Getting Started with IDL
Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures, functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the restrictions stated in the license agreement. Research Systems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not expressly set forth in the license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are a licensed user of this product, Research Systems, Inc. grants you a limited, nontransferable license to reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such copies must contain the title page and this notice page in their entirety.

Acknowledgments

IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.
Contents

Chapter 1:
The Power of IDL ... 11
Using this Manual ... 14

Chapter 2:
The IDL Interface ... 15
Starting IDL ... 16
The IDL Development Environment 17
 Menu Bar ... 18
 Tool Bar ... 18
 Project Window ... 18
 Multiple Document Panel ... 18
 Command Line .. 19
 Output Log ... 19
 Variable Watch Window .. 19
 Status Bar ... 20
The IDL iTools .. 21
Starting an iTool .. 22
Loading Data into an iTool ... 22
The iTools Data Manager .. 23
Quitting IDL ... 25
More Information on Using IDL .. 26

Chapter 3:
Reading and Writing Data .. 27
IDL and Reading and Writing Data ... 28
IDL Supported Formats ... 29
 Image Formats .. 29
 Scientific Data Formats ... 29
 Other Formats .. 29
Importing Data from an ASCII File ... 30
 Importing ASCII Data at the Command Line ... 30
 Importing ASCII Data into an iTool ... 35
Reading and Writing Binary Data .. 37
 Importing Binary Data at the Command Line ... 37
 Importing Binary Data into an iTool ... 40
Saving a Template From the Command Line ... 42
Reading and Writing Images ... 43
 Importing Image Data at the Command Line .. 43
 Importing Image Data into an iTool .. 44
More Information on IDL and Input/Output .. 46

Chapter 4:
2-D Plots .. 47
IDL and 2-D Plotting ... 48
Simple Command Plotting ... 49
 Using OPLLOT .. 50
 Printing a Plot ... 51
Plotting with Data Sets .. 52
Other Plotting Capabilities ... 53
Using the iPlot Tool ... 54
 Displaying a 2D Plot .. 54
 Displaying an Overplot .. 55
Modifying Plots ... 57
More Information on 2-D Plotting .. 58

Chapter 5:
Signal Processing ... 59
IDL and Signal Processing ... 60
Creating a Data Set ... 61
Signal Processing with SMOOTH ... 64
Frequency Domain Filtering .. 65
Displaying the Results ... 68
More Information on Signal Processing 70

Chapter 6:
Images ... 71
IDL and Images ... 72
Image Data and the Command Line .. 73
 Reading Image Data .. 73
 Displaying Image Data ... 73
Resizing an Image ... 76
Resizing a Graphics Window .. 78
Contrast Enhancement .. 79
 Thresholding ... 79
 Scaling Pixel Values .. 82
Smoothing and Sharpening ... 85
 Unsharp Masking ... 86
 Sharpening Images with Differentiation 87
Other Image Manipulations ... 89
 Rotating an Image .. 90
Extracting Profiles ... 91
Using the iImage Tool .. 92
 Displaying an Image .. 92
 Modifying Images ... 93
More Information on Images in IDL 94

Chapter 7:
Surfaces and Contours ... 95
Surfaces and Contours in IDL ... 96
Plotting Contours Over Maps ... 140
Warping Images to Maps ... 142
Using the iMap Tool ... 147
 Displaying a Map .. 147
 Modifying Map Data ... 147
More Information on Mapping .. 148

Chapter 10:
Plotting Irregularly-Gridded Data .. 149
IDL and Plotting Irregularly-Gridded Data ... 150
Creating a Dataset .. 151
The TRIANGULATE Procedure .. 153
Plotting the Results with TRIGRID ... 155
More Information on Gridding ... 157

Chapter 11:
Animation .. 159
IDL and Animation .. 160
Animating a Series of Images ... 161
Displaying an Animation as a Wire Mesh ... 163
Animation with XINTERANIMATE ... 166
Cleaning Up the Animation Windows ... 168
More Information on Animation .. 169

