• “Selecting Properties” on page 917

• “Changing Properties” on page 920

• “User-defined Properties” on page 921

• “Property Sheet Sizing” on page 922

• “Property Sheet Example” on page 924

• “Multiple Properties Example” on page 937

Registering Properties

In order for a property associated with a component object to be included in the
property sheet for that component, the property must be registered. The property
registration mechanism accomplishes several things:

• It allows you to expose as many or as few of the properties of an underlying
object as you choose.

• It allows you to add user-defined properties to existing objects, and expose
those new properties to users of your application.

Groups of properties of graphical atomic objects can be registered by setting their
REGISTER_PROPERTIES properties to True when the object is initialized. See the
property tables for each graphical atomic object in the IDL Reference Guide.
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 917
Selecting Properties

A property sheet consists of rows and columns. The left-most column identifies the
properties, and the other column or columns identify the property values of one or
more objects (also known as components). A select event is generated whenever a
cell containing a property name or a property value is selected by left-clicking on it
using the mouse. When a single property value is clicked on, the associated property
name appears indented. Only a single property value can be selected at one time.
However, when the MULTIPLE_PROPERTIES keyword is set, multiple properties
can be selected in a property sheet using the Ctrl key to make nonadjacent selections
or using the Shift key to make adjacent selections.

Note
Setting the EDITABLE keyword to 0 (zero) allows the user to select, but not modify
properties. See WIDGET_PROPERTYSHEET in the IDL Reference Guide for
details.

Figure 30-10: Property Sheet Selection

Property
(Identifier)

Object
(Component)

Property
Value
Building IDL Applications Using Property Sheet Widgets

918 Chapter 30: Widget Application Techniques
When the property sheet is initially realized, no properties are selected by default.
However a single property or multiple properties can be selected programmatically
using the PROPERTYSHEET_SETSELECTED keyword to the
WIDGET_CONTROL procedure.

Set the PROPERTYSHEET_SETSELECTED keyword to a string or an array of
strings identifying the properties to appear selected. The strings should match valid
property identifiers. When this keyword is set to an empty string or an array that
contains only an empty sting, it clears all property selections. For example, the
following code pre-selects two properties in a property sheet:

; Create the property sheet.
oComp = OBJ_NEW('IDLitVisAxis')
wPropAxis = WIDGET_PROPERTYSHEET(base, VALUE = oComp, $
 EVENT_PRO = 'PropertyEvent', UNAME = 'PropSheet', $

/MULTIPLE_PROPERTIES)

; Pre-select the color and transparency properties of
; axis component.
WIDGET_CONTROL, wPropAxis,
 PROPERTYSHEET_SETSELECTED=['Color', 'Transparency']

Accessing Property Sheet Selection Events

The event structure (WIDGET_PROPSHEET_SELECT) provided when selection
occurs contains a COMPONENT tag, an IDENTIFIER tag, and a NSELECTED tag.

{WIDGET_PROPSHEET_SELECT, ID:0L, TOP:0L, HANDLER:0L, TYPE:0L,
 COMPONENT:OBJREF, IDENTIFIER:"", NSELECTED:0L }

The COMPONENT tag is a reference to the object associated with the selected
property value. When multiple objects (also known as components) are associated
with the property sheet, this member indicates which one object had one of its
property values selected. If a property (instead of a property value) is selected, the
COMPONENT tag always contains an object reference to the first object, even if
there are multiple objects in the property sheet. The IDENTIFIER tag uniquely
identifies the property. This identifier is unique among all of the component’s
properties. The component and identifier can be used to obtain the value of the
selected property:

isDefined = event.component-> $
GetPropertyByIdentifier(event.identifier, value)

where event is the event structure, isDefined is a 1 if the value is defined (0,
otherwise), and value receives the property’s value.

The NSELECTED tag returns the number of currently selected properties. When
more than a single property is selected, the IDENTIFIER field holds the identifier of
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 919
the first item selected. This is not the first item selected with the mouse, but the first
item encountered in the property sheet definition among those which are selected.
The NSELECTED tag is equivalent to calling WIDGET_INFO with the
/PROPERTYSHEET_NSELECTED keyword.

Using WIDGET_INFO, it is also possible to return the identifiers of all selected
properties using the /PROPERTYSHEET_SELECTED keyword. This returns a
string or string array containing the identifiers of the selected properties.

; Return information about single or multiple property
; selections.
vNumSelected = WIDGET_INFO(event.ID, /PROPERTYSHEET_NSELECTED)
vSelected = WIDGET_INFO(event.ID, /PROPERTYSHEET_SELECTED)
PRINT, 'Number properties selected: ' + STRING(vNumSelected)
PRINT, 'Selected properties: '
PRINT, vSelected

Controlling When Properties are Selectable

Three things that determine the appearance of a property sheet data cells. They are, in
order of greatest to least precedence:

1. Sensitivity of the entire widget — If SENSITIVE=0 for
WIDGET_PROPERTYSHEET then no selection or scrolling is possible.

2. Editability of the entire widget — If EDITABLE=0 for the property sheet
(meaning it is marked as read-only), cells can be selected but cannot be
changed. If EDITABLE=1 (the default value meaning properties can be
selected and modified), then the editability of individual properties is
controlled by their individual sensitivity values.

3. Sensitivity of an individual property — If SENSITIVE=0 for an individual
property (set using the RegisterProperty or SetPropertyAttribute methods of
IDLitComponent), then the individual property cannot be selected or changed.
Building IDL Applications Using Property Sheet Widgets

920 Chapter 30: Widget Application Techniques
Changing Properties

A change event is generated whenever a new value is entered for a property. It is also
used to signal that a user-defined property needs changing. The event structure
(WIDGET_PROPSHEET_CHANGE) provided when a change occurs contains a
COMPONENT, an IDENTIFIER, a PROPTYPE, and a SET_DEFINED tag. The
COMPONENT tag contains a reference to the object associated with the property
sheet. When multiple objects are associated with the property sheet, this member
indicates which object is to change. The IDENTIFIER tag specifies the value of the
property’s identifier attribute. This identifier is unique among all of the component’s
properties. The PROPTYPE tag indicates the type of the property (integer, string,
etc.). Integer values for these types can be found in the documentation for
components. The SET_DEFINED tag indicates whether or not an undefined property
is having its value set. In most circumstances, along with its new value, the property
should have its 'UNDEFINED' attribute set to zero. If a property is never marked as
undefined, this field can be ignored.

Although the component’s object reference is included in the event structure, it can
also be retrieved via the following call:

WIDGET_CONTROL, event.id, GET_VALUE = obj

where event is the event structure and obj is the object reference of the component.

The PROPTYPE field is provided for convenience. The property type should be
known implicitly based on IDENTIFIER, but can be retrieved (in integer form) by:

obj->GetPropertyAttribute, event.identifier, TYPE = type

where obj is the object reference of the component, event is the event structure, and
type represents the data type of the property. Here, the value returned in by the
TYPE keyword is the same as the value of the PROPTYPE field of the widget event
structure.

Properties can use their UNDEFINED attribute to show an indeterminate state (set
attribute UNDEFINED = 1). This might arise after the aggregation of two or more
properties. One could imagine a COLOR property representing both the border and
the interior color of a polygon so that just one color property is displayed in the
property sheet. When set, the chosen color would be applied to both, and then the
following code could be used to mark the property as defined:

IF (event.set_defined) THEN $
event.component->SetPropertyAttribute, $

event.identifier, UNDEFINED = 0
WIDGET_CONTROL, event.id, REFRESH_PROPERTY = event.identifier

where event is the event structure.
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 921
Note
The REFRESH_PROPERTY keyword to WIDGET_CONTROL is used to refresh
the property sheet. This is necessary because although the property sheet knows
about its component, it does not directly change the component itself. Just as with
changing properties values, the property sheet and underlying component have a
clear boundary and can only affect each other through IDL statements.

Properties can also be hidden (removing them from the property sheet entirely) or
desensitized (displaying the property in the property sheet, but not allowing the user
to change its value). See “Property Attributes” in Chapter 4 of the iTool Developer’s
Guide manual for additional details.

Updating the Component

When a value has been changed in the property sheet, you can access this resulting
value through the WIDGET_INFO function:

value = WIDGET_INFO(event.id, PROPERTY_VALUE = event.identifier)

where event is the event structure. This value can then be used to update the
changed property in the component object by calling its SetPropertyByIdentifier
method:

event.component->SetPropertyByIdentifier, event.identifier, $
value

where event is the event structure and value is the modified property value.

User-defined Properties

User-defined properties allow IDL programmers to provide their own custom means
for editing a property. One significant difference from other types of properties is that
user-defined properties must have a string version of their value. This string value is
stored in the USERDEF attribute of the property and must be explicitly updated. The
string value is the value displayed in the property sheet. See Chapter 4, “Property
Management” in the iTool Developer’s Guide manual for further discussion of user-
defined properties.

Updating User-defined Properties

Like other property types, user-defined properties generate IDL property sheet
change events. The difference is that the IDL event handler cannot query the property
sheet for the new value. It must use some other means to determine a new value.
Building IDL Applications Using Property Sheet Widgets

922 Chapter 30: Widget Application Techniques
Typically this is done through widget code, in which the user is asked to set a value,
but virtually any other technique is valid.

When handling change events, determine the property's type using the PROPTYPE
field of the widget event structure. Once a value has been acquired, update the
component using its SetProperty method. In addition, the string version of the user-
defined property’s value should be updated. This is done by executing a statement
similar to the following example:

eventBase.component->SetPropertyAttribute, $
eventBase.identifier, USERDEF = userDefValue

where eventBase is the event structure of the top-level-base and userDefValue is
the string representing the user-defined value when the property sheet is refreshed.

Once the underlying component has been updated, the property sheet is ready to be
refreshed. Execute a call to update a given property with the current value:

WIDGET_CONTROL, propsheet, REFRESH_PROPERTY = eventBase.identifier

where propsheet is the widget ID of the property sheet widget and eventBase is
the event structure of the top-level-base.

Property Sheet Sizing

Property sheets without a size definition (lacking a specified SCR_XSIZE or XSIZE
keyword value) are naturally sized. Column widths are dependent upon the cell
contents of the components. Naturally sized property sheets allow the full contents of
the longest cell to be visible in a column as shown in the left-hand image in the
following figure. When a size definition is provided, selecting the cell displays the list
contents in a drop-down box that is wide enough for the longest item as shown in the
right-hand image in the following figure.

Figure 30-11: Property Sheet Column Sizing
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 923
Note
If you manually change the width of a property sheet column, natural resizing
functionality is overridden. Dynamic resizing is not supported when the property
sheet is refreshed or loaded with different data. Natural sizing can be recovered by
destroying and recreating the property sheet.

The following elements are considered when determining column width in a naturally
sized property sheet:

• The column width is dependent upon the length of the longest cell value
(regardless of cell type) or longest component name. If the length is excessive,
a reasonable default is used. When there are multiple components, only the
data in the first three component columns are considered when determining
column width. All columns will be the same width.

• If a text cell contains the longest value, approximately 25 characters will be
displayed. When you click in the cell, a drop-down box shows any additional
text. A scroll bar is provided to show text beyond that displayed in the drop-
down box.

• If a drop-down list contains the longest value, the width of the longest
enumerated value will determine the column width.

• If a number cell contains the longest value, ten digits plus the “.” and “–”
characters will be displayed.

• If the longest cell value is in a cell containing color, symbol, line thickness, or
line style items, then the column width is intelligently sized to allow the
minimal width required for user identification and selection.

When a property sheet size is explicitly defined, the column width may crop the
display of the full cell contents. However, when you select the cell, the full contents
will be visible as follows:

• A drop-down list box will expand to show the longest item if the column width
is less than the width of the longest item.

• A drop-down edit box will wrap text and provide a vertical scrollbar as
necessary.
Building IDL Applications Using Property Sheet Widgets

924 Chapter 30: Widget Application Techniques
Property Sheet Example

The following example provides a property sheet containing all the available controls,
including user-defined properties of a custom component.

Enter the following text into the IDL Editor:

; Property Sheet Demo
;
; This program contains these sections of code:
;
; (1) Definition of the IDLitTester class.
; (2) Methods for handling the user-defined data type.
; (3) Event handlers and main widget program.

;==
; (1) Definition of the IDLitTester class.
;--
; IDLitTester
;
; Superclasses:
; IDLitComponent
;
; Subclasses:
; none
;
; Interfaces:
; IIDLProperty
;
; Intrinsic Methods:
; none (because it contains no objects)

;--
; IDLitTester::Init

FUNCTION IDLitTester::Init, _REF_EXTRA = _extra

compile_opt idl2

; Initialize the superclass.
IF (self->IDLitComponent::Init() ne 1) THEN $

RETURN, 0

; Create IDLitTester.
; Nothing to do, for now.

; Register properties.
;
; * Only registered properties will show up in the property sheet.
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 925
; * <identifier> must match self.<identifier>.

self->RegisterProperty, 'BOOLEAN', /BOOLEAN , $
NAME = 'Boolean', DESCRIPTION = 'TRUE or FALSE'

self->RegisterProperty, 'COLOR', /COLOR, $
NAME = 'Color', DESCRIPTION = 'Color (RGB)'

self->RegisterProperty, 'USERDEF', USERDEF = '', $
NAME = 'User Defined', DESCRIPTION = 'User defined property'

self->RegisterProperty, 'NUMBER1', /INTEGER , $
NAME = 'Integer', DESCRIPTION = 'Integer in [-100, 100]', $
valid_range = [-100, 100]

self->RegisterProperty, 'NUMBER2', /FLOAT, $
NAME = 'Floating Point', DESCRIPTION = 'Number trackbar', $
valid_range = [-19.0D, 6.0D, 0.33333333333333D]

self->RegisterProperty, 'NUMBER3', /FLOAT, $
NAME = 'Floating Point', $
DESCRIPTION = 'Double in [-1.0, 1.0]', $
valid_range = [-1.0D, 1.0D]

self->RegisterProperty, 'LINESTYLE', /LINESTYLE, $
NAME = 'Line Style', DESCRIPTION = 'Line style'

self->RegisterProperty, 'LINETHICKNESS', /THICKNESS , $
NAME = 'Line Thickness', $
DESCRIPTION = 'Line thickness (pixels)'

self->RegisterProperty, 'STRINGOLA', /STRING , $
NAME = 'String', DESCRIPTION = 'Just some text'

self->RegisterProperty, 'SYMBOL', /SYMBOL , $
NAME = 'Symbol', DESCRIPTION = 'Symbol of some sort'

self->RegisterProperty, 'STRINGLIST', $
NAME = 'String List', DESCRIPTION = 'Enumerated list', $
enumlist = ['dog', 'cat', 'bat', 'rat', 'nat', $
'emu', 'owl', 'pig', 'hog', 'ant']

; Set any property values.
self->SetProperty, _EXTRA = _extra

RETURN, 1
END

;--
Building IDL Applications Using Property Sheet Widgets

926 Chapter 30: Widget Application Techniques
; IDLitTester::Cleanup

PRO IDLitTester::Cleanup

compile_opt idl2

self->IDLitComponent::Cleanup

END

;--
; IDLitTester::GetProperty
;
; Implemention for IIDLProperty interface

PRO IDLitTester::GetProperty, $
boolean = boolean, $
color = color, $
userdef = userdef, $
font = font, $
number1 = number1, $
number2 = number2, $
number3 = number3, $
linestyle = linestyle, $
linethickness = linethickness, $
stringola = stringola, $
stringlist = stringlist, $
symbol = symbol, $
_REF_EXTRA = _extra

compile_opt idl2

IF (arg_present(boolean)) THEN boolean = self.boolean
IF (arg_present(color)) THEN color = self.color
IF (arg_present(userdef)) THEN userdef = self.userdef
IF (arg_present(font)) THEN font = self.font
IF (arg_present(number1)) THEN number1 = self.number1
IF (arg_present(number2)) THEN number2 = self.number2
IF (arg_present(number3)) THEN number3 = self.number3
IF (arg_present(linestyle)) THEN linestyle = self.linestyle
IF (arg_present(linethickness)) $

THEN linethickness = self.linethickness
IF (arg_present(stringola)) THEN stringola = self.stringola
IF (arg_present(stringlist)) THEN stringlist = self.stringlist
IF (arg_present(symbol)) THEN symbol = self.symbol

; Superclass' properties:
IF (n_elements(_extra) gt 0) THEN $

self->IDLitComponent::GetProperty, _EXTRA = _extra
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 927
END

;--
; IDLitTester::SetProperty
;
; Implementation for IIDLProperty interface

PRO IDLitTester::SetProperty, $
boolean = boolean, $
color = color, $
userdef = userdef, $
font = font, $
number1 = number1, $
number2 = number2, $
number3 = number3, $
linestyle = linestyle, $
linethickness = linethickness, $
stringola = stringola, $
stringlist = stringlist, $
symbol = symbol, $
_REF_EXTRA = _extra

compile_opt idl2

IF (n_elements(boolean) ne 0) THEN self.boolean = boolean
IF (n_elements(color) ne 0) THEN self.color = color
IF (n_elements(userdef) ne 0) THEN self.userdef = userdef
IF (n_elements(font) ne 0) THEN self.font = font
IF (n_elements(number1) ne 0) THEN self.number1 = number1
IF (n_elements(number2) ne 0) THEN self.number2 = number2
IF (n_elements(number3) ne 0) THEN self.number3 = number3
IF (n_elements(linestyle) ne 0) THEN self.linestyle = linestyle
IF (n_elements(linethickness) ne 0) THEN $

self.linethickness = linethickness
IF (n_elements(stringola) ne 0) THEN self.stringola = stringola
IF (n_elements(stringlist) ne 0) THEN self.stringlist = stringlist
IF (n_elements(symbol) ne 0) THEN self.symbol = symbol

self->IDLitComponent::SetProperty, _EXTRA = _extra

END

;--
; IDLitTester__Define

PRO IDLitTester__Define

compile_opt idl2, hidden
Building IDL Applications Using Property Sheet Widgets

928 Chapter 30: Widget Application Techniques
struct = {$
IDLitTester, $
inherits IDLitComponent, $
boolean:0L, $
color:[0B,0B,0B], $
userdef:"", $
number1:0L, $
number2:0D, $
number3:0D, $
linestyle:0L, $
linethickness:0L, $
stringola:"", $
stringlist:0L, $
symbol:0L $
}

END

;==
; (2) Methods for handling the user-defined data type.
;--
; UserDefEvent
;
; This procedure is just part of the widget code for
; the user defined property.

PRO UserDefEvent, e

IF (tag_names(e, /structure_name) eq 'WIDGET_BUTTON') $
THEN BEGIN

widget_control, e.top, get_uvalue = uvalue
widget_control, e.id, get_uvalue = numb_ness

propsheet = uvalue.propsheet
component = uvalue.component
identifier = uvalue.identifier

; Set the human readable value.
component->SetPropertyAttribute, $

identifier, userdef = numb_ness

; Set the real value of the component.
component->SetPropertyByIdentifier, identifier, numb_ness

WIDGET_CONTROL, propsheet, refresh_property = identifier
PRINT, 'Changed: ', uvalue.identifier, ': ', numb_ness
WIDGET_CONTROL, e.top, /destroy
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 929
ENDIF

END

;--
; GetUserDefValue
;
; Creates widgets used to modify the user defined property's
; value. The value is actually set in UserDefEvent.

PRO GetUserDefValue, e

base = WIDGET_BASE(/row, title = 'Pick a Number', $
/modal, group_leader = e.top)

one = WIDGET_BUTTON(base, value = 'one', uvalue = 'oneness')
two = WIDGET_BUTTON(base, value = 'two', uvalue = 'twoness')
six = WIDGET_BUTTON(base, value = 'six', uvalue = 'sixness')
ten = WIDGET_BUTTON(base, value = 'ten', uvalue = 'tenness')

; We will need this info when we set the value
WIDGET_CONTROL, base, $

SET_UVALUE = {propsheet:e.id, $
component:e.component, $
identifier:e.identifier}

WIDGET_CONTROL, base, /REALIZE

XMANAGER, 'UserDefEvent', base, event_handler = 'UserDefEvent'

END

;==
; (3) Event handlers and main widget program.
;--
;
; Event handling code for the main widget program and
; the main widget program.

;--
; prop_event
;
; The property sheet generates an event whenever the user changes
; a value. The event holds the property's identifier and type, and
; an object reference to the component.
;
; Note: widget_control, e.id, get_value = objref also retrieves an
; object reference to the component.
Building IDL Applications Using Property Sheet Widgets

930 Chapter 30: Widget Application Techniques
PRO prop_event, e

IF (e.type eq 0) THEN BEGIN ; Value changed

; Get the value of the property identified by e.identifier.