Chapter 12:
Programming in IDL .. 171
IDL and Programming .. 172
Programming Capabilities in the IDLDE ... 173
 Built-In Editor .. 173
 Types of IDL Programs ... 173
 Compound Statements .. 174
 Conditional Statements .. 174
 Loop Statements .. 174
 Jump Statements .. 175
Executing a Simple IDL Example Program ... 176
 Saving, Compiling and Running ... 177
Debugging Tools in IDL ... 179
Breakpoints .. 179
Variable Watch Window ... 179
The IDL Code Profiler .. 180
Using IDL Projects .. 181
 Accessing All Application Files .. 181
 Working with Project Files .. 182
 Compiling and Running Applications ... 182
 Building Distributions ... 182
 Exporting Applications ... 182
More Information on IDL Programming ... 183

Chapter 13:
Manipulating Data ... 185
 IDL and Manipulating Data ... 186
 IDL Array Routines ... 187
 Avoiding IF Statements by Summing Elements ... 188
 Avoiding IF Statements by Using Array Operators and the WHERE Function 189
 Example— Using Vector and Array Operations ... 189
More Information on Manipulating Data ... 192

Chapter 14:
Using the IDL GUIBuilder .. 193
 What is the IDL GUIBuilder? .. 194
 Using the IDL GUIBuilder ... 194
 IDL GUIBuilder Tools ... 196
 Using the IDL GUIBuilder Toolbar .. 196
 Creating an Example Application .. 197
 Defining Menus for the Top-Level Base ... 197
 Running the Application in Test Mode ... 201
 Generating the IDL Code .. 201
 Handling the Open File Event ... 202
 Handling the Exit Event .. 203
 Handling the Load Color Table Event .. 204
 Handling the Smooth Event .. 204
 Compiling and Running the Example Application ... 206
 Widget Types ... 207
 Widget Properties ... 208
More Information on the IDL GUIBuilder ... 209

Chapter 15:
Where to Go From Here .. 211

Learning More about IDL ... 212
 IDL Documentation Set ... 212
 Online Manuals ... 215
 Online Help .. 216

IDL Demo Applications and Examples ... 217

Contacting RSI .. 218
 Address .. 218
 Phone ... 218
 Fax ... 218
 E-mail .. 218
 World Wide Web ... 218

Index ... 219
Chapter 1:
The Power of IDL

IDL, the *Interactive Data Language*, is the ideal software for data analysis, visualization, and cross-platform application development. IDL integrates a powerful, array-oriented language with numerous mathematical analysis and graphical display techniques, thus giving you incredible flexibility. A few lines of IDL can do the job of hundreds of lines of C or Fortran, without losing flexibility or performance. A fourth-generation language, IDL is radically more compact than C or Fortran. Using IDL, tasks that require days or weeks of programming with traditional languages can be accomplished in hours. Users can explore data interactively using IDL commands and then create complete applications by writing IDL programs.
Chapter 1: The Power of IDL

Create Data - Use IDL to create data, using a complete, structured language that can be used interactively and on sophisticated functions, procedures, and applications.

Create Applications - Use the IDLDE (IDL Development Environment) to compile and execute commands immediately. It also includes built-in editing and debugging tools that provide instant feedback and “hands-on” interaction.

Read and Write Data - Use IDL to read and write almost any kind of data. Support is provided for common image standards and scientific data formats. If you have data, you can read it into IDL!

Signal Processing - Use IDL Signal Processing techniques to process a variety of 1-D signals, from traditional filtering and transform operations to statistical methods such as prediction analysis.
Chapter 1: The Power of IDL

Getting Started with IDL

Image Processing - Use IDL Image Processing techniques to filter out noise and to highlight true data characteristics and expose anomalies.

Mapping Capabilities - Use IDL Mapping techniques to plot data over different projections of the globe.

Irregularly-Sampled Data - Use IDL to easily fit irregularly-sampled data to a regular grid. This regularly-gridded data can then be sent to IDL's plotting routines.

Animate Images - Use IDL Animation tasks to visualize your data dynamically and to create an array of images and play them back as an animated sequence.

Create Applications - Use IDL to write sophisticated programs and applications using a complete set of program-control statements.
Using this Manual

The chapters included in this manual provide a “hands-on” way to learn basic IDL concepts and techniques. *Getting Started with IDL* demonstrates a number of common IDL applications: reading and writing data, 2-D plotting, signal processing, surface and contour plotting, image processing, volume visualization, mapping, plotting irregularly-gridded data, animation, programming in IDL, manipulating data, IDL Toolkits, and use of IDL’s GUIBuilder. Each section introduces basic IDL concepts and highlights some of the commonly used IDL commands.

You don’t have to read all of the descriptive passages that accompany each chapter. Simply enter the IDL commands shown in *courier* type at the IDL Command Input Line (the “IDL>” prompt) and observe the results. Unless otherwise noted, each line shown is a complete IDL command (press RETURN after typing each command). If you want more information about a specific command, you can read the explanations.

Each chapter functions similarly to a tutorial and is a demonstration of a particular IDL feature. It is recommended that you walk through each short, interactive chapter to preserve continuity, since many commands rely upon previous commands. Each chapter assumes the most basic level of IDL experience.

Note
The examples and graphics in this manual have been captured using the Windows platform. Where needed, explanations have been provided for use of the examples on UNIX or Macintosh platforms.

Note
The dollar sign ($) at the end of the first line is the IDL continuation character. It allows you to enter long IDL commands as multiple lines.

Note
To simplify obtaining useful results from the examples in this manual, create a bitmap buffer for your graphic windows and use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```
Chapter 2: The IDL Interface

This chapter introduces the IDL Development Environment and its capabilities.

Starting IDL 16 Quitting IDL 25
The IDL Development Environment 17 More Information on Using IDL 26
The IDL iTools 21
Starting IDL

To start IDL, follow the instructions according to your Operating System:

- **Windows** - Click the Windows Start button, and select:

 Programs → Research Systems IDL 6.1 → IDL.

- **Macintosh** - IDL 6.1 for MacOS X can only be run from a UNIX X-Windows prompt. In order to obtain an X-Windows prompt, it is necessary to start the Apple X11 window manager. Launch X11 from the Applications folder. X11 displays a UNIX X-Windows command line in an OS X window. Now at the system command prompt enter:

 idlde

- **Motif** - Start IDL by entering the following at the % prompt:

 idlde

Note

For more information on installing and licensing IDL, see the IDL installation guide for your platform.
The IDL Development Environment

IDL’s multiple-document interface is called the IDL Development Environment (IDLDE) and includes built-in editing and debugging tools. The IDL Development Environment is available for use on the Windows, Macintosh, and Motif (UNIX) platforms.

Note
All figures shown in this chapter are Windows environment figures but the IDLDE is similar on each of the other platforms. Simply open the IDLDE in your environment and follow along with the descriptions of IDLDE features.

Note
A command line interface is also available on UNIX and Macintosh platforms. For more information, see the Using IDL manual.

When you start IDL, the IDL Development Environment appears:

![Figure 2-1: The IDL Development Environment (Shown in Windows OS)](image_url)
Menu Bar

The Menu Bar, located at the top of the main IDL window, is used to control various IDLDE features. When you select an option from the Menu Bar in the Development Environment, the Status Bar displays a brief description.

Tool Bar

There are three Tool Bars in the IDLDE: Standard, Run & Debug, and Macros. In addition, when you open an IDL GUIBuilder window, its associated Tool Bar is displayed. When you position the mouse pointer over a Tool Bar button, the Status Bar displays a brief description. If you click on a Tool Bar button which represents an IDL command, the IDL command issued is displayed in the Output Log.

Project Window

The Project Window displays information about the current Project you have open in the IDLDE. IDL Projects allow you to easily develop applications in IDL. You can manage, compile, run, and create distributions of all the files you will need to develop your IDL application. All of your application files can be organized so that they are easier to access and easier to export to other developers, colleagues, or users.

Multiple Document Panel

The top section of the main IDL window is where IDL Editor windows are displayed. The IDL Editor is where you create applications in IDL. To see the Multiple Document Panel at work, open the file examples.pro which can be found in the path:

rsi/idl61/examples/visual/examples.pro

Notice the color coding of commands, comments, and so on.