IF (e.proptype ne 0) THEN BEGIN

; Get the value from the property sheet.
value = widget_info(e.id, property_value = e.identifier)

; Set the component's property's value.
e.component->SetPropertyByIdentifier, e.identifier, $

value

; Print the change in the component's property value.
PRINT, 'Changed', e.identifier, ': ', value

ENDIF ELSE BEGIN

; Use alternative means to get the value.
GetUserDefValue, e

ENDELSE

ENDIF ELSE BEGIN ; selection changed

PRINT, 'Selected: ' + e.identifier
r = e.component->GetPropertyByIdentifier(e.identifier, value)
PRINT, ' Current Value: ', value

ENDELSE

END

;--
; refresh_event

PRO refresh_event, e

WIDGET_CONTROL, e.id, get_uvalue = uvalue

uvalue.o->SetProperty, boolean = 0L
uvalue.o->SetProperty, color = [255, 0, 46]
uvalue.o->SetPropertyAttribute, 'userdef', userdef = "Yeehaw!"
uvalue.o->SetProperty, number1 = 99L
uvalue.o->SetProperty, number2 = -13.1
uvalue.o->SetProperty, number3 = 6.5
uvalue.o->SetProperty, linestyle = 6L
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 931
uvalue.o->SetProperty, stringola = 'It worked!'
uvalue.o->SetProperty, stringlist = 6L
uvalue.o->SetProperty, symbol = 6L

uvalue.o->SetPropertyAttribute, 'Number1', sensitive = 1
uvalue.o->SetPropertyAttribute, 'Number2', sensitive = 1

WIDGET_CONTROL, uvalue.prop, $
REFRESH_PROPERTY = ['boolean', 'color', 'userdef', $
'number1', 'number2', 'number3', 'linestyle', $
'stringola', 'stringlist', 'symbol']

END

;--
; reload_event

PRO reload_event, e

WIDGET_CONTROL, e.id, GET_UVALUE = uvalue

LoadValues, uvalue.o

WIDGET_CONTROL, uvalue.prop, SET_VALUE = uvalue.o

update_state, e.top, 1

END

;--
; hide_event

PRO hide_event, e

WIDGET_CONTROL, e.id, get_uvalue = uvalue

uvalue.o->SetPropertyAttribute, 'color', /HIDE

WIDGET_CONTROL, uvalue.prop, refresh_property = 'color'

END

;--
; show_event

PRO show_event, e

WIDGET_CONTROL, e.id, get_uvalue = uvalue
Building IDL Applications Using Property Sheet Widgets

932 Chapter 30: Widget Application Techniques
uvalue.o->SetPropertyAttribute, 'color', hide = 0

WIDGET_CONTROL, uvalue.prop, REFRESH_PROPERTY = 'color'

END

;--
; clear_event

PRO clear_event, e

update_state, e.top, 0

WIDGET_CONTROL, e.id, GET_UVALUE = uvalue

WIDGET_CONTROL, uvalue.prop, SET_VALUE = OBJ_NEW()

END

;--
; psdemo_large_event
;
; Handles resize events for the property sheet demo program.

PRO psdemo_large_event, e

WIDGET_CONTROL, e.id, GET_UVALUE = base
geo_tlb = WIDGET_INFO(e.id, /GEOMETRY)

WIDGET_CONTROL, base.prop, $
 SCR_XSIZE = geo_tlb.xsize - (2*geo_tlb.xpad), $
 SCR_YSIZE = geo_tlb.ysize - (2*geo_tlb.ypad)

END

;--
; sensitivity_event
;
; Procedure to test sensitizing and desensitizing

PRO sensitivity_event, e

WIDGET_CONTROL, e.id, GET_UVALUE = uvalue, GET_VALUE = value

IF (value eq 'Desensitize') THEN b = 0 $
ELSE b = 1

uvalue.o->SetPropertyAttribute, 'Boolean', sensitive = b
uvalue.o->SetPropertyAttribute, 'Color', sensitive = b
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 933
uvalue.o->SetPropertyAttribute, 'UserDef', sensitive = b
uvalue.o->SetPropertyAttribute, 'Number1', sensitive = b
uvalue.o->SetPropertyAttribute, 'Number2', sensitive = b
uvalue.o->SetPropertyAttribute, 'Number3', sensitive = b
uvalue.o->SetPropertyAttribute, 'LineStyle', sensitive = b
uvalue.o->SetPropertyAttribute, 'LineThickness', sensitive = b
uvalue.o->SetPropertyAttribute, 'Stringola', sensitive = b
uvalue.o->SetPropertyAttribute, 'Symbol', sensitive = b
uvalue.o->SetPropertyAttribute, 'StringList', sensitive = b

WIDGET_CONTROL, uvalue.prop, $
refresh_property = ['Boolean', 'Color', 'UserDef', $
'Number1', 'Number2', 'Number3', 'LineStyle', $
'LineThickness', 'Stringola', 'Symbol', 'StringList']

END

;--
; LoadValues

PRO LoadValues, o

o->SetProperty, boolean = 1L ; 0 or 1
o->SetProperty, color = [200, 100, 50] ; RGB
o->SetPropertyAttribute, 'userdef', userdef = ""
; to be set later
o->SetProperty, number1 = 42L ; integer
o->SetProperty, number2 = 0.0 ; double
o->SetProperty, number3 = 0.1 ; double
o->SetProperty, linestyle = 4L ; 5th item (zero based)
o->SetProperty, linethickness = 4L ; pixels
o->SetProperty, stringola = "This is a silly string."
o->SetProperty, stringlist = 3L ; 4th item in list
o->SetProperty, symbol = 4L ; 5th symbol in list

END

;--
; quit_event

PRO quit_event, e

WIDGET_CONTROL, e.top, /DESTROY

END

;--
; update_state
Building IDL Applications Using Property Sheet Widgets

934 Chapter 30: Widget Application Techniques
PRO update_state, top, sensitive

WIDGET_CONTROL, top, GET_UVALUE = uvalue

FOR i = 0, n_elements(uvalue.b) - 1 do $
WIDGET_CONTROL, uvalue.b[i], sensitive = sensitive

END

;--
; psdemo_large

PRO psdemo_large

; Create and initialize the component.

o = OBJ_NEW('IDLitTester')

LoadValues, o

; Create some widgets.

base = WIDGET_BASE(/COLUMN, /TLB_SIZE_EVENT, $
TITLE = 'Property Sheet Demo (Large)')

prop = WIDGET_PROPERTYSHEET(base, value = o, $
YSIZE = 13, /FRAME, event_pro = 'prop_event')

b1 = WIDGET_BUTTON(base, value = 'Refresh', $
uvalue = {o:o, prop:prop}, $
event_pro = 'refresh_event')

b2 = WIDGET_BUTTON(base, value = 'Reload', $
uvalue = {o:o, prop:prop}, $
event_pro = 'reload_event')

b3 = WIDGET_BUTTON(base, value = 'Hide Color', $
uvalue = {o:o, prop:prop}, $
event_pro = 'hide_event')

b4 = WIDGET_BUTTON(base, value = 'Show Color', $
uvalue = {o:o, prop:prop}, $
event_pro = 'show_event')

b5 = WIDGET_BUTTON(base, value = 'Clear', $
uvalue = {o:o, prop:prop}, $
event_pro = 'clear_event')

b6 = WIDGET_BUTTON(base, value = 'Desensitize', $
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 935
uvalue = {o:o, prop:prop}, $
event_pro = 'sensitivity_event')

b7 = WIDGET_BUTTON(base, value = 'Sensitize', $
uvalue = {o:o, prop:prop}, $
event_pro = 'sensitivity_event')

b8 = WIDGET_BUTTON(base, value = 'Quit', $
EVENT_PRO = 'quit_event')
; Buttons that can't be pushed after clearing:
b = [b1, b3, b4, b5, b6, b7]

; Activate the widgets.

WIDGET_CONTROL, base, SET_UVALUE = {prop:prop, b:b}, /REALIZE

XMANAGER, 'psdemo_large', base, /NO_BLOCK

END

The following figure displays the output of this example:

Figure 30-12: User-Defined Property Sheet Example
Building IDL Applications Using Property Sheet Widgets

936 Chapter 30: Widget Application Techniques
To demonstrate the controls available from the WIDGET_PROPERTYSHEET, do
the following and note the Selected and Changed messages in the IDL Output
Log:

• Change the Boolean field to False.

• Select a new Color from the color picker.

• Select a new “numberness” value in the User Defined field.

• Change the Integer field to a new value. Note that this field has been restricted
to integers in the range -100 to 100.

• Change the first Floating Point field to a new value by moving the slider.

• Change the second Floating Point field to a new value by editing the text.
Note that this field has been restricted to floating point numbers in the range -
1.0 to 1.0.

• Change the Line Style field to a new style.

• Change the Line Thickness field to a new thickness.

• Select a new symbol in the Symbol field.

• Select a new string from the String List.

Click the eight buttons at the bottom of the property sheet to initiate the following
events:

• The Refresh button loads the data specified in refresh_event into the
property sheet, using the REFRESH_PROPERTY keyword to
WIDGET_CONTROL.

• The Reload button reloads the data specified in LoadValues into the property
sheet, using the SET_VALUE keyword to WIDGET_CONTROL.

• The Hide Color button runs hide_event, which sets the HIDE attribute for
the color property to one.

• The Show Color button runs show_event, which sets the HIDE attribute for
the color property to zero.

• The Clear button runs clear_event, which creates a new set of empty
objects, deactivating all but the Reload button.

• The Desensitize button runs sensitivity_event, which deactivates the
displayed fields.
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 937
• The Sensitize button runs sensitivity_event, which reactivates the
displayed fields.

• The Quit button runs quit_event, which destroys the top-level base and
ends the program.

Multiple Properties Example

The following example shows how to create a property sheet for multiple
components.

Enter the following text in the IDL Editor:

; ExMultiSheet.pro
;
; Provides an example of a property sheet that is
; associated with more than one object. In this case,
; multiple IDLitVisAxis objects are used, with random
; colors and hidden cells, just for fun.

PRO PropertyEvent, event

IF (event.type EQ 0) THEN BEGIN ; Value changed.

 PRINT, 'Changed: ', event.component
 PRINT, ' ', event.identifier, ': ', $
 WIDGET_INFO(event.id, COMPONENT = event.component, $
 PROPERTY_VALUE = event.identifier)

ENDIF ELSE BEGIN ; Selection changed.

 PRINT, 'Selected: ' + event.identifier

ENDELSE

END

PRO CleanupEvent, baseID

WIDGET_CONTROL, baseID, GET_UVALUE = objects

FOR i = 0, (N_ELEMENTS(objects) - 1) DO $
 OBJ_DESTROY, objects[i]

END

PRO ExMultiSheet_event, event
Building IDL Applications Using Property Sheet Widgets

938 Chapter 30: Widget Application Techniques
ps = WIDGET_INFO(event.id, $
 FIND_BY_UNAME = 'PropSheet')

geo_tlb = WIDGET_INFO(event.id, /GEOMETRY)

WIDGET_CONTROL, ps, $
 SCR_XSIZE = geo_tlb.xsize - (2*geo_tlb.xpad), $
 SCR_YSIZE = geo_tlb.ysize - (2*geo_tlb.ypad)

END

PRO ExMultiSheet

tlb = WIDGET_BASE(/COLUMN, /TLB_SIZE_EVENTS, $
 KILL_NOTIFY = 'CleanupEvent')

; Create some columns.

oComp1 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s1, 3)*256, $
 TEXT_COLOR = RANDOMU(s7, 3)*256)
oComp2 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s2, 3)*256, $
 TEXT_COLOR = RANDOMU(s8, 3)*256)
oComp3 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s3, 3)*256, $
 TEXT_COLOR = RANDOMU(s9, 3)*256)
oComp4 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s4, 3)*256, $
 TEXT_COLOR = RANDOMU(s10, 3)*256)
oComp5 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s5, 3)*256, $
 TEXT_COLOR = RANDOMU(s11, 3)*256)
oComp6 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s6, 3)*256, $
 TEXT_COLOR = RANDOMU(s12, 3)*256)

oComps = [oComp1, oComp2, oComp3, $
 oComp4, oComp5, oComp6]

WIDGET_CONTROL, tlb, SET_UVALUE = oComps

; Hide some properties.

oComp2->SetPropertyAttribute, 'color', /HIDE
oComp2->SetPropertyAttribute, 'ticklen', /HIDE
oComp5->SetPropertyAttribute, 'ticklen', /HIDE

; Create the property sheet.
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 939
prop = WIDGET_PROPERTYSHEET(tlb, $
 UNAME = 'PropSheet', $
 VALUE = oComps, $
 FONT = 'Courier New*16', $
 XSIZE = 100, YSIZE = 24, $
 /FRAME, EVENT_PRO = 'PropertyEvent')

; Activate the widgets.

WIDGET_CONTROL, tlb, /REALIZE

XMANAGER, 'ExMultiSheet', tlb, /NO_BLOCK

END

Save the program as ExMultiSheet.pro, then compile and run it. A property sheet
displaying the properties of six axes is displayed:

The gray boxes indicate properties that have been hidden. To remove the gray boxes,
comment out the code after the following comment:

; Hide some properties.

Figure 30-13: Multi-Sheet Example
Building IDL Applications Using Property Sheet Widgets

940 Chapter 30: Widget Application Techniques
The text is displayed at 16 points in the Courier New font. To view the property sheet
with the text displayed in the default size and font, comment out the following
segment of the property sheet creation code:

FONT = "Courier New*16", $

To see the text displayed in a font and size of your choosing, edit the same segment to
include a different font name and size.
Using Property Sheet Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 941
Using Table Widgets

Table widgets display two-dimensional data and allow in-place data editing.

See “WIDGET_TABLE” in the IDL Reference Guide manual for a complete
description of the function used to create table widgets.

This section discusses the following topics:

• “Default Table Size” on page 941

• “Selection Modes” on page 941

• “Data Types” on page 943

• “Retrieving Data” on page 943

• “Edit Mode” on page 946

• “Example: Single Data Type Data” on page 947

• “Example: Structure Data” on page 950

Default Table Size

Table widgets are sized according to the value of the following pairs of keywords to
WIDGET_TABLE, in order of precedence: SCR_XSIZE/SCR_YSIZE,
XSIZE/YSIZE, X_SCROLL_SIZE/Y_SCROLL_SIZE, VALUE. If either dimension
remains unspecified by one of the above keywords, the default value of six (columns
or rows) is used when the table is created. If the width or height specified is less than
the size of the table, scroll bars are added automatically.

Note
The default row height and column width vary with different user interface toolkits.

Selection Modes

Groups of table cells can be selected either manually (using the mouse or keyboard)
or programmatically. The table widget supports two selection modes — standard and
disjoint. Both modes can be used either by an interactive table user or by the IDL
programmer. See “Retrieving Data” on page 943 for information on retrieving data
from various types of selections.
Building IDL Applications Using Table Widgets

942 Chapter 30: Widget Application Techniques
Standard Selection Mode

In standard selection mode, exactly one rectangular area (of a single cell or multiple
cells) can be selected at a given time.

Interactive Selection

Interactive users select cells by clicking the left mouse button on a cell, holding the
mouse button down, and dragging the mouse until the desired cells are selected.
Selections can be extended by holding down the SHIFT key and selecting additional
cells.

Programmatic Selection

Programmers select cells by specifying a four-element array, of the form
[left, top, right, bottom], as the value of the SET_TABLE_SELECT keyword to
WIDGET_CONTROL.

Disjoint Selection Mode

In disjoint selection mode, multiple rectangular areas can be selected at once. In order
to place a table in disjoint selection mode, the programmer must either specify the
DISJOINT_SELECTION keyword to WIDGET_TABLE when creating the table, or
set the TABLE_DISJOINT_SELECTION keyword to WIDGET_CONTROL after
the table has been created.

Interactive Selection

Interactive users select multiple disjoint cell regions by:

1. Creating an initial selection as described above.

2. Holding down the CONTROL key and selecting an unselected cell by clicking
and holding down the left mouse button.

3. Releasing the CONTROL key (while continuing to hold the mouse button down)
and dragging the mouse until the next desired region is selected.

4. Repeating as necessary.

Selections can be extended by holding down the SHIFT key and selecting additional
cells.

Programmatic Selection

Programmers create select multiple disjoint cell regions by providing a 2 x n element
array of column/row pairs specifying the cells to act upon as the value of the
SET_TABLE_SELECT keyword to WIDGET_CONTROL.
Using Table Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 943
Data Types

Table data can be of any IDL data type or types.

Single Data Type

If all of the table data is of the same data type, the table value is specified as a two-
dimensional array.

Values returned by the GET_VALUE keyword to WIDGET_CONTROL are either a
two-dimensional array (for full tables or selections when the table is in standard
selection mode) or a one-dimensional array (for tables in disjoint selection mode).
(See “Retrieving Data” on page 943 for details.)

Multiple Data Types

If the table contains data of several data types, the table value is specified as a vector
of structures. All of the structures must be of the same type, and must contain one
field for each row (if the COLUMN_MAJOR keyword to WIDGET_TABLE is set)
or column (if the ROW_MAJOR keyword to WIDGET_TABLE is set; this is the
default) in the table.

Values returned by the GET_VALUE keyword to WIDGET_CONTROL are either a
vector of structures (for full tables or selections when the table is in standard selection
mode) or a single structure with one field per cell (for selections when the table is in
disjoint selection mode). (See “Retrieving Data” on page 943 for details.)

Retrieving Data

To retrieve data from a table widget, use the GET_VALUE keyword to
WIDGET_CONTROL. You can retrieve the entire contents of the table or the
contents of either a standard or disjoint selection. The format of the variable returned
by the GET_VALUE keyword depends on the type of data displayed in the table (see
“Data Types” on page 943) and the type of selection (see “Selection Modes” on
page 941).
Building IDL Applications Using Table Widgets

944 Chapter 30: Widget Application Techniques
Entire Table

To retrieve data from the entire table, use the following command:

WIDGET_CONTROL, table, GET_VALUE=table_value

where table is the widget ID of the table widget. The table_value variable will
contain either:

• an array with the same dimensions as the table, with one element per table cell,
if the table contains data of a single data type, or

• a vector of structures, with one structure per table row or column, if the table
contains structure data.

Standard Selection

To retrieve data for a group of selected cells, use the following command:

WIDGET_CONTROL, table, GET_VALUE=selection_value /USE_TABLE_SELECT

where table is the widget ID of the table widget. In standard selection mode, the
selection_value variable will contain either:

• an array with the same dimensions as the selection, with one element per
selected cell, if the table contains data of a single data type, or

• a vector of structures, with one structure per selected row or column, if the
table contains structure data.

Note
You can also set the USE_TABLE_SELECT keyword equal to a four-element array
of the form [left, top, right, bottom] containing the zero-based indices of the
columns and rows that should be selected.

To retrieve the list of selected cells, use the following command:

selected_cells = WIDGET_INFO(table, /TABLE_SELECT)

where table is the widget ID of the table widget. The selected_cells variable will
contain a four-element array of the form [left, top, right, bottom] containing the
zero-based indices of the columns and rows that are selected.
Using Table Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 945
Disjoint Selection

To retrieve data for a group of selected cells, use the following command:

WIDGET_CONTROL, table, GET_VALUE=selection_value, /USE_TABLE_SELECT

where table is the widget ID of the table widget. In disjoint selection mode, the
selection_value variable will contain either:

• a one-dimensional array of values, with one element per selected cell, if the
table contains data of a single data type, or

• a structure, with one field per selected cell, if the table contains structure data.

Note
You can also set the USE_TABLE_SELECT keyword equal to a 2 x n element
array of column/row pairs specifying the cells that should be selected.

To retrieve the list of selected cells, use the following command:

selected_cells = WIDGET_INFO(table, /TABLE_SELECT)

where table is the widget ID of the table widget. The selected_cells variable will
contain 2 x n array of column/row pairs containing the zero-based indices of the
selected cells.

Converting Between Cell List Formats

With the addition of the ability to create disjoint table selections in IDL 5.6, the
format of the list of selected cells returned by WIDGET_INFO was altered to
accommodate non-rectangular regions when disjoint selections are enabled. To
preserve backwards-compatibility, the format of the list was not changed for tables
using standard selection mode, which guarantees a rectangular selection region.

If your application allows the table widget to switch between standard and disjoint
selection mode, or if you have selection-handling routines that can be used with
tables in either mode, you may want to modify the rectangular selection values
returned for standard selections to match the lists of cells returned for disjoint
selections. The following is a template for such a utility function. It accepts a four-
element array of the form [left, top, right, bottom] containing the zero-based indices
of the columns and rows that are selected and converts it into a 2 x n array of
column/row pairs containing the zero-based indices the selected cells.

FUNCTION Make_Cell_List, Selection_Vector
num_cells = (Selection_Vector[2]-(Selection_Vector[0]-1)) * $
(Selection_Vector[3]-(Selection_Vector[1]-1))

return_arr = intarr(2,num_cells)
Building IDL Applications Using Table Widgets

946 Chapter 30: Widget Application Techniques
n=0
FOR i=Selection_Vector[1], Selection_Vector[3] DO BEGIN
FOR j=Selection_Vector[0], Selection_Vector[2] DO BEGIN

return_arr(n)=j
return_arr(n+1)=i
n=n+2

ENDFOR
ENDFOR
RETURN, return_arr

END

With this function compiled, you could retrieve the four-element selection array from
a standard selection and turn it into a 2 x n element array with the following
commands:

selected_cells = WIDGET_INFO(table, /TABLE_SELECT)
cell_list = Make_Cell_List(selected_cells)

where table is the widget ID of a table widget in standard selection mode.

To reform the array returned by

WIDGET_CONTROL, table, GET_VALUE=Selection_Value

for a standard selection into one-dimensional array like those returned for disjoint
selections, use the following command:

REFORM(Selection_Value, N_ELEMENTS(Selection_Value), 1)

Edit Mode

Edit mode allows a user to select and change the contents of a table cell. There are
numerous ways to enter and exit Edit mode, including:

• Clicking on an unselected cell, then typing any character. This replaces the
existing text with the new character.

• Clicking on an unselected cell, then typing a carriage return. This selects the
contents of the cell and positions the cursor at the right. A second carriage
return exits edit mode, making no changes.

• Double-clicking on an unselected cell. This selects the contents of the cell and
positions the cursor at the right.

• Clicking on a selected cell. This selects the contents of the cell and positions
the cursor at the right.

• Double-clicking on a selected cell. This positions the cursor at the position
where the mouse pointer was clicked.
Using Table Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 947
Example: Single Data Type Data

The following procedures build a simple application that allows the user to select data
from a table, plotting the data in a draw window and optionally displaying the data
values in a text widget. The user can switch the table between standard and disjoint
selection modes.

Note
This example is included in the file table_widget_example1.pro in the
examples/widgets subdirectory of the IDL distribution. You can either open the
file in an IDL editor window and compile and run the code using items on the Run
menu, or simply enter

table_widget_example1
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected.

; Event-handler routine
PRO table_widget_example1_event, ev

; Retrieve the anonymous structure contained in the user value of
; the top-level base widget.
WIDGET_CONTROL, ev.top, GET_UVALUE=stash

; Retrieve the table's selection mode and selection.
disjoint = WIDGET_INFO(stash.table, /TABLE_DISJOINT_SELECTION)
selection = WIDGET_INFO(stash.table, /TABLE_SELECT)

; Check to see whether a selection exists, setting the
; variable 'hasSelection' accordingly.
IF (selection[0] ne -1) THEN hasSelection = 1 $
ELSE hasSelection = 0

; If there is a selection, get the value.
IF (hasSelection) THEN WIDGET_CONTROL, stash.table, $
GET_VALUE=value, /USE_TABLE_SELECT

; The following sections define the application's reactions to
; various types of events.

; If the event came from the table, plot the selected data.
IF ((ev.ID eq stash.table) AND hasSelection) THEN BEGIN
WSET, stash.draw
PLOT, value

ENDIF

; If the event came from the 'Show Selected Data' button, display
Building IDL Applications Using Table Widgets

948 Chapter 30: Widget Application Techniques
; the data in the text widget.
IF ((ev.ID eq stash.b_value) AND hasSelection) THEN BEGIN
IF (disjoint eq 0) THEN BEGIN

WIDGET_CONTROL, stash.text, SET_VALUE=STRING(value, /PRINT)
ENDIF ELSE BEGIN

WIDGET_CONTROL, stash.text, SET_VALUE=STRING(value)
ENDELSE

ENDIF

; If the event came from the 'Show Selected Cells' button,
; display the selection information in the text widget. Use
; different displays for standard and disjoint selections.
IF ((ev.ID eq stash.b_select) AND hasSelection) THEN BEGIN
IF (disjoint eq 0) THEN BEGIN

; Create a string array containing the column and row
; values of the selected rectangle.
list0 = 'Standard Selection'
list1 = 'Left: ' + STRING(selection[0])
list2 = 'Top: ' + STRING(selection[1])
list3 = 'Right: ' + STRING(selection[2])
list4 = 'Bottom: ' + STRING(selection[3])
list = [list0, list1, list2, list3, list4]

ENDIF ELSE BEGIN
; Create a string array containing the column and row
; information for the selected cells.
n = N_ELEMENTS(selection)
list = STRARR(n/2+1)
list[0] = 'Disjoint Selection'
FOR j=0,n-1,2 DO BEGIN

list[j/2+1] = 'Column: ' + STRING(selection[j]) + $
', Row: ' + STRING(selection[j+1])

ENDFOR
ENDELSE
WIDGET_CONTROL, stash.text, SET_VALUE=list

ENDIF

; If the event came from the 'Change Selection Mode' button,
; change the table selection mode and the title of the button.
IF (ev.ID eq stash.b_change) THEN BEGIN
IF (disjoint eq 0) THEN BEGIN

WIDGET_CONTROL, stash.table, TABLE_DISJOINT_SELECTION=1
WIDGET_CONTROL, stash.b_change, $

SET_VALUE='Change to Standard Selection Mode'
ENDIF ELSE BEGIN

WIDGET_CONTROL, stash.table, TABLE_DISJOINT_SELECTION=0
WIDGET_CONTROL, stash.b_change, $

SET_VALUE='Change to Disjoint Selection Mode'
ENDELSE

ENDIF
Using Table Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 949
; If the event came from the 'Quit' button, close the
; application.
IF (ev.ID eq stash.b_quit) THEN WIDGET_CONTROL, ev.TOP, /DESTROY

END

; Widget creation routine.
PRO table_widget_example1

; Create data to be displayed in the table.
data = DIST(7)

; Create initial text to be displayed in the text widget.
help = ['Select data from the table below using the mouse.']

; Create the widget hierarchy.
base = WIDGET_BASE(/COLUMN)
subbase1 = WIDGET_BASE(base, /ROW)
draw = WIDGET_DRAW(subbase1, XSIZE=250, YSIZE=250)
subbase2 = WIDGET_BASE(subbase1, /COLUMN)
text = WIDGET_text(subbase2, XS=50, YS=8, VALUE=help, /SCROLL)
b_value = WIDGET_BUTTON(subbase2, VALUE='Show Selected Data')
b_select = WIDGET_BUTTON(subbase2, VALUE='Show Selected Cells')
b_change = WIDGET_BUTTON(subbase2, $
VALUE='Change to Disjoint Selection Mode')

b_quit = WIDGET_BUTTON(subbase2, VALUE='Quit')
table = WIDGET_TABLE(base, VALUE=data, /ALL_EVENTS)

; Realize the widgets.
WIDGET_CONTROL, base, /REALIZE

; Get the widget ID of the draw widget.
WIDGET_CONTROL, draw, GET_VALUE=drawID

; Create an anonymous structure to hold widget IDs. This
; structure becomes the user value of the top-level base
; widget.
stash = {draw:drawID, table:table, text:text, b_value:b_value, $

b_select:b_select, b_change:b_change, b_quit:b_quit}

; Set the user value of the top-level base and call XMANAGER
; to manage everything.
WIDGET_CONTROL, base, SET_UVALUE=stash
XMANAGER, 'table_widget_example1', base

END

The following things about this example are worth noting:
Building IDL Applications Using Table Widgets

950 Chapter 30: Widget Application Techniques
• It is important to check whether a selection exists before using
WIDGET_CONTROL to retrieve the selection.

• Data from disjoint selections is handled differently than data from standard
selections.

• For a relatively simple application, passing a group of widget IDs via the top-
level base widget’s user value allows the use of a single event routine rather
than separate event routines for each widget.

Example: Structure Data

The following procedures build a simple application that displays the same structure
data in two table widgets; one in row-major format and one in column-major format.

Note
This example is included in the file table_widget_example2.pro in the
examples/widgets subdirectory of the IDL distribution. You can either open the
file in an IDL editor window and compile and run the code using items on the Run
menu, or simply enter

table_widget_example2
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected.

; Event-handler routine for 'Quit' button
PRO table_widget_example2_quit_event, ev

WIDGET_CONTROL, ev.TOP, /DESTROY
END

; Widget creation routine.
PRO table_widget_example2

; Create some structure data.
d0={planet:'Mercury', orbit:0.387, radius:2439, moons:0}
d1={planet:'Venus', orbit:0.723, radius:6052, moons:0}
d2={planet:'Earth', orbit:1.0, radius:6378, moons:1}
d3={planet:'Mars', orbit:1.524, radius:3397, moons:2}

; Combine structure data into a vector of structures.
data = [d0, d1, d2, d3]

; Create labels for the rows or columns of the table.
labels = ['Planet', 'Orbit Radius (AU)', 'Radius (km)', 'Moons']

; To make sure the table looks nice on all platforms,
; set all column widths to the width of the longest string
Using Table Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 951
; that can be a header.
max_strlen = strlen('Orbit Radius (AU)')
maxwidth = max_strlen * !d.x_ch_size + 6 ; ... + 6 for padding

; Create base widget, two tables (column- and row-major,
; respectively), and 'Quit' button.
base = WIDGET_BASE(/COLUMN)
table1 = WIDGET_TABLE(base, VALUE=data, /COLUMN_MAJOR, $
ROW_LABELS=labels, COLUMN_LABELS='', $
COLUMN_WIDTHS=maxwidths, /RESIZEABLE_COLUMNS)

table2 = WIDGET_TABLE(base, VALUE=data, /ROW_MAJOR, $
ROW_LABELS='', COLUMN_LABELS=labels, /RESIZEABLE_COLUMNS)

b_quit = WIDGET_BUTTON(base, VALUE='Quit', $
EVENT_PRO='table_widget_example2_quit_event')

; Realize the widgets.
WIDGET_CONTROL, base, /REALIZE

; Retrieve the widths of the columns of the first table.
; Note that we must realize the widgets before retrieving
; this value.
col_widths = WIDGET_INFO(table1, /COLUMN_WIDTHS)

; We need the following trick to get the first column (which is
; a header column in our first table) to reset to the width of
; our data columns. The initial call to keyword COLUMN_WIDTHS
; above only set the data column widths.
WIDGET_CONTROL, table1, COLUMN_WIDTHS=col_widths[0], $
USE_TABLE_SELECT=[-1,-1,3,3]

; This call gives table 2 the same cell dimensions as table 1
WIDGET_CONTROL, table2, COLUMN_WIDTHS=col_widths[0], $
USE_TABLE_SELECT=[-1,-1,3,3]

; Call XMANAGER to manage the widgets.
XMANAGER, 'table_widget_example2', base

END

The following things about this example are worth noting:

• By default, column and row titles will contain the index of the column or row.
To remove either column or row titles entirely, set the value of the
COLUMN_LABELS or ROW_LABELS keyword to an empty string ('').

• Setting the width of the row-title column of the row-major table requires us to
select column -1 using the USE_TABLE_SELECT keyword.
Building IDL Applications Using Table Widgets

952 Chapter 30: Widget Application Techniques
Using Tab Widgets

Tab widgets create a “tabbed” interface that allows the user to select one of a list of
rectangular display areas to be displayed in a single space (the tab set). The displayed
interface elements are contained in base widgets — that is, selecting a tab displays
the contents of a specified base widget within the tabbed interface. See
“WIDGET_TAB” in the IDL Reference Guide manual for a complete description of
the function used to create tab widgets.

This section discusses the following topics:

• “Example: A Simple Tab Widget” on page 952

• “Tab Sizing and Multiline Behavior” on page 954

• “Example: Retrieving Values” on page 956

Example: A Simple Tab Widget

The following procedures build a simple tabbed interface with three tabs containing a
variety of other widgets.

Note
This example is included in the file tab_widget_example1.pro in the
examples/widgets subdirectory of the IDL distribution. You can either open the
file in an IDL editor window and compile and run the code using items on the Run
menu, or simply enter

tab_widget_example1
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected.

Figure 30-14: A tab widget displaying a tab set with three tabs.
Using Tab Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 953
; Simple event-handler routine
PRO tab_widget_example1_event, ev

; Retrieve the anonymous structure contained in the user value of
; the top-level base widget.
WIDGET_CONTROL, ev.TOP, GET_UVALUE=stash

; If the user clicked the 'Done' button, destroy the widgets.
IF (ev.ID EQ stash.bDone) THEN WIDGET_CONTROL, ev.TOP, /DESTROY

END

; Widget creation routine.
PRO tab_widget_example1, LOCATION=location

; Create the top-level base and the tab.
wTLB = WIDGET_BASE(/COLUMN, /BASE_ALIGN_TOP)
wTab = WIDGET_TAB(wTLB, LOCATION=location)

; Create the first tab base, containing a label and two
; button groups.
wT1 = WIDGET_BASE(wTab, TITLE='TAB 1', /COLUMN)
wLabel = WIDGET_LABEL(wT1, VALUE='Choose values')
wBgroup1 = CW_BGROUP(wT1, ['one', 'two', 'three'], $
/ROW, /NONEXCLUSIVE, /RETURN_NAME)

wBgroup2 = CW_BGROUP(wT1, ['red', 'green', 'blue'], $
/ROW, /EXCLUSIVE, /RETURN_NAME)

; Create the second tab base, containing a label and
; a slider.
wT2 = WIDGET_BASE(wTab, TITLE='TAB 2', /COLUMN)
wLabel = WIDGET_LABEL(wT2, VALUE='Move the Slider')
wSlider = WIDGET_SLIDER(wT2)

; Create the third tab base, containing a label and
; a text-entry field.
wT3 = WIDGET_BASE(wTab, TITLE='TAB 3', /COLUMN)
wLabel = WIDGET_LABEL(wT3, VALUE='Enter some text')
wText= WIDGET_TEXT(wT3, /EDITABLE, /ALL_EVENTS)

; Create a base widget to hold the 'Done' button, and
; the button itself.
wControl = WIDGET_BASE(wTLB, /ROW)
bDone = WIDGET_BUTTON(wControl, VALUE='Done')

; Create an anonymous structure to hold widget IDs. This
; structure becomes the user value of the top-level base
; widget.
stash = { bDone:bDone }
Building IDL Applications Using Tab Widgets

954 Chapter 30: Widget Application Techniques
; Realize the widgets, set the user value of the top-level
; base, and call XMANAGER to manage everything.
WIDGET_CONTROL, wTLB, /REALIZE
WIDGET_CONTROL, wTLB, SET_UVALUE=stash
XMANAGER, 'tab_widget_example1', wTLB, /NO_BLOCK

END

Calling tab_widget_example1 with the LOCATION keyword set to an integer
value between 0 and 4 displays the same interface with the tabs placed on different
sides.

As with many of the examples in this chapter, this one is designed to merely exhibit
the features of the tab widget. Most of the useful things you might do with a tab
widget take place in the event handling routines for the individual widgets displayed
on each tab; see “Example: Retrieving Values” on page 956 for a more complicated
example that stores the values of the individual widgets for later use.

Tab Sizing and Multiline Behavior

The size of the rectangular area of the tab display (where individual widgets are
placed) is determined by the size of the largest base widget included in the tab set.
The size of the “tab” itself (the curved area that sticks out from the rectangular base
and contains the tab’s title) is determined by a number of factors, including the size of
other tabs, the presence of the LOCATION and MULTILINE keywords, and the
platform on which the widget application is running.

IDL attempts to create a tab that is large enough to contain the tab’s title (which is set
via the TITLE keyword to WIDGET_BASE for the base widget that has the tab
widget as its parent). This, coupled with the fact that the value of the MULTILINE
keyword has different meanings on different platforms (see “WIDGET_TAB” in the
IDL Reference Guide manual for details), leads to the following behaviors:

Windows Behavior

Tabs are created to show the entire text of the TITLE keyword to WIDGET_BASE.

If LOCATION = 0 or 1

Setting the LOCATION keyword to WIDGET_TAB equal to zero places the tabs on
the top of the tab set; setting LOCATION to one places the tabs on the bottom of the
tab set. In either case, if the MULTILINE keyword is set equal to zero, and the width
of the tabs exceeds the width of the largest child base widget, the tabs are shown with
scroll buttons. This allows the user to scroll through the tabs while the base widget
stays immobile.
Using Tab Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 955
If the MULTILINE keyword is set to a positive value, the tabs will be placed in as
many rows as are necessary in order to display the entire text of each tab (limited by
the width of the largest base, see note below).

If LOCATION = 2 or 3

Setting the LOCATION keyword to WIDGET_TAB equal to two places the tabs on
the left edge of the tab set; setting LOCATION equal to three places the tabs on the
right edge of the tab set. In either case, a multiline display is always used if the width
of the tabs exceeds the height of the largest child base widget, even if the
MULTILINE keyword is set equal to zero. Tabs are placed in as many rows as are
necessary in order to display the entire text of each tab (limited by the height of the
largest base, see note below).

Note
The width or height of the tab widget is based on the width or height of the largest
base widget that is a child of the tab widget. If the width of the text of one tab
exceeds the width or height of the tab widget, the text will be truncated even if the
MULTILINE keyword is set.

Motif Behavior

Motif platforms interpret the value of the MULTILINE keyword to be the maximum
number of tabs to display per row. If the keyword is not specified or is explicitly set
equal to zero, all tabs are placed on the same row. Tabs are created to show the entire
text of the TITLE keyword to WIDGET_BASE. The text of the tabs is not truncated
in order to make the tabs fit the space available, unless the text of a single tab exceeds
the width or height of the largest base widget that is a child of the tab widget. This
means that if the MULTILINE keyword is set to any value other than one, some tabs
may not be displayed.

Tips for Tab Layout

There is no good way to determine in advance the best setting for the MULTILINE
keyword to ensure an appropriate tab display. In most cases, however, the following
suggestions should enable you to create a tab display that is useful on both Windows
and UNIX platforms.

• Keep tab titles short. If you need a long description of the contents of a tab, use
a label widget in the tab’s base widget rather than creating a long title.
Building IDL Applications Using Tab Widgets

956 Chapter 30: Widget Application Techniques
• Set the MULTILINE keyword equal to a value greater than one. This allows
you to tune the appearance of your tab set to the Motif platform without
changing the appearance under Windows, since any value greater than zero
will result in a multiline tab display under Windows.

• If practical, place the tabs along the longest dimension of the tab widget, as
determined by the size of the largest base widget.

Example: Retrieving Values

The following example builds on “Example: A Simple Tab Widget” on page 952 by
adding the following features:

• “Next” and “Previous” buttons that switch the tab display to the next (or
previous) tab in the tab set.

• A mechanism for saving the values of the widgets in the tab interface.
Implementing such a mechanism allows the user to view and change all of the
settings accessible via the tab widget before committing any of them.

• A mechanism for canceling — exiting from the tabbed interface without
committing any changes made via the tab interface.

Note
This example is included in the file tab_widget_example2.pro in the
examples/widgets subdirectory of the IDL distribution. You can either open the
file in an IDL editor window and compile and run the code using items on the Run
menu, or simply enter

tab_widget_example2
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected.

; Main event-handler routine
PRO tab_widget_example2_event, ev

; Retrieve the anonymous structure contained in the user value of
; the top-level base widget.
WIDGET_CONTROL, ev.TOP, GET_UVALUE=stash

; Retrieve the total number of tabs in the tab widget and
; the index of the current tab.
numTabs = WIDGET_INFO(stash.TopTab, /TAB_NUMBER)
thisTab = WIDGET_INFO(stash.TopTab, /TAB_CURRENT)

; If the current tab is the first tab, desensitize the
; 'Previous' button.
Using Tab Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 957
IF (thisTab EQ 0) THEN BEGIN
WIDGET_CONTROL, stash.bPrev, SENSITIVE=0

ENDIF ELSE BEGIN
WIDGET_CONTROL, stash.bPrev, SENSITIVE=1

ENDELSE

; If the current tab is the last tab, desensitize the
; 'Next' button.
IF (thisTab EQ numTabs - 1) THEN BEGIN
WIDGET_CONTROL, stash.bNext, SENSITIVE=0

ENDIF ELSE BEGIN
WIDGET_CONTROL, stash.bNext, SENSITIVE=1

ENDELSE

; If the user clicked either the 'Next' or 'Previous' button,
; cycle through the tabs by calling the 'TWE2_SwitchTab'
; procedure.
IF (ev.ID EQ stash.bNext) THEN $
TWE2_SwitchTab, thisTab, numTabs, stash, /NEXT

IF (ev.ID EQ stash.bPrev) THEN $
TWE2_SwitchTab, thisTab, numTabs, stash, /PREV

; If the user clicked the 'Done' button, print out the values of
; the various widgets, as contained in the 'retStruct'
; structure. In a real application, this step would probably
; adjust settings in the application to reflect the changes made
; by the user. Finally, destroy the widgets.
IF (ev.ID EQ stash.bDone) THEN BEGIN
PRINT, 'BGroup1 selected indices: ', stash.retStruct.BGROUP1
PRINT, 'BGroup2 selected index: ', stash.retStruct.BGROUP2
PRINT, 'Slider value: ', stash.retStruct.SLIDER
PRINT, 'Text value: ', stash.retStruct.TEXT
WIDGET_CONTROL, ev.TOP, /DESTROY

ENDIF

; If the user clicked the 'Cancel' button, print out a message
; and destroy the widgets. In a real application, this step would
; allow the user to discard any changes made via the tabbed
; interface before sending them to the application.
IF (ev.ID EQ stash.bCancel) THEN BEGIN
PRINT, 'Update Cancelled'
WIDGET_CONTROL, ev.TOP, /DESTROY

ENDIF

END

; Event function to store the value of a widget in the correct
; field of the 'retStruct' structure. Note that rather than
; referring to the structure fields by name, we refer to them
Building IDL Applications Using Tab Widgets

958 Chapter 30: Widget Application Techniques
; by index. This allows us to save the index value of the
; appropriate structure field in the user value of the widget
; that generates the event, which in turn allows us to use the
; same function to save the values of all of the widgets whose
; values we want to save.
;
FUNCTION TWE2_saveValue, ev

; Get the 'stash' structure.
WIDGET_CONTROL, ev.TOP, GET_UVALUE=stash
; Get the value and user value from the widget that
; generated the event.
WIDGET_CONTROL, ev.ID, GET_VALUE=val, GET_UVALUE=uval
; Set the value of the correct field in the 'retStruct'
; structure, using the field's index number (stored in
; the widget's user value).
stash.retStruct.(uval) = val
; Reset the top-level widget's user value to the updated
; 'stash' structure.
WIDGET_CONTROL, ev.TOP, SET_UVALUE=stash

END

; Procedure to cycle through the tabs when the user clicks
; the 'Next' or 'Previous' buttons.
PRO TWE2_SwitchTab, thisTab, numTabs, stash, NEXT=NEXT, PREV=PREV

; If user clicked the 'Next' button, we can just add one to
; the current tab number and use the MOD operator to cycle
; back to the first tab.
IF KEYWORD_SET(NEXT) THEN nextTab = (thisTab + 1) MOD numTabs

; If the user clicked the 'Previous' button, we must explicitly
; handle the case when the user is on the first tab.
IF KEYWORD_SET(PREV) THEN BEGIN
IF (thisTab EQ 0) THEN BEGIN

nextTab = numTabs - 1
ENDIF ELSE BEGIN

nextTab = (thisTab - 1)
ENDELSE

ENDIF

; Display the selected tab.
WIDGET_CONTROL, stash.TopTab, SET_TAB_CURRENT=nextTab

END

; Widget creation routine.
PRO tab_widget_example2, LOCATION=location

; Create the top-level base and the tab.
Using Tab Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 959
wTLB = WIDGET_BASE(/COLUMN, /BASE_ALIGN_TOP)
wTab = WIDGET_TAB(wTLB, LOCATION=location)

; Create the first tab base, containing a label and two
; button groups. For the button groups, set the user value
; equal to the index of the field in the 'retStruct' structure
; that will hold the widget's value. Specify the
; 'TWE2_saveValue' function as the event-handler.
wT1 = WIDGET_BASE(wTab, TITLE='TAB 1', /COLUMN)
wLabel = WIDGET_LABEL(wT1, VALUE='Choose values')
wBgroup1 = CW_BGROUP(wT1, ['one', 'two', 'three'], $
/ROW, /NONEXCLUSIVE, /RETURN_NAME, UVALUE=0, $
EVENT_FUNC='TWE2_saveValue')

wBgroup2 = CW_BGROUP(wT1, ['red', 'green', 'blue'], $
/ROW, /EXCLUSIVE, /RETURN_NAME, UVALUE=1, $
EVENT_FUNC='TWE2_saveValue')

; Create the second tab base, containing a label and
; a slider. For the slider, set the user value equal
; to the index of the field in the 'retStruct' structure
; that will hold the widget's value. Specify the
; 'TWE2_saveValue' function as the event-handler.
wT2 = WIDGET_BASE(wTab, TITLE='TAB 2', /COLUMN)
wLabel = WIDGET_LABEL(wT2, VALUE='Move the Slider')
wSlider = WIDGET_SLIDER(wT2, UVALUE=2, $
EVENT_FUNC='TWE2_saveValue')

; Create the third tab base, containing a label and
; a text-entry field. for the text widget, set the user
; value equal to the index of the field in the 'retStruct'
; structure that will hold the widget's value. Specify the
; 'TWE2_saveValue' function as the event-handler.
wT3 = WIDGET_BASE(wTab, TITLE='TAB 3', /COLUMN)
wLabel = WIDGET_LABEL(wT3, VALUE='Enter some text')
wText= WIDGET_TEXT(wT3, /EDITABLE, /ALL_EVENTS, UVALUE=3, $
EVENT_FUNC='TWE2_saveValue')

; Create a base widget to hold the navigation and 'Done' buttons,
; and the buttons themselves. Since the first tab is displayed
; initially, make the 'Previous' button insensitive to start.
wControl = WIDGET_BASE(wTLB, /ROW)
bPrev = WIDGET_BUTTON(wControl, VALUE='<< Prev', SENSITIVE=0)
bNext = WIDGET_BUTTON(wControl, VALUE='Next >>')
bDone = WIDGET_BUTTON(wControl, VALUE='Done')
bCancel = WIDGET_BUTTON(wControl, VALUE='Cancel')

; Create an anonymous structure to hold the widget value data
; we are interested in retrieving. Note that we will refer to
; the structure fields by their indices rather than their
Building IDL Applications Using Tab Widgets

960 Chapter 30: Widget Application Techniques
; names, so order is important.
retStruct={ BGROUP1:[0,0,0], BGROUP2:0, SLIDER:0L, TEXT:'empty'}

; Create an anonymous structure to hold widget IDs and the
; data structure. This structure becomes the user value of the
; top-level base widget.
stash = { bDone:bDone, bCancel:bCancel, bNext:bNext, $

bPrev:bPrev, TopTab:wTab, retStruct:retStruct}

; Realize the widgets, set the user value of the top-level
; base, and call XMANAGER to manage everything.
WIDGET_CONTROL, wTLB, /REALIZE
WIDGET_CONTROL, wTLB, SET_UVALUE=stash
XMANAGER, 'tab_widget_example2', wTLB, /NO_BLOCK

END

The following things about this example are worth noting:

• The retStruct structure is an example of the kind of information you might
pass out of a tab widget, back to a larger widget application. Using an
approach like the one here allows the user to set a group of values before
sending any of them to the larger application. This may be more efficient than
updating the larger application “on the fly” as the user makes changes to the
widgets in the tab interface.