Figure 2-2: Editor Window showing example.pro
Command Line

The Command Line is a single IDL prompt where you can enter IDL commands. If you click the right mouse button while positioned over the Command Input Line, a pop-up menu appears displaying the command history, with a default buffer of 20 entries and a maximum of 100 entries. IDL is an interpreted language and commands are therefore executed immediately at the command line. To see the IDL Command Line in action, enter the following in the Command Line at the IDL prompt and press Enter:

```idl
print, 'Hello World!'```

![Figure 2-3: Entering data at the IDL Command Line](image)

Output Log

Output from IDL is displayed in the Output Log window, which appears by default when the IDLDE is first started (notice the result of our print command in the Output Log).

![Figure 2-4: The IDL Output Log](image)

Variable Watch Window

The Variable Watch window appears by default when you start the IDLDE. It keeps track of variables as they appear and change during program execution (tabs exist for viewing variables by type; Locals, Params, Common and System).
Status Bar

When you position the mouse pointer over a Control Panel button or select an option from a menu item in the IDLDE, the Status Bar displays a brief description.
The new IDL Intelligent Tools (iTools) are a set of interactive utilities that combine data analysis and visualization with the task of producing presentation quality graphics. Based on the IDL Object Graphics system, the iTools are designed to help you get the most out of your data with minimal effort. They allow you to continue to benefit from the control of a programming language, while enjoying the convenience of a point-and-click environment. Each of the six tools is designed around a specific data or visualization type:

- Two and three dimensional plots (line, scatter, polar, and histogram style)
- Surface representations
- Contour maps
- Image displays
- Volume visualizations
- Maps

![Figure 2-5: Black Hole Density Data in the iVolume Tool](image-url)
For detailed information on the new iTools and how to use them, see the *iTool User’s Guide*.

The iTools are built upon an object-oriented framework, or set of object classes, that serve as the building blocks for their interface and functionality. IDL programmers can easily use this framework to create custom data analysis and visualization environments. Such custom Intelligent Tools may be called from within a larger IDL application, or they may serve as the foundation for a complete application in themselves. For more information on creating your own custom iTools, see *iTool Developer’s Guide*.

### Starting an iTool

To get started using the new IDL iTools, from the IDLDE command line, simply type the name of the tool you wish to call. The tools available are:

- `iContour`
- `iImage`
- `iPlot`
- `iSurface`
- `iVolume`
- `iMap`

You can also launch an iTool using these other methods:

- From Windows:
  
  `Start → Programs → RSI IDL 6.1 → iTools → iTool Name`

- From the IDLDE:
  
  `File → New → Visualization → iTool Name`

For more information on using iTools for visualization see the individual chapters in this Guide associated with each iTool type.

### Loading Data into an iTool

There are multiple options for loading your data into your chosen iTool for visualization:

- **Command Line Argument** — At the IDL Command Line enter:
  
  `iPlot, mydata (or: iTool Name, mydata)`
This option allows you to have control over parameters and keyword options for setting up the way you wish your plot (or other visualization) to appear.

- **File → Open** — The quickest way to create a default visualization of your data.
- **File → Import → IDL variable** — This will invoke the IDL Import wizard.
- **File → Import → From a File** — This also invokes the IDL Import wizard.
- **Insert → Visualization** — This method gives you parameter control similar to using the command line.

**Note**
For more detailed information on loading data into the iTools, see Chapter 2, “Importing and Exporting Data” in the *iTool User’s Guide* manual.

### The iTools Data Manager

Data used by any iTool is first loaded into the iTools data manager, which keeps track of which data items are associated with an iTool visualization. The iTool will import the data in the specified file or variable and create a visualization of the default type for the selected data and the iTool you are using.

If you want more control over the process of creating a visualization, you can load data into the data manager manually, either from a data file or from one or more variables that exist in your current IDL session. Once a data item is placed in the data manager, it is available to all iTools until it is removed.

![Figure 2-6: The iTools Data Manager](image-url)
The data manager dialog provides a convenient and structured environment in which to import and view files and variables. Any data which is placed in the iTools system is stored in this repository. You can also perform important tasks such as removing, renaming, copying, and importing data in the data manager.

**Note**

To learn more about the Data Manager and its interaction with the iTools, see Chapter 2, “Importing and Exporting Data” in the iTool User’s Guide manual.
Quitting IDL

To quit the current IDL session and return to the operating system, select File → Exit in the IDL Development Environment. You can also type `EXIT` at the IDL Command Line:

`IDL>EXIT`
More Information on Using IDL

This overview has acquainted you with the very basic layout and function of the IDL Development Environment and the basic functions of the IDL iTools. More in-depth information on working with IDL and the IDL Development Environment (IDLDE) can be found in *Using IDL* and more information on the iTools can be found in the *iTool User’s Guide*. 
Chapter 3:
Reading and Writing Data

This chapter introduces IDL’s ability to read and write data.

IDL and Reading and Writing Data . . . . . . . 28
IDL Supported Formats . . . . . . . . . . . . . . . 29
Importing Data from an ASCII File . . . . . . 30
Saving a Template From the Command Line . . 42
Reading and Writing Binary Data . . . . . . . 37
Reading and Writing Images . . . . . . . . . . . 43
More Information on IDL and Input/Output . . 46
IDL and Reading and Writing Data

IDL’s flexible input and output capabilities allow you to read and write virtually any data format. When IDL reads a data file, bytes or characters in the file are converted to the appropriate data type (unless the file is binary, in which case no conversion takes place). Similarly, when writing data, the appropriate IDL variables are converted to the appropriate bytes or characters. In this chapter, you’ll import some existing data using IDL commands.