• Similarly, if the user’s changes are not sent to the larger application until he or
she clicks the “Done” button, it is important to provide a way for the user to
cancel the operation entirely, without sending any changes.

• In most cases, when we refer to a field in a structure, we refer to it by its name.
The event function TWE2_saveValue refers to the fields of the retStruct
structure by their indices instead. We do this because while it is not possible to
pass the field name in a variable, it is possible to pass the integer index value.
Passing the index value of the appropriate field in the retStruct structure as
the user value of the widget whose value is being saved allows us to write a
single TWE2_saveValue function, rather than one function for each field in
the retStruct structure.

• The “Next” and “Previous” buttons in this example imply that there is an order
to the actions performed using the tab set. While there is no order in this
example, it is easy to imagine a situation in which values from one tab would
influence actions taken on another. You could even require that some action be
taken on a given tab before a later tab could be displayed.
Using Tab Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 961
Using Tree Widgets

Tree widgets display information in a hierarchical structure or tree. Branches and
sub-branches of the tree can be expanded and collapsed (either programmatically or
by the user) to display or hide the information they contain. See “WIDGET_TREE”
in the IDL Reference Guide manual for a complete description of the function used to
create tree widgets.

This section discusses the following topics:

• “Types of Tree Widgets” on page 962

• “Example: A Simple Tree” on page 962

• “Setting the Tree Selection State” on page 964

• “Making a Tree Entry Visible” on page 965

• “Replacing the Default Bitmaps” on page 965

Figure 30-15: A tree widget.
Building IDL Applications Using Tree Widgets

962 Chapter 30: Widget Application Techniques
Types of Tree Widgets

Tree widgets behave slightly differently depending on whether their parent widget is
a base widget or another tree widget:

• If the tree widget’s Parent is a base widget, the tree widget becomes the root of
a new tree widget hierarchy. The tree widget itself is not displayed, but it
becomes the parent widget for other tree widgets that are displayed. This type
of tree widget is referred to as a root node. Note that a tree widget that is a root
node cannot be the parent widget for any widget except another tree widget.

• If the tree widget’s Parent is an existing tree widget, the new tree widget
becomes a branch node or leaf node in the existing tree widget. In this case:

• If the FOLDER keyword to WIDGET_TREE is present, the node becomes
a branch node. Tree widgets that are branch nodes can become the parent
widget of other tree widgets (but not of any other type of widget).

• If the FOLDER keyword to WIDGET_TREE is not present, the node
becomes a leaf node. Leaf nodes cannot serve as the parent widget for any
other widget.

Example: A Simple Tree

The following example builds a simple tree widget (shown in Figure 30-15). Double-
clicking on the leaf nodes toggles the value of the displayed text between the values
“On” and “Off.”

Note
This example is included in the file tree_widget_example.pro in the
examples/widgets subdirectory of the IDL distribution. You can either open the
file in an IDL editor window and compile and run the code using items on the Run
menu, or simply enter

tree_widget_example
at the IDL command prompt. See “Running the Example Code” on page 824 if IDL
does not run the program as expected.

; Event handler routine.
PRO tree_widget_example_event, ev

; We use widget user values to determine what action to take.
; First retrieve the user value (if any) from the widget that
; generated the event.

WIDGET_CONTROL, ev.ID, GET_UVALUE=uName
Using Tree Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 963
; If the widget that generated the event has a user value, check
; its value and take the appropriate action.
IF (N_ELEMENTS(uName) NE 0) THEN BEGIN
IF (uName EQ 'LEAF') THEN BEGIN

; Make sure the value does not change when the leaf node
; is selected with a single click.
IF (ev.CLICKS EQ 2) THEN TWE_ToggleValue, ev.ID

ENDIF
IF (uName EQ 'DONE') THEN WIDGET_CONTROL, ev.TOP, /DESTROY

ENDIF

END

; Routine to change the value of a leaf node's text.
PRO TWE_ToggleValue, widID

; Get the current value.
WIDGET_CONTROL, widID, GET_VALUE=curVal

; Split the string at the colon character.
full_string = STRSPLIT(curVal, ':', /EXTRACT)

; Check the value of the text after the colon, and toggle
; to the new value.
full_string[1] = (full_string[1] EQ ' Off') ? ': On' : ': Off'

; Reset the value of the leaf node's text.
WIDGET_CONTROL, widID, SET_VALUE=STRJOIN(full_string)

END

; Widget creation routine.
PRO tree_widget_example

; Start with a base widget.
wTLB = WIDGET_BASE(/COLUMN, TITLE='Tree Example')

; The first tree widget has the top-level base as its parent.
; The visible tree widget branches and leaves will all be
; descendants of this tree widget.
wTree = WIDGET_TREE(wTLB)

; Place a folder at the root level of the visible tree.
wtRoot = WIDGET_TREE(wTree, VALUE='Root', /FOLDER, /EXPANDED)

; Create leaves and branches. Note that we set the user value of
; every leaf node (tree widgets that do not have the FOLDER
; keyword set) equal to 'LEAF'. We use this in the event handler
Building IDL Applications Using Tree Widgets

964 Chapter 30: Widget Application Techniques
; to determine whether or not to change the text value.
wtLeaf11 = WIDGET_TREE(wtRoot, VALUE='Setting 1-1: Off', $
UVALUE='LEAF')

wtBranch12 = WIDGET_TREE(wtRoot, VALUE='Branch 1-2', $
/FOLDER, /EXPANDED)

wtLeaf121 =WIDGET_TREE(wtBranch12, VALUE='Setting 1-2-1: Off', $
UVALUE='LEAF')

wtLeaf122 =WIDGET_TREE(wtBranch12, VALUE='Setting 1-2-2: Off', $
UVALUE='LEAF')

wtLeaf13 = WIDGET_TREE(wtRoot, VALUE='Setting 1-3: Off', $
UVALUE='LEAF')

wtLeaf14 = WIDGET_TREE(wtRoot, VALUE='Setting 1-4: Off', $
UVALUE='LEAF')

; Create a 'Done' button, setting its user value for use in the
; event handler.
wDone = WIDGET_BUTTON(wTLB, VALUE="Done", UVALUE='DONE')

; Realize the widgets and run XMANAGER to manage them.
WIDGET_CONTROL, wTLB, /REALIZE
XMANAGER, 'tree_widget_example', wTLB, /NO_BLOCK

END

As with many of the examples in this chapter, this one is designed to merely exhibit
the features of the tree widget. Most of the useful things you might do with a tree
widget take place in the event handling routines for the leaf nodes; whereas in this
example clicking on a leaf simply changes the displayed text value, in a real
application more complicated things might take place. Alternately, you might use a
tree widget for display purposes only, in which case user interaction would be limited
to expanding and collapsing the branches.

Setting the Tree Selection State

You can programmatically select or deselect nodes in a tree widget hierarchy using
the SET_TREE_SELECT keyword to WIDGET_CONTROL. Selecting a node or
nodes visually highlights the node on the tree display. In the above example, placing
the following command just above the call to XMANAGER:

WIDGET_CONTROL, wtLeaf11, /SET_TREE_SELECT

would cause the first leaf node to be highlighted when the widget tree was first
displayed.
Using Tree Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 965
Making a Tree Entry Visible

If you tree is large or has many branches, you may need to explicitly bring a given
node to the user’s attention. You can do this using the SET_TREE_VISIBLE
keyword to WIDGET_CONTROL:

WIDGET_CONTROL, wTreeNode, /SET_TREE_VISIBLE

were wTreeNode is any node attached to a tree widget — that is, any tree widget that
has another tree widget as its parent widget. Setting this keyword has two possible
effects:

1. If the specified node is inside a collapsed folder, the folder and all folders
above it are expanded to reveal the node.

2. If the specified node is in a portion of the tree that is not currently visible
because the tree has scrolled within the parent base widget, the tree view
scrolls so that the selected node is at the top of the base widget.

Use of this keyword does not affect the tree widget selection state.

Replacing the Default Bitmaps

By default, tree widgets use bitmap images of a folder and a single piece of paper as
the icons representing branch and leaf nodes in a tree widget hierarchy. You can
modify the look of the tree widget by supplying your own bitmap for a given node.
Set the BITMAP keyword to WIDGET_TREE equal to a 16 x 16 x 3 array that
contains a 24-bit color image.

For example, suppose you have a 16 x 16 pixel TrueColor icon stored in a TIFF file.
The following commands make the image the icon used for the root node of a tree
widget hierarchy:

myIcon = READ_TIFF('/path_to/myicon.tif', INTERLEAVE=2)
wtRoot = WIDGET_TREE(wTree, /FOLDER, BITMAP=myIcon)

Note the use of the INTERLEAVE keyword to ensure that the resulting image array
has dimensions 16 x 16 x 3. Depending on your image file format, you may need to
modify the image array in other ways.

Using Images from the IDL Distribution

The /resources/bitmaps subdirectory of the IDL distribution contains a selection
of 16-color (4-bit), 16 x 16 pixel icon images. To use these images as bitmaps in a
tree widget, you must convert them to 16 x 16 x 3 (24-bit color) arrays.
Building IDL Applications Using Tree Widgets

966 Chapter 30: Widget Application Techniques
The following code snippet loads the camera icon stored in
IDLDIR/resources/bitmaps/camera.bmp into a 16 x 16 x 3 array:

; Create a 24-bit image array.
imageRGB = BYTARR(16,16,3,/NOZERO)
; Read in the bitmap.
file=FILEPATH('camera.bmp', SUBDIR=['resource', 'bitmaps'])
image8 = READ_BMP(file, Red, Green, Blue)
; Pass the image through the color table
imageRGB[0,0,0] = Red[image8]
imageRGB[0,0,1] = Green[image8]
imageRGB[0,0,2] = Blue[image8]

To use the camera icon in a tree widget, you would specify the imageRGB variable as
the value of the BITMAP keyword to WIDGET_TREE.
Using Tree Widgets Building IDL Applications

Chapter 30: Widget Application Techniques 967
Enhancing Widget Application Usability

Implementing features such as tabbing and keyboard accelerators into applications
that require extensive user-interaction with widget elements can improve application
usability. This allows power-users to quickly make selections and initiate actions
using the keyboard instead of the mouse. See the following sections for details:

• “Tabbing in Widget Applications” in the following section describes the
tabbing functionality and the differences in this functionality between
platforms.

• “Assigning Accelerators in Widget Applications” on page 974 describes
implementing keyboard accelerators for button widgets including menu items.

Tabbing in Widget Applications

Microsoft Windows and UNIX platforms support using the Tab key to navigate
between IDL widgets (except draw widgets, label widgets and property sheet widgets
on Windows). Under Windows, the TAB_MODE keyword determines how IDL
widgets are affected by tabbing in an application. Under UNIX, the Motif library
controls what widgets can receive and lose focus through tabbing. The TAB_MODE
keyword is ignored when running a widget application on the UNIX platform.

Note
It is not possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

The following table highlights other differences in tabbing functionality between the
two platforms.

Widget Description

 WIDGET_BUTTON
(Grouped, exclusive
button widgets, also
known as radio
buttons)

• On Windows – radio buttons can receive and lose
focus through tabbing as long as there is a selected
button within the group. Use the arrow keys to
change the selection within the group.

• On UNIX — the Motif library controls tabbing
functionality.

Table 30-1: Tabbing Behavior in Windows and UNIX
Widget Applications
Building IDL Applications Enhancing Widget Application Usability

968 Chapter 30: Widget Application Techniques
Note
WIDGET_LABEL, WIDGET_PROPERTYSHEET, WIDGET_DRAW, and menu-
related widgets do not support receiving or losing focus through tabbing. See the
TAB_MODE keyword for each widget in the IDL Reference Guide for special
behavior and navigation notes.

WIDGET_BUTTON
(Grouped, non-
exclusive button
widgets also known as
check boxes)

• On Windows — toggle buttons (or check boxes) can
individually receive and lose focus through tabbing.
Use the Space key to select or deselect a check box.

• On UNIX — the Motif library controls tabbing
functionality.

WIDGET_DROPLIST • On Windows — droplist widgets can receive and lose
focus through tabbing.

• On UNIX — the Motif library controls tabbing
functionality.

WIDGET_TABLE • On Windows — table widgets can receive and lose
focus through tabbing, but the focus is not clearly
depicted.

• On UNIX — the Motif library controls tabbing
functionality.

WIDGET_TREE • On Windows — tree widgets can receive and lose
focus through tabbing. Use the arrow keys to select
higher or lower level nodes.

• On UNIX — the Motif library controls tabbing
functionality.

Widget Description

Table 30-1: Tabbing Behavior in Windows and UNIX
Widget Applications (Continued)
Enhancing Widget Application Usability Building IDL Applications

Chapter 30: Widget Application Techniques 969
Defining Tabbing Behavior in a Windows Application

The TAB_MODE keyword provides control over tabbing behavior in a Windows
application. This keyword controls navigation by specifying how a given widget
should respond to the Tab key.

Allowable values are:

Note
Widgets including top level bases have a TAB_MODE value of zero by default.

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

Many compound widgets also support the TAB_MODE keyword. See each CW_*
widget in the IDL Reference Guide for more information. TAB_MODE is also
supported when using the GUI Builder. See Chapter 27, “Using the IDL GUIBuilder”
in the Building IDL Applications manual for details.

Value Description

0 Disable navigation onto or off of the widget. This is the default
unless the TAB_MODE has been set on a parent base. Child
widgets automatically inherit the tab mode of the parent base as
described in “Inheriting the TAB_MODE Value” on page 971.

1 Enable navigation onto and off of the widget.

2 Navigate only onto the widget.

3 Navigate only off of the widget.

Table 30-2: TAB_MODE Keyword Options
Building IDL Applications Enhancing Widget Application Usability

970 Chapter 30: Widget Application Techniques
Navigation Among Widgets Using Tabbing

Navigation among widgets follows the widget hierarchy. Although it is not possible
to specify a tab order, the widget tree hierarchy provides a natural progression among
the widgets. Traversal is depth-first, meaning that once a widget receives focus
through tabbing, additional tabbing will navigate through the interior nodes of the
widget if possible before traversing to the next widget.

The TAB_MODE is either inherited from a parent base or explicitly set on a widget.
However, to understand the effective range of a TAB_MODE setting, the
TAB_MODE keyword value and the current focus must be considered.

• Setting TAB_MODE on a top level base — this setting is inherited by all lower
level bases and child widgets on which TAB_MODE is not explicitly set.

• Setting TAB_MODE on an intermediate base — this setting is inherited by
child widgets if TAB_MODE is not explicitly set on a widget. For example, if
the top level base TAB_MODE=0, but the base associated with a group of
buttons has a TAB_MODE=1, then when any of the buttons in the group is
selected, tabbing will navigate among the buttons. If focus is anywhere other
than on this base’s elements, tabbing is disabled.

• Setting TAB_MODE on a widget — this setting affects tabbing capabilities
only when the widget has focus. For example, if the parent base has a
TAB_MODE=1 (enabling tabbing), but a slider widget has a TAB_MODE=3,
then the slider cannot receive focus through tabbing, it can only lose focus.

Note
Depressing the Tab key navigates down the widget hierarchy or to the right.
Depressing Shift+Tab navigates up the widget hierarchy or to the left.

Note
The TAB_MODE keyword is ignored when an application is run under UNIX.

Specifying and Inheriting TAB_MODE

The TAB_MODE keyword is allowed in most widget creation routines with the
exception of WIDGET_LABEL, WIDGET_PROPERTYSHEET, and
WIDGET_DRAW. The TAB_MODE keyword also cannot be explicitly set for the
following widgets:

• Grouped, exclusive button widgets (radio buttons)

• Menu items or menu bases
Enhancing Widget Application Usability Building IDL Applications

Chapter 30: Widget Application Techniques 971
Attempting to set TAB_MODE on these widgets will generate an error.

Inheriting the TAB_MODE Value

Tabbing behavior is inherited from a WIDGET_BASE. When TAB_MODE is set on
a base widget, child widgets inherit the setting when they are created. This provides a
quick way of enabling or disabling tabbing for all widgets belonging to a base. This is
especially useful for widgets that do not directly support the TAB_MODE keyword.
For example, attempting to set TAB_MODE for exclusive, grouped button widgets
(radio buttons) will generate an error. Setting the tab mode on the parent base passes
the specified tabbing functionality along to all widget children on that base. In the
following code, the base (base) is defined as one which can receive and lose focus
through tabbing. The child widgets (b1, b2, and b3) inherit this setting and will
receive and lose focus through tabbing as well.

Note
See the following section for the complete, working example.

; Define a base for the radio buttons.
base = WIDGET_BASE(tlb, /COLUMN, /FRAME, /EXCLUSIVE, TAB_MODE = 1)

b1 = widget_button(base, $
value = "MorphOpen" , UVALUE="Open")

b2 = widget_button(base, $
value = "MorphClose" , UVALUE="Close")

b3 = widget_button(base, $
value = "Dilate ", UVALUE="Dilate")

; Set button one as selected.
WIDGET_CONTROL, b1, /SET_BUTTON

Use WIDGET_CONTROL to make an initial selection within the group of radio
buttons. This needs to be set before the group can receive focus through tabbing.

Note
For a child widget to receive focus through tabbing, the parent base must have a
value of TAB_MODE=1 (receive and lose focus) or TAB_MODE=2 (only receive
focus). A parent base with a TAB_MODE=0 or TAB_MODE=3 insulates child
widgets from receiving focus. Only when focus is on the child widget would the
child’s individual TAB_MODE value be in effect.
Building IDL Applications Enhancing Widget Application Usability

972 Chapter 30: Widget Application Techniques
Specifying TAB_MODE Values for Individual Widgets

The tab mode of the parent base is inherited by child widgets, but it is possible to
control what widgets can receive or lose focus by specifying different TAB_MODE
values on lower-level bases or individual widgets. For example, consider a top level
base populated with a group of radio buttons, a group of check boxes, and a slider
widget. The top level base has TAB_MODE=1, meaning that this base, and all
widgets that inherit the setting from the base, will be able to receive and lose focus
through tabbing. However, the TAB_MODE of the slider widget is explicitly set to 3
meaning that it can lose, but not receive focus. This excludes the widget from
receiving focus when navigating the widget hierarchy. However, when focus is on a
widget with a TAB_MODE keyword value of 3, and the Tab key is depressed, focus
leaves the current widget and returns to the first widget that accepts focus through
tabbing. The following simple example illustrates these concepts.

pro tabbing_example_event, event

; Return and print the uvalue of the widget with focus.
WIDGET_CONTROL, event.ID, GET_UVALUE = uvalue
PRINT, 'Event on: ', UVALUE

end

pro tabbing_example

; Create a top level base. Specify a tab mode that allows child
; widgets to receive and lose focus (TAB_MODE=1).
tlb = WIDGET_BASE(/COLUMN, TITLE = "Tabbing Example", $
 XPAD=0, YPAD=10, XOFFSET=25, YOFFSET=25, TAB_MODE=1)

; Create a base with radio buttons that inherits the ability
; to receive and lose focus through tabbing from parent tlb. This
; setting is also inherited by widget children of rbase.
rbase = WIDGET_BASE(tlb, /COLUMN, /FRAME, /EXCLUSIVE)
rb1 = WIDGET_BUTTON(rbase, VALUE = "MorphOpen", UVALUE = "Open")
rb2 = WIDGET_BUTTON(rbase, VALUE = "MorphClose", UVALUE = "Close")
rb3 = WIDGET_BUTTON(rbase, VALUE = "Dilate", UVALUE = "Dilate")

; Mark the first button as selected to enable tabbing to the
; group of radio buttons.
WIDGET_CONTROL, rb1, /SET_BUTTON

; Create a base with check boxes that inherits the ability to
; receive and lose focus through tabbing from tlb. This setting
; is also inherited by widget children of cbase.
cbase = WIDGET_BASE(tlb, /COLUMN, /FRAME, /NONEXCLUSIVE)
b1 = WIDGET_BUTTON(cbase, $
Enhancing Widget Application Usability Building IDL Applications

Chapter 30: Widget Application Techniques 973
 VALUE = "Structuring Element: 3x3", UVALUE = "se3x3")
b2 = WIDGET_BUTTON(cbase, $
 VALUE = "Structuring Element: 5x5", UVALUE = "se5x5")

; Create a slider widget. Set the tab mode so that it can
; lose focus, but not receive focus through tabbing.
slider = WIDGET_SLIDER(tlb, UVALUE = 'slider', TAB_MODE=3)

; Draw the widgets and activate events.
WIDGET_CONTROL, tlb, /REALIZE
XMANAGER, 'tabbing_example', tlb, /NO_BLOCK

end

Save and run the above code. This results in a group of widgets similar to the
following figure.

Select a radio button or check box and then depress the Tab key to navigate between
these widgets. With the mouse select and move the slider. Press the Tab key and the
focus shifts to the group of radio buttons.

On Windows, use the arrow keys to navigate among the radio button options. Tab to
the check boxes. Depress the Space key to select or deselect a check box. Use the
Tab key to navigate through the check box options. Once the slider has focus, the
arrow keys, Page Up and Page Down keys can be used to move the slider marker.

On UNIX, the TAB_MODE keyword is ignored. The arrow keys can be used to
navigate between radio buttons, check boxes, and move the slider marker.

Figure 30-16: Navigating Widget Hierarchies Using Tabbing
Building IDL Applications Enhancing Widget Application Usability

974 Chapter 30: Widget Application Techniques
Modifying and Accessing the TAB_MODE Keyword

The TAB_MODE keyword value can be changed using WIDGET_CONTROL and
queried using WIDGET_INFO. A change made to TAB_MODE using
WIDGET_CONTROL affects only the widget for which the change is explicitly
made. If changed on a widget base, the change is not propagated to the child widgets
that have already been created. Use WIDGET_CONTROL to change the
TAB_MODE value of any widget that supports the TAB_MODE keyword.

For example, if the TAB_MODE keyword value of the top level base is changed from
1 to 0 after child widgets have been created, tabbing will still be enabled for any
applicable child bases or widgets when they have focus.

WIDGET_CONTROL, tlb, TAB_MODE=0

Use WIDGET_INFO to return any widget’s TAB_MODE keyword value. For
example, the following returns the keyword value of a slider widget, slider.

; Query the tabbing capabilities of a slider widget.
vtabmode = WIDGET_INFO(slider, /TAB_MODE)
print, vtabmode

Note
In widget applications run on the UNIX platform, the TAB_MODE keyword value
is always zero. Any attempt to change it is ignored.

Assigning Accelerators in Widget Applications

Keyboard accelerators allow the user to activate button widget events using keyboard
key combinations instead of the mouse. Accelerators can be defined for menu items
and various types of WIDGET_BUTTON on Windows. However, UNIX supports
only menu item accelerators. Context menu items do not support accelerators on any
platform.

Note
Ordinarily, accelerators are processed before keyboard events reach a widget. This
can cause button accelerators to steal keyboard events from widgets that have focus.
If you find that this is an issue, see “Disabling Button Widget Accelerators” on
page 980.
Enhancing Widget Application Usability Building IDL Applications

Chapter 30: Widget Application Techniques 975
Successfully Implementing Keyboard Accelerators

The following tips should be kept in mind when adding accelerators to button
widgets:

• Additional work is required to enable accelerators using the Alt key to work on
Mac. To get the Apple (command) key to function as the Alt key, see
“Enabling Alt Key Accelerators on Macintosh” on page 976.

• When an accelerator is implemented, it intercepts keyboard events before they
are passed to the widgets. Widgets will never see keyboard events that are
mapped to accelerators unless the accelerator is disabled as described in
“Disabling Button Widget Accelerators” on page 980. For example, if Ctrl+C
is mapped to a button that creates a contour plot, the key combination will no
longer perform the copy function.

Note
Under Sun operating systems, the Delete key will not function as an
accelerator if a widget has keyboard focus.

• Be mindful of the inherent operating system keyboard combinations when
choosing your accelerators. For example, avoid a Ctrl+Alt+Del accelerator for
an application run on the Windows platform.

• To support the greatest cross-platform portability, consider avoiding mapping
function keys F9 to F12 for the following reasons:

• Sun operating systems have the F11 and F12 keys mapped to SunF36 and
SunF37. Attempting to reassign them can be problematic.

• Mac OS 10.3 with Expose uses F9, F10, F11. Additionally, Insert and Alt
may be unavailable.
Building IDL Applications Enhancing Widget Application Usability

976 Chapter 30: Widget Application Techniques
Enabling Alt Key Accelerators on Macintosh

Two steps are required to enable accelerators that use the Alt key to work with the
Macintosh Apple key (also known as the Command key):

1. Create a .Xmodmap file in your home folder and add the following three lines
to it:

clear mod1
clear mod2
add mod1 = Meta_L

When Apple’s X11 program starts, this file will automatically be read, and the
Apple key will be mapped to the left meta key , which for IDL’s purposes is
the Alt key. (Windows Alt key accelerators are mapped to the Macintosh
Apple key, not the Option (alt) key.)

2. Run Apple’s X11 program and change its preferences. Under Input in the X11
Preferences dialog, make sure that the following two items are unchecked:

• Follow system keyboard layout

• Enable key equivalents under X11

Note
You must relaunch Apple’s X11 program for these changes to take effect.

Performing these two steps will also have the benefit of making the IDLDE’s
keyboard shortcuts operate in the normal Macintosh fashion. Namely, pressing the
Apple (key) in conjunction with X, C, and V will perform cut, copy and paste.
The IDLDE’s other shortcuts will also work. If you distribute your application to
other Macintosh users, they too will need to have an appropriate .Xmodmap and
correct X11 Preferences dialog settings in order for Alt key accelerators to work.

Specifying WIDGET_BUTTON Accelerators

The ACCELERATOR keyword assigns a key combination that activates a menu item
or button event. The value of the keyword is a case-insensitive string that specifies
zero or more modifier keys (Ctrl, Shift, or Alt) and one other key. (Mac users must
take special steps to enable Alt key accelerators. See “Enabling Alt Key Accelerators
on Macintosh” on page 976 for details.) If there is more than one item in the string, a
“+” must separate them. For example:

base = WIDGET_BASE(tlb, /COLUMN, /FRAME)
bRun = WIDGET_BUTTON(base, VALUE = "Run", ACCELERATOR = "F5")
bPause = WIDGET_BUTTON(base, VALUE = "Pause", $

ACCELERATOR = "Ctrl+F5")
Enhancing Widget Application Usability Building IDL Applications

Chapter 30: Widget Application Techniques 977
bResume = WIDGET_BUTTON(base, VALUE = "Resume", $
ACCELERATOR = "Ctrl+Shift+F5")

The valid combinations are:

Accelerator Keys Description

Ctrl, Shift, or Alt plus
an alphanumeric key

A modifier key plus any alphabetic character, A-Z
(which is case-insensitive), or a number, 0-9, creates a
valid accelerator.

Ctrl, Shift, or Alt plus a
number pad key

A modifier key plus any key on the number pad can be
used as an accelerator The NumLock key must be
activated for any accelerator using number pad keys to
function properly.

Note - On Windows only, a keyboard accelerator using
the Shift key and a number key on the number pad will
not work.

Ctrl, Shift, or Alt plus
the BackSpace, Tab or
Space key

These miscellaneous keys need a modifier key in the
accelerator definition.

Navigation keys (Home,
End, PageUp,
PageDown, Up, Down,
Left, Right)

The navigation keys do not require a modifier in the
accelerator definition. Prior and PageUp are equivalent
as are Next and PageDown. Up, Down, Left, and Right
map to the arrow keys.

Function keys (F1 to
F12)

Function keys do not need a modifier key in the
accelerator definition. However, not all platforms
support the use of all function keys as accelerators. See
“Successfully Implementing Keyboard Accelerators” on
page 975 for details.

Return, Escape, Insert,
Del keys

These miscellaneous keys do not need a modifier key in
the accelerator definition. You must specify Return in
the accelerator definition to indicate the Enter key on
Windows. You must specify Del in the accelerator
definition to indicate the Delete key.

Table 30-3: Valid ACCELERATOR Keyword Combinations
Building IDL Applications Enhancing Widget Application Usability

978 Chapter 30: Widget Application Techniques
Note
Accelerators can be defined for menu items and other types of WIDGET_BUTTON
on Windows. However, UNIX supports only menu item accelerators. Context menu
items do not support accelerators on any platform.

When an accelerator is defined for a menu item, the ACCELERATOR keyword string
is automatically displayed next to the menu item value. The ACCELERATOR
keyword string is not included with a button value. Therefore, the VALUE keyword
of a WIDGET_BUTTON that is not a menu item should also indicate the accelerator
keyboard shortcut so that the user is aware of the option.

The following simple example creates a variety of WIDGET_BUTTON types with
accelerators.

; AcceleratorExample.pro
; Example of the use of keyboard accelerators.

pro acceleratorexample_event, event

WIDGET_CONTROL, event.ID, GET_UVALUE = uvalue
PRINT, 'Event on: ', uvalue

IF (uvalue EQ 'Quit') THEN BEGIN
WIDGET_CONTROL, event.TOP, /DESTROY

END

end

pro AcceleratorExample

tlb = WIDGET_BASE(/ROW, $
MBAR = mbar, TITLE = "Accelerator Example", $
XPAD = 10, YPAD = 10, XOFFSET = 25, YOFFSET = 25)

; Create a menu with accelerators. The accelerator string is
; automatically displayed along with the menu item text.
file = WIDGET_BUTTON(mbar, /MENU, $

VALUE = "File")

one = WIDGET_BUTTON(file, $
VALUE = "One", UVALUE = "One", $
ACCELERATOR = "Ctrl+1")

two = WIDGET_BUTTON(file, $
VALUE = "Two", UVALUE = "Two", $
ACCELERATOR = "Ctrl+2")
Enhancing Widget Application Usability Building IDL Applications

Chapter 30: Widget Application Techniques 979
three = WIDGET_BUTTON(file, $
VALUE = "Three", UVALUE = "Three", $
ACCELERATOR = "Ctrl+3")

quit = WIDGET_BUTTON(file, $
VALUE = "Quit", UVALUE = "Quit", $
ACCELERATOR = "Ctrl+Q")

; Create a base with push buttons. Include the accelerator
; text in the button value so users are aware of it.
base = WIDGET_BASE(tlb, /COLUMN, /FRAME)

b1 = WIDGET_BUTTON(base, $
VALUE = "Affirmative (Ctrl+Y)", UVALUE = "Yes", $
ACCELERATOR = "Ctrl+Y")

b2 = WIDGET_BUTTON(base, $
VALUE = "Negative (Ctrl+N)", UVALUE = "No", $
ACCELERATOR = "Ctrl+N")

; Create a base with radio buttons.
base = WIDGET_BASE(tlb, /COLUMN, /FRAME, /EXCLUSIVE)

b1 = widget_button(base, $
VALUE = "Owl (Ctrl+O)", UVALUE = "Owl", $
ACCELERATOR = "Ctrl+O")

b2 = WIDGET_BUTTON(base, $
VALUE = "Emu (Shift+E)", UVALUE = "Emu", $
ACCELERATOR = "Shift+E")

b3 = WIDGET_BUTTON(base, $
VALUE = "Bat (Alt+B)", UVALUE = "Bat", $
ACCELERATOR = "Alt+B")

; Create a base with check boxes.
base = WIDGET_BASE(tlb, /COLUMN, /FRAME, /NONEXCLUSIVE)

b1 = WIDGET_BUTTON(base, $
VALUE = "Hello (F3)", UVALUE = "Hello", $
ACCELERATOR = "F3")

b2 = WIDGET_BUTTON(base, $
VALUE = "Goodbye (F4)", UVALUE = "Goodbye", $
ACCELERATOR = "F4")

; Create the widgets and accept events.
WIDGET_CONTROL, tlb, /REALIZE
XMANAGER, 'acceleratorexample', tlb, /NO_BLOCK
Building IDL Applications Enhancing Widget Application Usability

980 Chapter 30: Widget Application Techniques
end

Save and run the example. The Output Log window reports which button has been
activated using the accelerator.

Note
Menu item accelerators are only operational when the menu is closed.

Disabling Button Widget Accelerators

Keyboard events are intercepted by the accelerators before they are passed along to
widgets. This means that a widget will never see a keyboard event that maps to an
accelerator. This can be resolved using one of the following methods:

• Use the IGNORE_ACCELERATORS keyword on those widgets that you want
to receive keyboard input regardless of defined accelerators. This is the
recommended method. See “Using IGNORE_ACCELERATORS” on
page 981 for details.

• Disable the accelerated item by programmatically desensitizing the item when
the widget that you want to receive events gains focus, and resensitize the item
when the widget loses focus. This allows the keystrokes that would ordinarily
map to the accelerator to reach the desired widget when it has focus.
Enhancing Widget Application Usability Building IDL Applications

Chapter 30: Widget Application Techniques 981
Using IGNORE_ACCELERATORS

The IGNORE_ACCELERATORS keyword is available on the following widgets:

• WIDGET_COMBOBOX

• WIDGET_DRAW

• WIDGET_PROPERTYSHEET

• WIDGET_TABLE

• WIDGET_TEXT

For each widget with a text area, accelerator overrides are active only when focus is
on an editable text portion. (Accelerator overrides for draw widgets are active when
the drawing area has focus.) For example, when the focus is on a table cell that cannot
be edited, accelerators are still enabled.

Note
Depending on system hardware, the number of widgets that have accelerators, and
the number of accelerators ignored, you may notice a slight performance penalty.

Set the IGNORE_ACCELERATORS equal to the text string of a single accelerator,
an array containing multiple accelerator strings, or 1 (to ignore all accelerators).

Managing Accelerators Example

The following example shows various ways accelerators can be managed. This
example creates several menu items with accelerators. Three text boxes either allow
all accelerators, some accelerators or no accelerators to receive keyboard events.
Additionally you can select a checkbox to desensitize the Delete menu item. When
the menu item is desensitized, the accelerator never receives keyboard events.

PRO manage_accel, event
END

PRO quit_event, event
 WIDGET_CONTROL, event.top, /DESTROY
END

PRO menu_event, event
 PRINT, WIDGET_INFO(event.id, /UNAME)
END

PRO menu_sense_event, event
 deleteItem = WIDGET_INFO(event.top, FIND_BY_UNAME ="MenuDel")
 WIDGET_CONTROL, deleteItem, SENSITIVE = event.select
Building IDL Applications Enhancing Widget Application Usability

982 Chapter 30: Widget Application Techniques
END

pro manage_accel

; Create the top level base.
tlb = WIDGET_BASE(/COLUMN, MBAR = mbar, XSIZE = 250, /TAB_MODE)

; Build the menu bar.
edit= WIDGET_BUTTON(mbar, /MENU, VALUE = "Edit")
menuDel = WIDGET_BUTTON(edit, VALUE = "Delete", $
 UNAME = "MenuDel", ACCELERATOR = "Del", $
 EVENT_PRO = "menu_event")
menuCut = WIDGET_BUTTON(edit, VALUE = "Cut", $
 UNAME = "MenuCut", ACCELERATOR = "Ctrl+X", $
 EVENT_PRO = "menu_event")
menuCopy = WIDGET_BUTTON(edit, VALUE = "Copy", $
 UNAME = "MenuCopy", ACCELERATOR = "Ctrl+C", $
 EVENT_PRO = "menu_event")
menuPaste = WIDGET_BUTTON(edit, VALUE = "Paste", $
 UNAME = "MenuPaste", ACCELERATOR = "Ctrl+V", $
 EVENT_PRO = "menu_event")
menuUndo = WIDGET_BUTTON(edit, VALUE = "Undo", $
 UNAME = "MenuUndo", ACCELERATOR = "Ctrl+Z",$
 EVENT_PRO = "menu_event")
quit = WIDGET_BUTTON(edit, VALUE = "Quit", $
 ACCELERATOR = "Ctrl+Q", EVENT_PRO = "quit_event")

; Add text boxes with various levels of disabled accelerators.
text1 = WIDGET_TEXT(tlb, /EDITABLE, $
 VALUE = "Doesn't use IGNORE_ACCELERATORS.")
text2 = WIDGET_TEXT(tlb, /EDITABLE, $
 VALUE = "Receives Delete key and Ctrl+C combinations.", $
 IGNORE_ACCELERATORS = ["Del", "Ctrl+C"])
text3 = WIDGET_TEXT(tlb, /EDITABLE, $
 VALUE = "Receives all accelerator key combinations.", $
 IGNORE_ACCELERATORS = 1)

; Add a check box to desensitize the Delete menu item.
base2 = WIDGET_BASE(tlb, /FRAME, /NONEXCLUSIVE)
check1 = WIDGET_BUTTON(base2, VALUE = "Menu DEL sensitive", $
 EVENT_PRO = "menu_sense_event")
WIDGET_CONTROL, check1, SET_BUTTON = WIDGET_INFO (menuDel, $
 /SENSITIVE)

; Draw the widget.
WIDGET_CONTROL, tlb, /REALIZE
XMANAGER, "manage_accel", tlb, /NO_BLOCK

END
Enhancing Widget Application Usability Building IDL Applications

Chapter 30: Widget Application Techniques 983
Compile and run the example. Try highlighting and deleting, or copying and pasting
text in each textbox using accelerators defined in the Edit menu. All keyboard events
are ineffective (stolen by the accelerators) when the first textbox has focus. The
second textbox receives only copy and delete keyboard combinations. The third
textbox receives all accelerators. When the delete menu item is desensitized, the
Delete key can delete text from all textboxes. The IDL Output Log window prints the
name of any menu item that is activated using an accelerator.
Building IDL Applications Enhancing Widget Application Usability

984 Chapter 30: Widget Application Techniques
Enhancing Widget Application Usability Building IDL Applications

Index

Symbols
, 31, 342
!ERROR_STATE system variable

error handling, 465
error messages, 455
MSG, 462
SYS_MSG, 462

!HELP_PATH system variable, using, 490
operator, 30
operator, 30
##= operator, 342
#= operator, 342
% character, printf-style format code, 283
&& operator, 31
*= operator, 342
+= operator, 342

.prc file (GUIBuilder file), 510

.prj files, 500

.sav file
creating, 219
restoring, 219

/= operator, 342
< operator, 29
-= operator, 342
>= operator, 342
? character, conditional expression, 39
?: ternary operator, 39
\ character, escape sequences, 285
^ character, 25
|| operator, 32
~ operator, 32
Building IDL Applications 985

986
Numerics
64-bit data type

long, 48
unsigned long, 48

A
abbreviating keywords, 76
about IDL, 17
accelerators, 974

Alt key on Mac, 976
assigning, 974
ignoring, 980

ActiveX, see IDL ActiveX applications
actual parameters, 76
adding

files to a project, 505
help to an application, 474

addition operator, 24
AND operator, 33
AND= operator, 342
anonymous structures, 182
applications

distributing on a CD-ROM, 578
IDL Virtual Machine, 537
installation issues, 584
starting, Unix, 577
starting, Windows, 571
written in IDL, 16

arguments, supplying values for missing, 411
arithmetic errors, 467
array

creation routines, 402
majority, 151
manipulation routines, 403

arrays
concatenation, 31
data type, determining type, how to, 412
definition, 134
efficient accessing, 310

arrays (continued)
multiplying, 30
of structures, 191
subscript ranges, 142
using as subscripts, 146

ASCII character codes, 127
assignment

pointers, 165
statement types, 334
using, 604

assignment operator, 24
compound, 342

ASSOC, accessing large datasets, 240
associated I/O, 306
attributes

draw widget, 765
droplist, 758
label widget, 753
tab widget, 781
table widget, 772
tree widget, 784

automatic class structure definition, 594
automatic compilation, 74, 210
automatic structure definition, 198

B
backslash character, escape sequences, 285
backspace character (representing), 127
base widgets see widgets, base
bell character (representing), 127
big endian byte ordering, issues, 425
binary trees, 179
binary, unary operators, 401
bitmap

files
adding to buttons, 698
standard file format I/O routines, 330
transparent, 699, 899

Bitmap Editor
opening, 742
Index Building IDL Applications

987
Bitmap Editor (continued)
tools, 699
using, 698

block of statements, 347
blocking, widgets, 842
BMP files

adding to button widgets, 698
displaying on buttons, 742
standard file format I/O routines, 330
supplied, 698

Boolean operators see Logical operators
breakpoints

debugging, 444
editing, 445
working with, 444

bubble sort, 177
bugs, see debugging.
bulletin board base widgets, 891
button widgets see widgets, button
by reference, parameter passing, 92
by value, parameter passing, 92
byte

arguments and strings, 113
data type, 48

byte order issues, 425
byte swapping routines, 403

C
callable IDL applications

definition, 531
embedded licensing, 544
preparing, 575
runtime licensing, 551

callback routines, widget, 845
callbacks see widgets, event processing
callbacks, event processing, 845
calling, mechanism for procedures, 94
CALLS keyword, 464
CANCEL keyword, 457
caret (^) character, 25

carriage return (representing), 127
case, uppercase/lowercase, 115
changing, widget values, 834
characters, non-printing, 57, 127
checkbox widgets

creating, 741
laying out, 742

class
object, 591
structure, 593
structures, zeroed, 593

closing
files (overview), 242
projects, 502

code
IDL GUIBuilder generated, 682
modifying generated, 682

color tables, example, 684
colors, manipulation compound widgets, 808
column major see array majority
comments, code comment character, 214
common attributes, 722
common blocks

defined, 65
widgets and, 849

compiling
all files in a project, 519
automatically, 210
changing default rules, 96
COMPILE_OPT, 96
from a project, 509
manually, 212
modified files in a project, 519

complex
numbers, 55
numbers, exponentiation, 25

complex data type, 49
compound assignment operators, 342
compound statement, 347
compound widgets

about, 807
Building IDL Applications Index

988
compound widgets (continued)
color manipulation, 808
data entry, 808
example, 714
handling events, 726
image manipulation, 808
in IDL GUIBuilder code, 714
orientation, 808
user interface, 808

computation speed. See multi-threading
concatenation

array, 31
string, 111

conditional expression, 39
conditional statements, 350
constants

complex, 55
decimal, 51
double-precision, 54
floating-point, 54
hexadecimal, 51
integer, 51
ivalues, 52
octal, 51
string, 55

context, 454
context-sensitive menu, about, 881
controls see widgets
creating

.sav file, 219

.sav file from a project, 520
heap variables, 159
IDL runtime distribution

UNIX, 528
Windows, 525

projects, 500
SAVE file, example, 220

creating multiple, 741
creating XML data, 663
current working directory

of SAVE file in IDL Virtual Machine, 539

current working directory (continued)
of SAVE file with embedded license, 548
of SAVE file with runtime license, 557

CW_DICE function, 856
CW_PDMENU function, creating menus, 879

D
dangling references, 169, 598
data entry, compound widgets, 808
data type conversion routines, 403
data types

64-bit
long, 48
unsigned long, 48

byte, 48
complex, 49
determining array size, 412
double-precision complex, 49
double-precision floating-point, 48
floating-point, 48
integer, 48
long integer, 48
string, 49
unsigned

integer, 48
long, 48

debugging
command example, 441
setting breakpoints, 444
stepping into a program, 442
stepping into versus over, 443
stepping over routines, 443
trace execution, 443
See also breakpoints

decimal, 51
decrement operator, 26
defining, method routines, 608
deleting, files in a project, 507
delimiters, string, 55
dereference operator, pointers, 166
Index Building IDL Applications

989
dest parameter, 566
destroying

objects, 603
widgets, overview, 834

destroying IDLffXMLDOM objects, 664
determining variable scope, 406
disappearing variables, 454
displaying help files, 478
displaying widgets, 826
distributin, on CD-ROM, 578
distributing IDL applications, 16
distribution

adding files, 565
creating

UNIX, 528
Windows, 525

creating from IDLDE, 561
division operator, 25
DOM (Document Object Model) see XML
DOM object classes, 655

helper classes, 657
Node, 655
node ownership, 658
saving and restoring, 660
using, 661

double-precision
complex data type, 49
floating-point data type, 48

draw widgets see widgets, draw
droplist widgets see widgets, droplist

E
editing, a source file from a project, 509
efficiency

constants, 376
constants, correct type, 376
IDL implementation, 383
IF statements, 372
invariant expressions, 377
programming, 370

efficiency (continued)
system functions and procedures, 375
vector and array operations, 373

efficiency improvements. See multi-threading
embedded

ActiveX applications, 546
callable IDL applications, 544

encapsulation, 591
Entering Procedure Definitions, 89
environment variables

IDL_DIR, 576
LD_LIBRARY_PATH, 575
LM_LICENSE_FILE, Unix, 556
LM_LICENSE_FILE, Windows, 554

EQ operator
comparing object references, 605
defined, 37
pointers, 168

EQ= operator, 342
errors

default error-handling mechanism, 453
floating-point underflow, 467
handling

error-handling options, 452
input/output, 460
using CATCH procedure, 455
using ON_ERROR procedure, 459

input/output, 460
math, 467
signaling (MESSAGE procedure), 462
system variables for, 465

escape character (representing), 127
event driven programming, 791
event processing (widget applications), 841
events

base widget, 738
button widget, 746
common properties, 726
compound, handling, 726
draw widget, 768
droplist widget, 760
Building IDL Applications Index

990
events (continued)
handling in IDL GUIBuilder code

callback routines, 708
multiple interfaces, 711
OpenFile, 682
understanding, 707
widget display, 716

interrupting the event loop, 868
list widget, 763
post creation, 727
slider widget, 757
tab widget, 783
table widget, 777
text widget, 750
tree widget, 785

exclusive buttons see widgets, button
explicitly formatted I/O

overview, 240
using, 253

exponentiation operator, 25
exporting

projects, 523
using the IDLDE, 561

expressions
determining data type, how to, 412
efficiency of evaluation, 371
regular, 128
structure of, 45
type of, 43

Extensible Markup Language see XML

F
false, definition of, 368
file

adding to a project, 505
compiling all files, 519
compiling instructions, 509
compiling modified files, 519
editing in a project, 509
moving in a project, 507

file (continued)
removing from a project, 507
setting properties for a project, 511

file units, about, 243
FILE_INFO function, using, 318
files

adding to distribution, 565
adding to project, 562
closing, about closing files, 242
end-of-file, 321
file units, see file units
flushing file units, 321
formats

BMP, 330
Interfile, 330
JPEG, 330
JPEG 2000, 330
NRIF, 330
PICT, 330
PNG, 330
PPM, 330
SRF, 330
TIFF, 330
X11 Bitmap, 330
XWD, 331

help and information, 317
IDL GUIBuilder

generated, 682
generating code, 705
generating resource, 705
IDL code, 705
regeneration, 706
resource, 705

input/output, 233
locating, 313
logical unit number, 243
manipulation operations, 312
modifying generated, 682
multiple structures, 310
opening, how to, 241
pointer positioning, 321
Index Building IDL Applications

991
files (continued)
storing in a project, 498
Windows-specific information, 328

FILES keyword, 317
FIND_BY_UNAME keyword, 708
FINDFILE function, 313
FINITE function, using, 470
floating-point

data type, 48
errors, 467
underflow errors, 467

formal parameters, 76
format codes, 258
formatted I/O, 239
formfeed character (representing), 127
FORWARD_FUNCTION, about, 74
free format I/O

about, 239
using, 248

freeing, objects, 598
freeing, heap variables

objects, 598
pointers, 173

FSTAT function, using, 319
functions

compiling user-defined, 89
forward definition, 74
how IDL resolves, 91

G
GE operator, 38
GE= operator, 342
geometry of widgets, 890
GET_KBRD function, 322
GOTO statement, using, 367
GT operator, 38
GT= operator, 342
GUIBuilder, common attributes, 722
GUIBuilder, see IDL GUIBuilder

H
heap variables

creating, how to, 159
freeing

pointers, 173
variables, 598

leakage, 170, 598
object

defined, 597
overview, 591

overview, 157
pointer, 161
saving and restoring, 160

help
Adobe Acrobat, 481
displaying, text with XDISPLAYFILE, 478
displaying files, 474
displaying text files, 478
HTML files, 488
HTML Help, 481
IDL Acrobat plug-in, 482
IDL help viewers, 484
IDL’s help system, 480
in a text widget, 477
Microsoft Windows help, 481
on UNIX systems, 481
paths, 490
PDF files

displaying, 486
overview, 480

status lines, 476
tooltips, 475
using external applications, 479
within an application’s interface, 475
XDISPLAYFILE, 478

hexadecimal, 51
HomeDir field, 570
Building IDL Applications Index

992
I
IDL

applications, distributing, 16
Code Profiler, 384
command line, 535
pointers, 162
runtime licensing, 16

IDL Acrobat plug-in, 482
IDL ActiveX applications

definition, 531
embedded licensing, 546
runtime licensing, 552

IDL applications
definition, 530
runtime licensing, 551

IDL GUIBuilder
about generating code, 705
base widget

attributes, 728
events, 738

Bitmap Editor, 698
button widgets

adding bitmaps, 698
adding menus, 697
attributes, 742
events, 746

checkboxes
attributes(GUIBuilder), 742
creating, 741
creating multiple, 741

color table example, 684
common events, 726
copying or cutting widgets, 703
deleting widgets, 703
draw widgets, events, 768
droplist widgets

attributes, 758
events, 760

event code, understanding, 707
examples

application, 676

IDL GUIBuilder (continued)
examples

compiling and running code, 686
creating draw area, 679
defining menus, 676
event code, 716
event code, handling, 708
event code, integrating interfaces, 711
modifying code, example, 682

files
generating multiple times, 706
IDL code, 705
portable resource, 705

generating code, 682
generating resource files, 705
integrating multiple interfaces, 711
label widgets

attributes, 753
events, 754

list widgets
attributes, 761
events, 763

menus, editing, 695
moving widgets, 703
operating on widgets, 702
overview, 672
parent base, changing for widget, 703
pasting widgets, 703
Properties dialog, 691
radio buttons

attributes, 742
creating, 741
creating multiple, 741

redoing operations, 704
resizing widgets, 703
selecting widgets, 702
slider widgets

attributes, 755
events, 757

smooth example, 685
starting, 674
Index Building IDL Applications

993
IDL GUIBuilder (continued)
tab widgets

attributes, 781
events, 783

table widgets
attributes, 772
events, 777

test mode, 681
text widgets

attributes, 747
events, 750

toolbar, 688
tools, 687
tree widgets

attributes, 784
editing, 700
events, 785

undoing operations, 704
Widget Browser, 716
Widget Browser, using, 694
widgets

changing parent base of, 703
cutting, copying or pasting, 703
deleting, 703
moving, 703
resizing, 703
selecting, 702

writing event-handling code, 682
IDL help viewers, 484
IDL object overview, 591
IDL objects, 601
idl script, renaming, 575
IDL Virtual Machine, 537

building application for, 538
description, 537
running a .sav file, UNIX, 541
running a .sav file, Windows, 539
version compatibility, 539

idl.ini file, 569
IDL_DIR, 576
IDL_TREE example routine, 179

IDL’s help system, 480
IDLDE, 535
IDLffXMLDOM

destroying objects, 664
orphan nodes, 666
tree-walking example, 667

IDLffXMLDOM object classes, 655
helper classes, 657
IDLffXMLDOMNode, 655
node ownership, 658
saving and restoring, 660
using, 661

IEEE standard, 468
IF statements, avoiding, 372
image processing routines, 402
images, image manipulation compound wid-

gets, 808
implicit self argument, 609
include files see batch files
increment operator, 26
infinity, undefined result, 468
information about objects, 606
inheritance

defined, 595
object, 592

input/output
associated, 306
error handling, 460
explicit format

overview, 240
using format, 253

format codes, 258
format reversion, 257
formatted, overview, 239
free format

overview, 239
using, 248

portable, 301
unformatted

overview, 238
portable, 301
Building IDL Applications Index

994
input/output (continued)
unformatted

string variables, 295
using, 294

UNIX FORTRAN unformatted data files,
311

XDR, 301
installing, license file, 552
instance, object, 591
instantiating widgets, 826
integer

constants, 52
conversions, errors in, 470
data type, 48

Interfile files, standard file format I/O routines,
330

interrupting, widget event loop, 868
invariant expressions, 377

J
joining strings, 122
JPEG 2000 files, standard file format I/O rou-

tines, 330
JPEG files, standard file format I/O routines,

330

K
keyboard accelerators, 974
keywords

determining if set, 407
inheritance, 81
parameters

about, 76
passing, 79

setting, 76
killing widgets, 834

L
label widgets, using, 753
label widgets see widgets, label
language catalog

definition, 618
file, creating, 619
widget example, 624

language catalog file
loading, 620
storing, 620

language catalog object
adding keys, 621
creating, 621
destroying, 623
languages

getting, 622
setting, 622

performing queries, 622
LE operator, 38
LE= operator, 342
libraries

converting to prefixed, 104
naming, 103

library authoring
benefits of, 100
conversion wrappers, 104
converting to prefixed, 104
naming conventions, 101, 103
prefixing routines, 101

library of routines
authoring, 99
authoring conventions, 103
converting existing, 104
prefixing, 101

license file
installing, 552
obtaining, 552

lifecycle
methods, 601
routines, 601

linefeed character (representing), 127
Index Building IDL Applications

995
linked lists
creating, 174
using pointers to create, 174

list widgets see widgets, list
little endian byte ordering, about, 425
LM_LICENSE_FILE

Unix, 556
Windows, 554

lmhostid, 555
lmtools.exe, 553
loading an XML document, 661
location of widgets, 891
Logical operators, 31
logical unit numbers, about, 243
long integer data type, 48
loops

CONTINUE, 366
exiting (BREAK), 365
FOR, 357
REPEAT...UNTIL, 362
statements, 357
WHILE...DO, 363

lowercase strings, 115
LT operator, 38
LT= operator, 342
LUNs (logical unit numbers), 243

M
Macintosh, configuring accelerators, 976
majority see array majority
make_rt, syntax, 566
managing the state of a widget application, 849
manifest, modifying, 528
manifest parameter, 567
manual compilation, 212
math errors, 467
mathematical operators, descriptions of, 24
mathematical routines, 402
matrices, multiplying using operators, 30
maximum operator, 29

Menu Editor, using, 695
menus

context-sensitive, 881
creating, 876
creating pulldown, 878
editing in IDL GUIBuilder, 695

meta characters, 128
method overriding, 612
methods

about, 608
defining routines, 608
invocation, 605
object, 591

minimum operator, 29
MK_HTML_HELP procedure, using, 488
MOD= operator, 342
mode parameter, 567
modifying XML data, 663
modulo operator, 26
moving, files in a project, 507
multiplication

#, ## (matrix multiplication), 30
* operator, 25

multi-threading
array creation routines, 402
array manipulation routines, 403
byte swapping support, 403
calculation speed, 392
controlling with CPU procedure, 396
data type conversion routines, 403
default number, 396
environment variable, 396
image processing routines, 402
math routines, 402
operators, 401
overriding default use, 400
when not to use, 393
Building IDL Applications Index

996
N
N_ELEMENTS function

checking variable definition, 77
determining number of elements, 408

N_PARAMS function, use of, 77
named, structures, 182
names

of variables, 62
reserved, 103

namespace collisions, 101
naming conflicts, 101
NaN (not-a-number), 468
NE operator

about, 37
comparing object references, 605
pointers, 168

NE= operator, 342
negation operator, 25
nesting, IF statements, 351
nonexclusive buttons see widgets, buttons
non-printing characters, 57, 127
NOT operator, 34
NRIF, standard file format I/O routines, 330

O
OBJ_CLASS function, using, 606
OBJ_DESTROY procedure, 603
OBJ_ISA function, using, 606
OBJ_NEW function, using, 602
OBJ_VALID function, using, 607
OBJARR function, using, 603
object

class, 591
class structures, 593
encapsulation, 591
heap variables, 591
inheritance, 592
inheritance, specifying, 595
instances, 591

object (continued)
lifecycle, 601
method routines, 608
persistence, 592
polymorphism, 591

object heap variables, 597
object oriented programming, 590
objects

destroying, how to, 603
heap variables, 157, 597
including, 505, 566
references for heap variables, 157

obtaining a license, 552
Obtaining Traceback Information, 464
octal, 51
ON_ERROR procedure, using, 459
online help, extending, 474
opening, projects, 502
operations on objects, 604
operations on pointers, 165
operators

&&, 31
||, 32
~, 32
addition, 24
AND, 33
array concatenation, 31
assignment, 24
compound assignment, 342
decrement, 26
division, 25
EQ, 37
exponentiation, 25
GE, 38
GT, 38
increment, 26
LE, 38
Logical, 31
LT, 38
mathematical, descriptions of, 24
matrix multiplication, 30
Index Building IDL Applications

997
operators (continued)
maximum, 29
minimum, 29
modulo, 26
multiplication, 25
NE, 37
NOT, 34
OR, 35
parentheses, 23
precedence, 40
relational, 36
square brackets, 23
subtraction and negation, 25
XOR, 35

OR operator, 35
orientation, 3-dimensional, 808
overflow, integer, 471
overriding multi-threading, 400

P
parameters

actual, 76
copying, 77
formal, 76
passing by reference, 92
passing by value, 92
passing mechanism, 92

parent widget, 825
parentheses, 23
parser, XML, 628
passing parameters, 92
PDF, 480
performance, analyzing, 384
persistence, 592
PICT files, standard file format I/O routines,

330
PNG files, standard file format I/O routines,

330
pointer heap variables, 597

pointers
examples, 174
examples of using, 174
freeing all, 598
freeing specified, 173
heap variables

about, 157
creating, 161

validity, 172
polymorphism, objects, 591
pop-up menus see context-sensitive menus
Portable Document Format, 480
portable unformatted I/O, 301
positional parameters, overview, 76
PPM files, standard file format I/O routines,

330
prc file, 510
preferences, importing, 584
prefixing libraries, 104
printf-style format code, 283
PRINTNAMES example routine, 176
prj files, 500
procedures

calling mechanism, 94
how IDL resolves, 91

processing speed. See multi-threading
profiling, 384
programming, main programs, 206
project

adding files, 505
closing, 502
compiling a file, 509
creating, 500
editing source files, 509
moving files, 507
opening, 502
removing files, 507
saving, 502
storing source files, 498
testing a .prc file, 510
Building IDL Applications Index

998
projects
adding files, 562
building, 562
compiling all files, 519
compiling modified files, 519
creating a .sav file, 520
exporting, 523
file structure, 498
options, 563
overview, 494
running an application, 522
setting build order, 517
setting file properties, 511
setting options, 514

properties, registering, 916
Properties dialogs (GUIBuilder)

entering multiple strings, 693
using, 691

property sheet widgets
changing properties, 920
selecting properties, 917
sizing, 922
user-defined properties, 921
using, 916

Q
quotation marks, string constants, 55
quoted string format code, printf style, 283

R
radio button widgets

creating, 741
creating multiple, 741
laying out, 742

ranges, subscript, 142
reading XML data, 662
READNAMES example routine, 174
READS procedure, using, 324

realizing widgets, 833
recursion, 94
registering, properties, 916
regular expressions, 128
relational operators, 36
relaxed structure assignment, using, 200
removing, project files, 507
reserved names, 103
RESOLVE_ALL procedure, using, 221
resolving routine, 100
resources, system, 392
RESTORE procedure, using, 224, 506, 559,

566
restoring structures, 201
retrieving, widget values, 834
Rich Text Format, 484
routines

conflicting names, 101
how IDL resolves, 91
naming, 103

row major see array majority
RSI Root field, 570
RTF, 484
running compiled project, 522
runtime

ActiveX applications, 552
callable IDL applications, 551
IDL, 16
IDL applications, 551
Virtual Machine limitations, 537

runtime manifest files, 526
RuntimeFile field, 570
RuntimeIcon field, 570

S
.sav file, restoring, 219
SAVE file, creating, 220
SAVE procedure

creating .sav files, 215
example, 220
Index Building IDL Applications

999
SAVE procedure (continued)
using, 559, 566

save/restore
64-bit offsets, 228
heap variables, 160
IDL 5.4 save files, 228
IDL routines, 215

savefile parameter, 567
saving

IDL routines, 215
projects, 502

SAX (Simple API for XML) see XML
scope, variable, 406
screen size, finding, 894
script, startup, 567, 575
SearchPath field, 570
selection modes (table widget), 941
self argument (objects), 609
semicolon character, 214
sensitizing widgets, about, 835
separate, 566
setting

keywords, 76
options for a project, 514
properties of a file in a project, 511

setting breakpoints, 444
shortcut menus see context-sensitive menus
SINKSORT example routine, 177
size, of widgets, 891
sizing, property sheets, 922
slider widgets see widgets, slider
smoothing, example, 685
sorting, SINKSORT example, 177
source parameter, 566
spaces, removing from a string, 116
SPAWN, displaying help files, 479
splitting strings, 122
square brackets, 23

See arrays, concatenation
SRF files, standard file format I/O routines, 330
standard, image file formats, 330

startup script, 567, 576
statement labels, 365
statements

block of statements, 347
BREAK, 365
CASE versus SWITCH, 354
compound, 347
conditional, 350
CONTINUE, 366
FOR, 357
REPEAT...UNTIL, 362
WHILE...DO, 363

stepping
into a program, 442
over routines, 443

string data type, 49
STRING function, using, 323
strings, 55

byte values, 113
case folding, 115
case-insensitive comparisons, 123
comparing, 123
comparing using wildcards, 124
complex comparisons, 125
concatenation, 111
extracting substrings, 121
finding first occurrence of substring, 119
finding last occurrence of substring, 120
formatting data, 112
leading and trailing blanks, 117
length, finding, 118
lowercase, 115
meta characters, 128
nonstring arguments to routines, 110
operations, 109
putting one into another, 120
regular expressions (example), 125
regular expressions (using), 128
splitting and joining, 122
substrings, 119
uppercase, 115
Building IDL Applications Index

1000
strings, 55 (continued)
whitespace, 116

STRUCT_ASSIGN procedure, using, 200
structure of subarrays, 144
structures

advanced, 196
anonymous, 182
arrays of, 191
automatic definition, 198, 594
creating and defining, 183, 198
definition, 200
inheritance, 184
input/output, 193
introduction to, 182
named, 182
number of fields in, 196
parameter passing, 189
references, 186
relaxed definition, using, 200
restoring, 201
using help with, 188
zeroed, 183, 593

subscripts
array valued, 146
examples, 137
of scalars, 139
ranges, 142, 142
ranges, combined with arrays, 148
subscript arrays, 337

using, 338
substrings

extracting, 121
finding first occurrence, 119
finding last occurrence, 120

subtraction operator, 25
suspending execution, 444
system variables

!ERROR_STATE, error handling, 465
about, 64
for errors, 465

T
tab character (representing), 127
tab widgets see widgets, tab
table widgets see widgets, table
tabs, removing from a string, 116
ternary operator (?:), 39
test mode, IDL GUIBuilder, 681
text widgets see widgets, text
thread pool. See multi-threading
TIFF files, standard file format I/O routines,

330
toggle buttons, creating, 901
toolbars, IDL GUIBuilder, 688
tooltips, 901
trace execution, see debugging.
traceback information, obtaining, 464
transparent bitmaps

button widgets, 899
IDL GUIBuilder tools, 699

Tree Editor, using, 700
TREE_EXAMPLE example routine, 179
trees

binary, 179
building with pointers, 174

true, definition of, 368
type conversion routines, 403

U
undefined variables, checking for, 409
underflow errors, 467
unformatted I/O

overview, 238
using, 294

UNIX, OS-specific file I/O information, 325
unsigned data type

integer, 48
long, 48

uppercase, strings, 115
user interface compound widgets, 808
Index Building IDL Applications

1001
user values (widgets), 840

V
Variable Watch Window, 447
variables, 506, 566

attributes of, 61
data type, determining, how to, 412
determining scope, 406
disappearing, 454
displaying current, 447
names of, 62
overview, 61
system, 64
undefined, checking for, 409

vectors, subscripting, 142
Virtual Machine, limitations, 537
Virtual Machine, see IDL Virtual Machine
virtual memory, 370, 378

minimizing, 380
minimizing with TEMPORARY, 381
running out of, 380
system parameters, 382

W
whitespace, removing from strings, 116
Widget Browser

example, 716
using, 694

widget values, 792
WIDGET_CONTROL procedure

in widget applications, 833
manage widget manipulation, 835

WIDGET_EVENT function
description, 836
when to use, 844

WIDGET_INFO function, in widget manipula-
tion, 836

WIDGET_PROPERTYSHEET function, using, 916

widgets
3D orientation, 808
applications

defined, 824
errors, 865
lifecycle, 830

base
attributes (GUIBuilder), 728
bulletin board bases, 891
defined, 795
events (GUIBuilder), 738

Browser, 694
button

accelerators, 974
accelerators on Mac, 976
adding menus (GUIBuilder), 697
attributes (GUIBuilder), 742
defined, 795
displaying bitmaps (GUIBuilder), 742
events (GUIBuilder), 746
exclusive, 901
labels, 898
nonexclusive, 901
tabbing, 967
toggle, 901
tooltips, 901
using, 898

callback routines, 845
changing values, 834
common attributes (GUIBuilder), 722
common blocks and, 849
common events (GUIBuilder), 726
compound

adding (GUIBuilder), 714
categories, 808
example (GUIBuilder), 714
using, 853

compound, handling events for, 726
controlling visibility

example, 716
Building IDL Applications Index

1002
widgets (continued)
controlling visibility

overview, 834
creating in IDL GUIBuilder, 688
destroying, overview, 834
displaying

IDL GUIBuilder, 716
in applications, 826

draw
attributes (GUIBuilder), 765
button events, 912
color model, 765
context events, 908
defined, 797
direct graphics, 904
events (GUIBuilder), 768
keyboard events, 912
motion events, 912
object graphics, 905
scrolling, 905
using, 903

droplist
attributes (GUIBuilder), 758
defined, 798
events (GUIBuilder), 760
tabbing, 968

dynamic resizing, 891
enabled or disabled state, 724
event processing

concepts, 841
context events, 872
identifying widget types, 869
interrupting the event loop, 868
keyboard focus, 869
techniques, 868
timer events, 870
tracking events, 871

event structure, 838
events, structure of, 841
example code, 824
explicit size, 890

widgets (continued)
finding screen size, 894
frames, using, 723
geometry, 890
height, 725
hierarchies, 833
hierarchies, multiple, 873
hourglass cursor, 835
instantiating, 826
interrupting the event loop, 868
killing, 834
killing hierarchies, 834
label

attributes (GUIBuilder), 753
defined, 799
events (GUIBuilder), 754

list
attributes (GUIBuilder), 761
defined, 799
events (GUIBuilder), 763

location, 891
managing the state of applications, 849
manipulating, 833
menus

context-sensitive, 881
creating, 876
pulldown, 878

naming, 722
natural size, 890
overview, 790
parent, 825
portability, 897
positioning, common properties, 724
post creation events, 727
preventing layout flicker, 894
properties for IDL GUIBuilder, 691
realizing, hierarchies, 833
restarting after an error, 865
retrieving values, 834
sensitizing, 835
Index Building IDL Applications

1003
widgets (continued)
size

defining, 891
dynamic resizing, 891
explicit

concepts, 890
definition, 723

natural, 890
slider

attributes (GUIBuilder), 755
defined, 802
events (GUIBuilder), 757

tab
attributes (GUIBuilder), 781
defined, 803
events (GUIBuilder), 783
sizing, 954
using, 952

tabbing, 967
table

attributes (GUIBuilder), 772
default size, 941
defined, 804
edit mode, 946
events (GUIBuilder), 777
retrieving data, 943
selection modes, 941
tabbing, 968
using, 941

text
attributes (GUIBuilder), 747
defined, 805
events (GUIBuilder), 750

tree
attributes (GUIBuilder), 784
events (GUIBuilder), 785
replacing default bitmaps, 965
selection state, 964
tabbing, 968
types, 962
using, 961

widgets (continued)
tree

visibility, 965
user values, 840
widget IDs

concept, 825
working with, 838

WIDGET_CONTROL procedure, 833
WIDGET_EVENT function

in widget manipulation, 836
when to use, 844

WIDGET_INFO function, 836
writing applications, 824
XMANAGER procedure

managing widget events, 836
using, 842

XREGISTERED function
checking widget registration, 837
using, 844

wildcards, in string searches, 124
windows, finding screen size, 894
wrapper routines

compatibility wrappers, 105
defined, 81
library conversion, 104

writing, a compound widget, 856

X
X11 Bitmap, standard file format I/O routines,

330
XBM_EDIT procedure, use of, 899
XDICE procedure, 862
XDISPLAYFILE, 478
XDR, 301
XDR files, 240
XMANAGER procedure

managing widget events, 842
overview, 836
when to use XREGISTERED, 844
Building IDL Applications Index

1004
XML
See also IDLffXMLSAX.
defined, 628
DOM, 628

creating data, 663
destroying objects, 664
loading a document, 661
modifying data, 663
object classes, 655
orphan nodes, 666
reading data, 662
tree-walking example, 667
whitespace in, 665

DTD, 633
parsers, defined, 628
SAX, 629
Schema, 633
validation, 633

XML document
creating data, 663
destroying objects, 664
loading, 661
modifying data, 663
orphan nodes, 666
reading data, 662
whitespace in, 665

XOR operator, 35
XREGISTERED function

using, 844
widget registration, 837

xwd files, standard file format I/O routines, 331

Z
zeroed structures, 183, 593
Index Building IDL Applications

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 6.1
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL Dataminer
	DataDirect Connect ODBC Reference (3.1.1 for IRIX)
	DataDirect Connect ODBC Reference (4.2 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Medical Imaging in IDL
	Search Documentation

	Building IDL Applications
	Contents
	Overview
	What is an IDL Application?
	Can I Distribute My Application?

	About Building Applications in IDL

	Part I: Components of the IDL Language
	Expressions and Operators
	Overview
	IDL Operators
	Parentheses
	Square Brackets
	Mathematical Operators
	Assignment
	Addition
	Subtraction and Negation
	Multiplication
	Division
	Exponentiation
	Modulo
	Increment/Decrement

	Minimum and Maximum Operators
	The Minimum Operator
	The Maximum Operator

	Matrix Multiplication
	The # Operator
	The ## Operator

	Array Concatenation
	Logical Operators
	&&
	||
	~
	When is an Operand True?
	Short-circuiting
	Logical Operator Examples

	Bitwise Operators
	Bitwise Operator Examples
	Note on the NOT Operator

	Relational Operators
	EQ
	NE
	GE
	GT
	LE
	LT
	Using Relational Operators with Arrays
	Using Relational Operators with Infinity and NaN Values

	Conditional Expression

	Operator Precedence
	Data Type and Structure of Expressions
	Expression Type
	Expression Structure

	Constants and Variables
	Data Types
	Basic Data Types
	Precision of Floating-Point Numbers

	Complex Data Types
	Determining the Data Type of a Variable or Array

	Constants
	Integer Constants
	Floating-Point and Double-Precision Constants
	Complex Constants
	String Constants
	Representing Non-Printable Characters

	Type Conversion Functions
	Take Care When Converting Types
	Converting Strings
	Dynamic Type Conversion
	Examples of Type Conversion

	Variables
	Attributes of Variables
	Structure
	Type

	Variable Names

	System Variables
	Common Blocks
	Common Block Definition Statements
	Example

	Common Block Reference Statements
	Example

	Note on Common Block Variable Names

	Procedures and Functions
	Overview
	Defining a Procedure
	Calling a Procedure
	Example

	Defining a Function
	Example
	Automatic Execution
	Forward Function Definition

	Parameters
	Correspondence of Formal and Actual Parameters
	Positional Parameters
	Keyword Parameters

	Copying Parameters
	Number of Parameters
	Example

	Using Keyword Parameters
	Keyword Inheritance
	Keyword Inheritance Mechanisms
	_EXTRA: Passing Keyword Parameters by Value
	_REF_EXTRA: Passing Keyword Parameters by Reference

	Choosing a Keyword Inheritance Mechanism
	Example: Writing a Wrapper Routine
	By Value
	By Reference

	Example: By Value Versus By Reference

	Entering Procedure Definitions
	Note Regarding Functions

	How IDL Resolves Routines
	Parameter Passing Mechanism
	Calling Mechanism
	Recursion
	Example

	Setting Compilation Options

	Library Authoring
	Overview of Library Authoring
	Recognizing Potential Naming Conflicts
	User Level Conflicts
	System Level Conflicts
	Choosing Routine Names to Avoid Conflicts

	Advice for Library Authors
	Prefixing Routine Names

	Converting Existing Libraries

	Strings
	Overview
	A Note About the Examples

	String Operations
	Concatenation
	Formatting Data
	Case Folding
	White Space Removal
	Length
	Substrings
	Splitting and Joining Strings
	Comparing Strings

	Non-string and Non-scalar Arguments
	String Concatenation
	Using STRING to Format Data
	Reading Data from Strings

	Byte Arguments and Strings
	Case Folding
	Whitespace
	Removing All Whitespace
	Removing Leading or Trailing Blanks
	Removing All Types of Whitespace

	Finding the Length of a String
	Substrings
	Searching for a Substring
	Searching For the Last Occurrence of a Substring
	Inserting the Contents of One String into Another
	Extracting Substrings

	Splitting and Joining Strings
	Comparing Strings
	Case-Insensitive Comparisons of the First N Characters
	String Comparisons Using Wildcards
	Complex Comparisons Using Regular Expressions

	Non-Printing Characters
	Learning About Regular Expressions
	Meta Characters
	Subexpressions
	Bracket Expressions
	Special Characters in Regular Expressions

	Arrays
	Overview
	Array Subscripts

	Array Subscripting
	Extra Dimensions
	Subscripting Scalars
	Array Subscript Syntax: [] vs. ()

	Subscript Ranges
	Dimensionality of Subarrays
	Examples

	Using Arrays as Subscripts
	Clipping
	Example

	Combining Subscripts
	Subscript Ranges
	Other Subscript Arrays
	Scalars

	Storing Elements with Array Subscripts
	Examples

	Columns, Rows, and Array Majority

	Pointers
	Overview
	Running the Example Code

	Heap Variables
	Creating Heap Variables
	Saving and Restoring Heap Variables
	Pointer Heap Variables
	IDL Pointers
	Null Pointers
	The PTR_NEW Function
	The PTRARR Function

	Operations on Pointers
	Assignment
	Dereference
	Dereferencing Pointer Arrays
	Dereferencing Pointers to Pointers
	Dereferencing Pointers within Structures
	Dereferencing the Null Pointer

	Equality and Inequality

	Dangling References
	Heap Variable Leakage
	Pointer Validity
	Freeing Pointers
	Pointer Examples
	Creating a Linked List
	Creating the List
	Printing the Linked List
	A Simple Sorting Routine for the Linked List

	Example Files—Using Pointers to Create Binary Trees

	Structures
	Overview
	Named Structures
	Anonymous Structures

	Creating and Defining Structures
	Structure Inheritance
	Example of Creating a Structure

	Structure References
	Subscripted Structure References
	Examples of Structure References

	Using HELP with Structures
	Parameter Passing with Structures
	Storing Into Array Fields

	Arrays of Structures
	Creating an Array of Structures
	Examples of Arrays of Structures

	Structure Input/Output
	Formatted Input/Output with Structures
	Unformatted Input/Output with Structures
	Strings
	String Length Issues

	Advanced Structure Usage
	Number of Structure Tags
	Names of Structure Tags
	Example

	Automatic Structure Definition
	Relaxed Structure Assignment
	Using Relaxed Structure Assignment

	Part II: Basics of IDL Programming
	Introduction to IDL Programming
	What is an IDL Program?
	Batch Files
	Main-Level Programs
	Named Programs
	Example: A Simple IDL Program

	Creating a Simple Program
	Compiling and Running Your Program
	Automatic Compilation
	Manual Compilation
	Compilation Errors

	Commenting Your IDL Code
	Saving Compiled IDL Programs and Data
	Example: Create a SAVE File of a Simple Routine
	Example: Customize and Save an ASCII Template
	Example: Save the XROI Utility with ROI Data

	Restoring Compiled IDL Programs and Data
	Automatic Restoration, Compilation, and Execution
	The RESTORE Procedure
	The IDL_Savefile Object
	Create a Savefile Object
	Query the Savefile Object
	Restore Items from the Savefile Object
	Destroy the Savefile Object

	Note on IDL 5.4 SAVE Files

	Files and Input/Output
	Overview
	File I/O in IDL
	Simple Examples
	Routines for Input/Output

	Unformatted Input/Output
	Advantages of Unformatted I/O
	Disadvantages of Unformatted I/O

	Formatted Input/Output
	Advantages of Formatted I/O
	Disadvantages of Formatted I/O
	Free Format I/O
	Advantages of Free Format I/O
	Disadvantages of Free Format I/O

	Explicit Format I/O
	Advantages of Explicit I/O
	Disadvantages of Explicit I/O

	Opening Files
	Platform-Specific Keywords to the OPEN Procedure

	Closing Files
	Logical Unit Numbers (LUNs)
	The Standard Input, Output, and Error LUNs
	UNIX
	Windows
	File Unit 0
	File Unit -1
	File Unit -2

	File Units (1–99)
	File Units (100�–128)

	Reading and Writing Very Large Files
	Limitations of Large File Support

	Using Free Format Input/Output
	Structures and Free Format Input/Output
	Free Format Input
	Free Format Output
	Example: Free Format Input/Output

	Using Explicitly Formatted Input/Output
	Record Terminators
	Format Codes
	Field Separators
	Rules for Explicitly Formatted Input/Output
	Format Reversion

	Format Codes
	Syntax of Format Codes
	Padding and Natural Width Formatting

	Available Format Codes
	Examples
	A Format Code
	: Format Code
	$ Format Code
	F, D, E, and G Format Codes
	B, I, O, and Z Format Codes
	Q Format Code
	Quoted String and H Format Codes
	T Format Code
	TL Format Code
	TR and X Format Codes
	C() Format Code
	Calendar Format Subcodes
	CMOA subcodes
	CMOI subcode
	CDI subcode
	CYI subcode
	CHI subcodes
	CMI subcode
	CSI subcode
	CSF subcode
	CDWA subcodes
	CAPA subcodes
	Standard Format Codes Allowed within a Calendar Specification

	C printf-Style Quoted String Format Code
	Supported “%” Formats
	Supported “\” Character Escapes
	Differences Between C printf() and IDL printf-Style Formats

	Example: Reading Tables of Formatted Data
	Example: Reading Records that Contain Multiple Array Elements
	FORTRAN Write:
	IDL Read:
	FORTRAN Write:
	IDL Read:
	FORTRAN Write:
	IDL Read:

	Using Unformatted Input/Output
	READU
	WRITEU
	ASSOC
	Unformatted Input/Output of String Variables
	Input
	Output

	Example: Reading C-Generated Unformatted Data with IDL
	Example: Reading IDL-Generated Unformatted Data with C
	Example: Reading a Sun Rasterfile from IDL

	Portable Unformatted Input/Output
	XDR Considerations
	IDL XDR Conventions for Programmers
	Example: Reading C-Generated XDR Data with IDL

	Associated Input/Output
	Example of Using Associated Input/Output
	Reading Data from Associated Files
	Writing Data to Associated Files
	Multiple Subscripts With Associated File Variables
	Files with Multiple Structures
	Offset Parameter
	Efficiency
	Unformatted Data from UNIX FORTRAN Programs

	File Manipulation Operations
	IDL File Handling Routines
	Locating Files
	Changing File Access Permissions
	Copying Files and Directories
	Renaming Files and Directories
	Deleting Files and Empty Directories
	Expanding Files and Directory Paths
	Creating Directories
	Testing for a File’s Existence
	Searching for a Specific File
	Working with UNIX Links
	Getting Help and Information
	Getting Information About a File
	The FSTAT Function
	An Example Using FSTAT

	Flushing File Units
	Positioning File Pointers
	Testing for End-Of-File
	GET_KBRD
	Example—Using GET_KBRD

	Using the STRING Function to Format Data
	Example—Using STRING with Explicit Formatting

	Reading Data from a String Variable

	UNIX-Specific Information
	Reading FORTRAN-Generated Unformatted Data with IDL
	Reading data from a FORTRAN file
	Writing data to a FORTRAN file

	Windows-Specific Information
	Scientific Data Formats
	Support for Standard Image File Formats

	Assignment
	Overview of the Assignment Statement
	Assigning a Value to a Variable
	Examples

	Assigning Scalars to Array Elements
	Using Array Subscripts

	Assigning Arrays to Array Elements
	Examples
	Using Array Subscripts

	Avoid Using Range Subscripts
	Examples

	Compound Assignment Operators
	Using Associated File Variables

	Program Control
	Overview
	Compound Statements
	BEGIN...END

	Conditional Statements
	IF...THEN...ELSE
	Using Statement Blocks with the IF Statement
	Nesting IF Statements

	CASE
	Example

	SWITCH
	CASE Versus SWITCH

	Loop Statements
	FOR...DO
	FOR Statement with an Increment of One
	FOR Statement with Variable Increment
	Sequence of the FOR Statement

	REPEAT...UNTIL
	Examples

	WHILE...DO
	Examples

	Jump Statements
	Statement Labels
	BREAK
	Example

	CONTINUE
	Example

	GOTO
	Example

	Definition of True and False

	Writing Efficient IDL Programs
	Overview
	Expression Evaluation Order
	Avoid IF Statements
	Example—Summing Elements
	Example—Using Array Operators and WHERE

	Use Vector and Array Operations
	Use System Functions and Procedures
	Example

	Use Constants of the Correct Type
	Eliminate Invariant Expressions
	Virtual Memory
	Access Large Arrays by Memory Order
	Example

	Running Out of Virtual Memory
	Minimizing Virtual Memory
	The TEMPORARY Function
	Virtual Memory System Parameters

	IDL Implementation
	The IDL Code Profiler
	The Profile Dialog
	User Modules
	System Modules
	Buttons

	The Profile Report Dialog
	Fields in the Profiler Report Dialog
	Buttons

	Using the IDL Code Profiler
	Profiling with Command Line Modules

	Multithreading in IDL
	The IDL Thread Pool
	Benefits of the IDL Thread Pool
	Possible Drawbacks to the Use of the IDL Thread Pool
	Computation of a Relatively Small Number of Data Elements
	Large Computation that Requires Virtual Memory Use
	Multiple Users Competing for CPU Resources
	Sensitivity to Numerical Precision

	Controlling the IDL Thread Pool
	Viewing the Current Thread Pool Settings
	Using the Default Thread Pool Settings
	Changing Global Thread Pool Settings
	Examples

	Changing Thread Pool Settings for a Specific Computation
	Example

	Disabling the Thread Pool

	Routines that Use the Thread Pool
	Binary and Unary Operators:
	Mathematical Routines:
	Image Processing Routines:
	Array Creation Routines:
	Non-string Data Type Conversion Routines:
	Array Manipulation Routines:
	Programming and IDL Control Routines:

	Solutions to Common IDL Tasks
	Determining Variable Scope
	Determining if a Keyword is Set
	Determining the Number of Array Elements in an Expression or Variable
	Determining if a Variable is Defined
	Supplying Values for Missing Keywords
	Supplying Values for Missing Arguments
	Determining the Size/Type of an Array
	Examples
	Example 1
	Example 2

	Determining if a Variable Contains a Scalar or Array Value
	Calling Functions/Procedures Indirectly
	Example

	Executing Dynamically-Created IDL Code

	Building Cross- Platform Applications
	Overview
	Which Operating System is Running?
	File and Path Specifications
	Choosing Files at Runtime
	Selecting Files Programmatically

	Environment Variables
	Files and I/O
	Byte Order Issues
	Logical Unit Numbers
	Naming of IDL .pro Files
	Automatic Compilation and Case Sensitivity

	Math Exceptions
	Operating System Access
	Display Characteristics and Palettes
	Finding Screen Size
	Number of Colors Available

	Fonts
	Printing
	SAVE and RESTORE
	Widgets
	Dialog Routines
	Base Widgets
	Positioning Widgets within a Base Widget
	Fonts used in Widget Applications
	Motif Resources
	WIDGET_STUB
	Widget Event Inconsistencies

	Using External Code
	IDL DataMiner Issues

	Debugging an IDL Program
	Overview
	Debugging Commands
	A Simple Example
	Step Through the Program
	Fix the Program
	Breakpoints
	Working with Breakpoints
	The Windows Edit Breakpoints Dialog

	The Variable Watch Window
	Customizing Variable Watch Window Layout
	The Variable Watch Interface Description
	The Variable Watch Window and Objects

	Using the Variable Watch Window

	Controlling Errors
	Overview
	Default Error-Handling Mechanism
	Disappearing Variables
	Controlling Errors Using CATCH
	Interaction of CATCH, ON_ERROR, and ON_IOERROR
	Canceling an Error Handler
	Generating an Exception
	Example Using CATCH

	Controlling Errors Using ON_ERROR
	Controlling Input/Output Errors
	Error Signaling
	Message Blocks

	Obtaining Traceback Information
	Error Handling
	!ERROR_STATE
	Using !ERROR_STATE

	Math Errors
	A Note on Floating-Point Underflow Errors
	Accumulated Math Error Status
	Special Floating-Point Values
	The FINITE Function
	Integer Conversions

	Providing Online Help For Your Application
	Overview
	Providing Help Within the User Interface
	Tooltips
	Status Lines
	Text Widgets

	Displaying Text Files
	Using an External Viewer
	About IDL’s Online Help System
	The Full IDL Documentation Set in PDF
	Microsoft Windows Help
	UNIX Online Help
	IDL’s Acrobat Plug-In

	Using IDL’s Online Help Viewers
	Microsoft Windows Help
	Creating Windows Help Files
	Calling Windows Help Files
	Cross-Platform Issues

	Portable Document Format Files
	Creating PDF Files
	Calling PDF Files
	Cross-Platform Issues

	HTML Files
	Creating HTML Files
	Calling HTML Files
	Cross-Platform Issues

	Paths for Help Files

	Part III: Creating Applications in IDL
	Creating IDL Projects
	Overview
	Access to all Files in Your Application
	Working with an IDL Project
	Compiling and Running Your Application
	Build Your Application
	Exporting Your Applications
	The IDL Project Interface
	Example of a Project

	Where to Store the Files for a Project
	Creating a Project
	Opening, Closing, and Saving Projects
	Opening a Project
	Saving a Project
	Closing a Project

	Modifying Project Groups
	Modifying Project Groups

	Adding, Moving, and Removing Files
	Adding Files
	Moving Files
	Removing Files

	Working with Files in a Project
	Editing a Source File
	Compiling a File
	Testing a File
	Setting the Properties of a File
	Modifying Properties of Multiple Files

	Setting the Options for a Project
	Selecting the Build Order
	Compiling an Application from a Project
	To Compile All Files in Your Project
	To Compile Only Modified Files in Your Project

	Building a Project
	About IDL GUIBuilder Files

	Running an Application from a Project
	Exporting a Project
	Exporting Your Project’s Source Files
	Exporting Your Project to a Save File
	Exporting a Runtime Distribution
	Under Microsoft Windows
	Under Unix
	Modifying the Manifest File

	Distributing IDL Applications
	What is a Stand-Alone IDL Application?
	Types of IDL Applications
	Limitations of IDL Applications
	Error Handling
	Blocking in Widget Applications

	Building a Native IDL Application
	Example Native IDL Application
	1. Create a .pro file
	2. Compile the Application
	3. RESOLVE_ALL
	4. SAVE

	Licensing Options for IDL Applications
	Free Runtime License (IDL Virtual Machine)
	Purchased Licenses
	Embedded Licenses
	Runtime Licenses

	The IDL Virtual Machine
	Limitations of Applications that Run in the IDL Virtual Machine
	Building an Application that Runs in the IDL Virtual Machine
	Version Compatibility of .sav Files
	Running a .sav File in the IDL Virtual Machine
	Windows
	UNIX and Mac OS�X

	Example

	Embedded Licensing
	Including License Information in your Application
	Licensing a Native IDL Application
	Licensing a Callable IDL Application
	Licensing an IDL ActiveX Application

	Running a .sav File with an Embedded License
	Windows
	UNIX or Mac OS X

	Example

	Runtime Licensing
	Building a Runtime Application
	Building a Native IDL Application
	Building a Callable IDL Application
	Building an IDL ActiveX Application

	Obtaining and Installing a Runtime License
	Windows
	UNIX

	Running a .sav File with a Runtime License
	Windows
	UNIX or Mac OS X

	Example

	Building Your Application
	Using SAVE and RESTORE
	Using Project Æ Export
	Using the make_rt Script (UNIX only)

	Preparing a Windows Distribution
	Unlicensed Native IDL Applications
	Virtual Machine Applications
	Creating a Windows Distribution CD-ROM

	Licensed IDL Applications
	Edit the idl.ini File
	Rename idl.000 and Remove reg.dat
	Describe How to Start Your Application

	ActiveX Applications

	Preparing a UNIX Distribution
	Unlicensed Native IDL Applications
	Virtual Machine Applications
	Callable IDL Applications
	1. Add Your Executables to the Distribution
	2. Rename the idl Script
	3. Edit the Startup Script

	Starting Your UNIX Application

	Distributing Your Application on a CD
	Create a CD-ROM Image Directory
	Copy the IDL Virtual Machine Distribution
	Copy and Rename the idlvm.exe File
	Copy and Rename the idlvm.ini File
	Copy your Application Files
	Modify the idlvm.ini File
	Copy and Modify the autorun.inf File
	Remove the reg.dat File
	Create and Test the CD-ROM
	Format of the .ini File

	Installing Your Application
	Incorporating the IDL Data Miner
	Windows
	UNIX

	Part IV: Using IDL Objects
	Object Basics
	Object-Oriented Programming
	IDL Object Overview
	Classes and Instances
	Encapsulation
	Methods
	Polymorphism
	Inheritance
	Persistence

	Class Structures
	Automatic Class Structure Definition

	Inheritance
	Object Heap Variables
	Dangling References
	Heap Variable “Leakage”
	Freeing Heap Variables

	Null Objects
	The Object Lifecycle
	Creation and Initialization
	The INIT Method
	The OBJ_NEW Function
	The OBJARR Function

	Destruction

	Operations on Objects
	Assignment
	Method Invocation
	Equality and Inequality

	Obtaining Information about Objects
	OBJ_CLASS
	OBJ_ISA
	OBJ_VALID

	Method Routines
	Defining Method Routines
	The Implicit Self Argument
	Calling Method Routines
	Searching for Method Routines

	Method Overriding
	Specifying Class Names in Method Calls

	Object Examples

	Using Language Catalogs
	What Is a Language Catalog?
	Creating a Language Catalog File
	Storing and Loading Language Catalog Files

	Using the IDLffLangCat Class
	Creating a Language Catalog Object
	Adding Application Keys
	Getting and Setting Languages
	Performing Queries
	Destroying a Language Catalog Object

	Widget Example

	Using the XML Parser Object Class
	About XML
	About XML Parsers
	Tree-based Parsers
	Event-based Parsers

	Using the XML Parser
	Subclassing the IDLffXMLSAX Object Class
	Define a Class Structure
	Override Superclass Methods
	Write Additional Methods
	Create a Class Definition Routine

	Using Your Parser
	Validation

	Example: Reading Data Into an Array
	Creating the xml_to_array Object Class
	Object Class Definition
	Init Method
	Cleanup Method
	Characters Method
	StartDocument Method
	StartElement Method
	EndElement Method
	GetArray Method

	Using the xml_to_array Parser

	Example: Reading Data Into Structures
	Creating the xml_to_struct Object Class
	Object Class Definition
	Init Method
	Characters Method
	StartElement Method
	EndElement Method
	GetArray Method

	Using the xml_to_struct Parser

	Building Complex Data Structures
	Use Dynamically Sized Arrays if Necessary
	Use Fixed-Size Arrays When Possible
	Using Nested Structures

	Using the XML DOM Object Classes
	About the Document Object Model
	When to Use the DOM
	About the DOM Structure
	How IDL Uses the DOM Structure

	About the XML DOM Object Classes
	IDLffXMLDOMNode Class Hierarchy
	IDLffXMLDOM Object Helper Classes
	IDL Node Ownership
	Saving and Restoring IDLffXMLDOM Objects

	Using the XML DOM Object Classes
	Loading an XML Document
	Reading XML Data
	Modifying Existing Data
	Creating New Data
	Destroying IDLffXMLDOM Objects
	Working with Whitespace
	Orphan Nodes

	Tree-Walking Example

	Part V: Creating Graphical User Interfaces in IDL
	Using the IDL�GUIBuilder
	Overview
	Starting the IDL GUIBuilder
	Opening Existing Interface Definitions

	Creating an Example Application
	Defining Menus for the Top-level Base
	Creating a Draw Widget
	Running the Application in Test Mode
	Generating the IDL Code
	Handling the Open File Event
	Handling the Exit Event
	Handling the Load Color Table Event
	Handling the Smooth Event
	Compiling and Running the Example Application

	IDL GUIBuilder Tools
	Using the IDL GUIBuilder Toolbar
	Creating Widgets

	Using the Properties Dialog
	Opening the Properties dialog
	Entering Multiple Strings for a Property

	Using the Widget Browser
	Using the Menu Editor
	Adding Menus to Top-Level Bases
	Adding Menus to Buttons

	Using the Bitmap Editor
	Placing a Color Bitmap on a Button
	Using the Bitmap Editor Tools

	Using the Tree Editor

	Widget Operations
	Selecting Widgets
	Moving and Resizing Widgets
	Cutting, Copying, and Pasting Widgets
	Deleting Widgets
	Undoing and Redoing Operations

	Generating Files
	Generating Resource Files
	Generating IDL Code
	Notes on Generating Code a Second Time

	IDL GUIBuilder Examples
	Understanding IDL GUIBuilder Event Handling Code
	Writing Event Callback Routines
	Handling Initialization Arguments
	Integrating Multiple Interfaces
	Creating the Main Window
	Creating the Modal Dialog
	Running the Example Application

	Adding Compound Widgets
	Adding a Compound Widget to an Interface
	Running the Example

	Controlling Widget Display
	Creating the Interface
	Generating and Modifying the Code
	Running the Application

	Widget Properties
	Common Widget Properties
	Common Attributes
	Name
	Component Sizing
	Frame
	Sensitive
	X Offset
	X Size
	Y Offset
	Y Size

	Common Events
	Handle Event
	OnDestroy
	OnRealize
	OnTimer
	OnTracking
	PostCreation

	Base Widget Properties
	Base Widget Attributes
	# of Rows/Columns
	Alignment
	Allow Closing
	Allow Moving
	Floating
	Grid Layout
	Layout
	Minimize/Maximize
	Modal
	Scroll
	Space
	System Menu
	Tab Mode
	Title
	Title Bar
	Visible
	X Pad
	X Scroll
	Y Pad
	Y Scroll

	Base Widget Events
	OnContextEvent
	OnFocus
	OnIconify
	OnKillRequest
	OnMove
	OnSizeChange

	Button Widget Properties
	Creating Multiple Radio Buttons or Checkboxes
	Button, Radio Button, and Checkbox Widget Attributes
	Alignment
	Bitmap
	Label
	No Release
	Tab Mode
	Tooltip
	Type

	Button, Radio Button, and Checkbox Widget Events
	OnButtonPress

	Text Widget Properties
	Text Widget Attributes
	Editable
	Height
	Initial Value
	Scroll
	Tab Mode
	Width
	Word Wrapping

	Text Widget Events
	OnContextEvent
	OnDelete
	OnFocus
	OnInsertCh
	OnInsertString
	OnTextSelect

	Label Widget Properties
	Label Widget Attributes
	Alignment
	Sunken
	Text

	Label Widget Events

	Slider Widget Properties
	Horizontal and Vertical Slider Widget Attributes
	Maximum Value
	Minimum Value
	Position
	Suppress Value
	Tab Mode
	Title

	Horizontal and Vertical Slider Widget Events
	OnChangeValue

	Droplist Widget Properties
	Droplist Widget Attributes
	Initial Value
	Tab Mode
	Title

	Droplist Widget Events
	OnSelectValue

	Listbox Widget Properties
	Listbox Widget Attributes
	Height
	Initial Value
	Multiple
	Tab Mode
	Width

	Listbox Widget Events
	OnContextEvent
	OnSelectValue

	Draw Widget Properties
	Draw Area Widget Attributes
	Color Model
	Colors
	Graphics Type
	Renderer
	Retain
	Scroll
	Tooltip
	X Scroll
	Y Scroll

	Draw Area Widget Events
	OnButton
	OnExpose
	OnKeyboard
	OnMotion
	OnViewportMoved

	Table Widget Properties
	Table Widget Attributes
	Alignment
	Column Labels
	Disjoint Selection
	Display Headers
	Editable
	Number of Columns
	Number of Rows
	Resize Columns
	Row/Column Major
	Row Labels
	Scroll
	Tab Mode
	Viewport Columns
	Viewport Rows

	Table Widget Events
	OnCellSelect
	OnColWidth
	OnDelete
	OnFocus
	OnInsertChar
	OnInsertString
	OnInvalidData
	OnTextSelect

	Tab Widget Properties
	Tab Widget Attributes
	Multiple Rows
	Location
	Tab Mode
	Tab Text

	Tab Widget Events
	OnTabChange

	Tree Widget Properties
	Tree Widget Attributes
	Multiple Selection
	Tab Mode

	Tree Widget Events
	OnContextEvent
	OnTreeExpand
	OnTreeSelect

	Widgets
	Overview
	Widget Types
	Widget Programming
	Widget Values
	Instantiating Widgets

	Widget Primitives
	ActiveX
	ActiveX Widget Values
	ActiveX Widget Events

	Base
	Base Widget Values
	Base Widget Events

	Button
	Button Widget Values
	Button Widget Events

	ComboBox
	Combobox Widget Values
	Combobox Widget Events

	Draw
	Draw Widget Values
	Draw Widget Events

	Droplist
	Droplist Widget Values
	Droplist Widget Events

	Label
	Label Widget Values
	Label Widget Events

	List
	List Widget Values
	List Widget Events

	Property Sheet
	Property Sheet Widget Data Types and Controls
	Property Sheet Widget Values
	Property Sheet Widget Events

	Slider
	Slider Widget Values
	Slider Widget Events

	Tab
	Tab Widget Values
	Tab Widget Events

	Table
	Table Widget Values
	Table Widget Events

	Text
	Text Widget Values
	Text Widget Events

	Tree
	Tree Widget Values
	Tree Widget Events

	Compound Widgets
	Widget Values of Compound Widgets
	Compound Widgets Provided with IDL
	Compound Widget Categories
	Animation
	Color Manipulation
	Data Entry and Display
	Image Manipulation
	Orientation
	User Interface

	CW_ANIMATE
	CW_ANIMATE Widget Value
	CW_ANIMATE Widget Events

	CW_ARCBALL
	CW_ARCBALL Widget Value
	CW_ARCBALL Widget Events

	CW_BGROUP
	CW_BGROUP Widget Value
	CW_BGROUP Widget Events

	CW_CLR_INDEX
	CW_CLR_INDEX Widget Value
	CW_CLR_INDEX Widget Events

	CW_COLORSEL
	CW_COLORSEL Widget Value
	CW_COLORSEL Widget Events

	CW_DEFROI
	CW_DEFROI Widget Value
	CW_DEFROI Widget Events

	CW_FIELD
	CW_FIELD Widget Value
	CW_FIELD Widget Events

	CW_FILESEL
	CW_FILESEL Widget Value
	CW_FILESEL Widget Events

	CW_FORM
	CW_FORM Widget Value
	CW_FORM Widget Events

	CW_FSLIDER
	CW_FSLIDER Widget Value
	CW_FSLIDER Widget Events

	CW_LIGHT_EDITOR
	CW_LIGHT_EDITOR Widget Value
	CW_LIGHT_EDITOR Widget Events

	CW_ORIENT
	CW_ORIENT Widget Value
	CW_ORIENT Widget Events

	CW_PALETTE_EDITOR
	CW_PALETTE_EDITOR Widget Value
	CW_PALETTE_EDITOR Widget Events

	CW_PDMENU
	CW_PDMENU Widget Value
	CW_PDMENU Widget Events

	CW_RGBSLIDER
	CW_RGBSLIDER Widget Value
	CW_RGBSLIDER Widget Events

	CW_ZOOM
	CW_ZOOM Widget Value
	CW_ZOOM Widget Events

	Dialogs
	DIALOG_MESSAGE
	DIALOG_PICKFILE
	DIALOG_PRINTERSETUP
	DIALOG_PRINTJOB
	DIALOG_READ_IMAGE
	DIALOG_WRITE_IMAGE

	Utilities
	XBM_EDIT
	XDISPLAYFILE
	XDXF
	XFONT
	XINTERANIMATE
	XLOADCT
	XMTOOL
	XOBJVIEW
	XPALETTE
	XPCOLOR
	XPLOT3D
	XROI
	XSURFACE
	XVAREDIT
	XVOLUME

	Creating Widget Applications
	About Widget Applications
	Running the Example Code
	Other Examples of Widget Programming

	Widget Programming Concepts
	Widget IDs
	Widget Parent/Child Relationships
	Instantiating and Displaying Widgets

	Example 1: A Simple Widget Application
	Widget Application Lifecycle
	Construct the Widget Hierarchy
	Provide an Event-Handling Routine
	Realize the Widgets
	Register the Program with the XMANAGER
	Interact with the Application
	Destroy the Widgets

	Manipulating Widgets
	WIDGET_CONTROL
	Realizing Widget Hierarchies
	Destroying Widget Hierarchies
	Retrieving or Changing Widget Values
	Controlling Widget Visibility
	Sensitizing Widgets
	Indicating Time-Consuming Operations

	WIDGET_EVENT
	WIDGET_INFO
	Finding Widget IDs using WIDGET_INFO

	XMANAGER
	XREGISTERED

	Working With Widget IDs
	Use the Widget Event Structure
	Pass the Widget ID Using a Widget User Value
	Use a User Name to Locate the Widget
	Pass the Widget ID Explicitly
	Use a COMMON Block

	Widget User Values
	User Values Simplify Event Handling
	User Values can be Accessible Throughout a Widget Application

	Widget Event Processing
	What are Widget Events?
	Structure of Widget Events
	Managing Widget Events with XMANAGER
	XMANAGER and Blocking
	Tips on Working With XMANAGER
	The XREGISTERED Function
	The WIDGET_EVENT Function

	Event Processing and Callbacks

	Example 2: Event Processing and User Values
	Managing Application State
	Techniques for Preserving Application State
	Using COMMON Blocks
	Using a State Structure in a User Value
	Using a Pointer to the State Structure

	Compound Widgets
	Writing Compound Widgets
	The HANDLER Field of the Widget Event Structure
	Storing State Information

	Example 3: Compound Widget
	Using CW_DICE in a Widget Program

	Debugging Widget Applications

	Widget Application Techniques
	Working with Widget Events
	Interrupting the Event Loop
	Identifying Widget Type from an Event
	Keyboard Focus Events
	Timer Events
	Tracking Events
	Context Menu Events

	Using Multiple Widget Hierarchies
	Widget Group Behaviors
	Iconization
	Layering
	Destruction

	Floating bases
	Modal bases
	Menubars

	Creating Menus
	Button Groups
	Exclusive or Nonexclusive Buttons

	Lists
	Pulldown Menus
	Menus on Top-Level Bases
	Context-Sensitive Menus
	Create a Context Menu
	Generate and Handle Context Events
	Display the Context Menu
	Process Button Events
	Determining Which Context Menu to Display
	Context Menu Example
	Additional Examples

	Widget Sizing
	Widget Geometry Terms and Concepts
	How Widget Geometry is Determined
	Dynamic Resizing
	Explicitly Specifying the Size and Location of Widgets
	Sizing Keywords
	Controlling Widget Size after Creation
	Units of Measurement
	Finding the Size of the Screen

	Preventing Layout Flicker

	Tips on Creating Widget Applications
	Portability Issues

	Using Button Widgets
	Bitmap Button Labels
	Creating Bitmap Files for Buttons
	Creating Black-and-White Bitmap Arrays for Buttons
	Creating Color Bitmap Arrays for Buttons

	Tooltips
	Exclusive and Non-Exclusive Buttons

	Using Draw Widgets
	Using Direct Graphics in Draw Widgets
	Using Object Graphics in Draw Widgets
	Scrolling Draw Widgets
	Differences Between SCROLL and APP_SCROLL
	Example Using SCROLL
	Example using APP_SCROLL

	Context Events in Draw Widgets
	Draw Widget Example
	Button, Motion, and Keyboard Events

	Using Property Sheet Widgets
	Registering Properties
	Selecting Properties
	Accessing Property Sheet Selection Events
	Controlling When Properties are Selectable

	Changing Properties
	Updating the Component

	User-defined Properties
	Updating User-defined Properties

	Property Sheet Sizing
	Property Sheet Example
	Multiple Properties Example

	Using Table Widgets
	Default Table Size
	Selection Modes
	Standard Selection Mode
	Disjoint Selection Mode

	Data Types
	Single Data Type
	Multiple Data Types

	Retrieving Data
	Entire Table
	Standard Selection
	Disjoint Selection
	Converting Between Cell List Formats

	Edit Mode
	Example: Single Data Type Data
	Example: Structure Data

	Using Tab Widgets
	Example: A Simple Tab Widget
	Tab Sizing and Multiline Behavior
	Windows Behavior
	Motif Behavior
	Tips for Tab Layout

	Example: Retrieving Values

	Using Tree Widgets
	Types of Tree Widgets
	Example: A Simple Tree
	Setting the Tree Selection State
	Making a Tree Entry Visible
	Replacing the Default Bitmaps
	Using Images from the IDL Distribution

	Enhancing Widget Application Usability
	Tabbing in Widget Applications
	Defining Tabbing Behavior in a Windows Application
	Navigation Among Widgets Using Tabbing
	Specifying and Inheriting TAB_MODE
	Modifying and Accessing the TAB_MODE Keyword

	Assigning Accelerators in Widget Applications
	Successfully Implementing Keyboard Accelerators
	Specifying WIDGET_BUTTON Accelerators

	Disabling Button Widget Accelerators
	Using IGNORE_ACCELERATORS

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