Note

To simplify obtaining useful results from the examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
IDL Supported Formats

Image Formats

IDL includes routines for reading and writing many standard graphics file formats. These routines and the types of files they support are listed below. Documentation on these routines can be found in the *IDL Reference Guide*.

- BMP
- GeoTIFF
- Interfile
- JPEG
- JPEG2000
- MRSID
- NRIF
- PICT
- PNG
- PPM
- SRF
- SYLK
- TIFF
- XWD
- X11 Bitmap

Scientific Data Formats

There are four self-describing scientific data formats supported by IDL:

- CDF (Common Data Format)
- HDF-EOS (Earth Observing System extensions to HDF)
- HDF5
- netCDF (Network Common Data Format)
- HDF (Hierarchical Data Format)

Detailed documentation for each format can be found in the *Scientific Data Formats* manual.

Other Formats

- ASCII
- Binary
- DICOM
- DXF
- XML
- MPEG
- Shapefiles
- WAV (Audio)
- XDR (External Data Representation)
Importing Data from an ASCII File

You can import ASCII data into IDL directly at the command line or also using the iTools if you need to visualize data in plot, surface, contour, image or volume form. Whether reading in directly or through the iTools you will need to read in the ASCII data in using IDL’s interactive wizard for importing ASCII data, known as the ASCII Template. In the sections which follow, examples are given of reading ASCII data into IDL.

Importing ASCII Data at the Command Line

To import ASCII data directly into IDL, use the ASCII_TEMPLATE function in conjunction with the READ_ASCII function. To import an ASCII data file into IDL, you must first describe the format of the data using the ASCII_TEMPLATE function.

1. At the IDL Command Line, enter the following:
   
   \[
   \text{PLOTTEMPLATE=} \text{ASCII TEMPLATE ()}
   \]

   This command will guide you through assigning the description of the data to a variable named PLOTTEMPLATE. A dialog box appears, prompting you to select a file.

2. Select the file “plot.txt” located in the data directory:

   \[
   \text{rsi-directory/examples/data/plot.txt}
   \]

   Where rsi-directory is the installation directory for IDL.
Note
Another way to import ASCII data is to use the **Import ASCII File** toolbar button on the IDLDE toolbar. To use this feature simply click the button and the dialog will appear so that you may select `plot.txt`.

---

![Figure 3-1: Selecting the Plot.txt File](image)

---

*Figure 3-1: Selecting the Plot.txt File*
3. The ASCII Template dialog step 1 of 3 **Define Data Type/Range** appears:

![ASCII Template Step 1 of 3: Define Data Type/Range](image)

**Figure 3-2: the ASCII TEMPLATE Dialog**

4. First choose the field type. Since this data file is delimited by tabs (or whitespace) select the **Delimited** button. Also, be sure to specify to begin reading the data at line 3, not line 1 in the **Data Starts at Line** field. This is because there are two comment lines at the beginning of the file.

5. Click **Next**.
6. Now the **Define Delimiter/Fields** dialog box appears:

![figure 3-3: selecting delimiter type in ascii_template]

7. At this dialog, be sure to select **Tab** as the delimiter between data elements since we know we have used tabs in the original file.

8. Now move on to the final dialog by clicking **Next**.
9. Now the **Field Specification** dialog box appears:

![Field Specification Dialog Box](image)

**Figure 3-4: Naming the Data Type Sets in ASCII TEMPLATE**

10. In this dialog, we will give a name to each data field for IDL to recognize each set. At the top of the box, click on the first row (row 1) and then name the data set by typing the name Time for the first set in the box.

11. Next, move on to the second row, naming this data set Temp1 for the first set of temperatures in the data set.

12. Finally, name the last data set Temp2. Click **Finish**.

13. Type the following line at the IDL Command Line to read in the file `plot.txt` using the template we’ve just created:

   ```idl
 PLOT_ASCII=READ_ASCII(FILEPATH('plot.txt', SUBDIR = $['examples', 'data']), TEMPLATE = PLOTTEMPLATE)
   ```

14. Then enter:

   ```idl
 PRINT, PLOT_ASCII
   ```
You will see the following displayed:

![Figure 3-5: PLOT_ASCII Printed](image)

**Note**

Note that PLOT_ASCII is a type STRUCT. When using READ_ASCII to read a file, the data is read into a structure variable. For more information on importing data into structure variables, see *Using IDL*.

**Note**

You may need to resize the IDL Output Log in order to see the PLOT_ASCII information displayed in correct columns.

### Importing ASCII Data into an iTool

The iTools are fully interactive and automatically walk you through reading your ASCII data using the same ASCII Template as used previously.

Here is an example of opening an ASCII file from an iTool:

1. From an iTool window (depending upon the desired visualization type, in this case, iPlot) open an example file named `plot.txt` from the `examples\data` subdirectory of your IDL distribution. You can open the file either by selecting **File → Open** or by clicking the **Import File** button in the Data Manager or Insert Visualization dialog.

2. The ASCII Template window is displayed. At this point you will follow the ASCII template’s three steps as outlined in the previous command line example.
3. Continue to follow the template steps until the data is visualized in iPlot.

Figure 3-6: Plot.txt Visualized in iPlot
Reading and Writing Binary Data

Reading data files into IDL is easy if you know the format in which the data is stored. Often, images are stored as arrays of bytes instead of a known format like JPEG or TIFF. These files we’ll refer to as “Binary” files. You can import binary data into IDL directly at the command line or also using the iTools if you need to visualize data in plot, surface, contour, image or volume form. Whether reading in directly or through the iTools you will need to read the binary data in using IDL’s interactive wizard for importing binary data, known as the Binary Template. In the sections which follow examples are given of reading binary data into IDL.

Importing Binary Data at the Command Line

To import binary data directly into IDL, use the BINARY_TEMPLATE function in conjunction with the READ_BINARY function. To import a binary data file into IDL, you must first describe the format of the data using the Binary Template.

The binary file that we will read in the following example is stored as an integer array and contains an image of the Maroon Bells mountains, a group of mountains located among the Rocky Mountains of Colorado.

1. At the IDL Command Line, enter the following:

```idl
MARBELLSTEMPLATE=BINARY_TEMPLATE(FILEPATH('surface.dat', $ SUBDIR = ['examples', 'data']))
```

---

**Getting Started with IDL**

Reading and Writing Binary Data
Note
Another way to import Binary data is to use the Import Binary File toolbar button on the IDLDE toolbar. To use this feature simply click the button and the dialog will appear so that you may select “surface.dat”.

2. In the Template Name field, enter “marbellstemplate” for the name of our new template.

3. In the File’s byte ordering pull-down field, select “Little Endian” since we know that this file was created on an Intel processor-based machine. For more information about file byte ordering, see Chapter 15, “Reading and Writing Binary Data” in Using IDL.

4. Now we are ready to enter the field values, click the New Field button in the lower left corner of the dialog box.

5. When the New Field dialog appears, enter “MARBELLS” as the field name. Verify the box in the upper right corner marked Returned in the result since we will want our data set returned at the time it is read.

6. At the Number of Dimensions pull-down menu, be sure to specify that we are dealing with a two-dimensional data set here. These data are contained in a 350 by 450 array, so we will enter these values in the two boxes marked Size.
7. Finally, let the binary template dialog know that we are dealing with Integer type data by specifying **Integer (16 bits)** at the **Type** pull-down menu. Click **OK**.

![Figure 3-8: Modifying Fields in Binary Template](image)

Once you have entered the above data, the binary template dialog appears once again showing the specifications you have made. Your dialog should appear as the following figure.

![Figure 3-9: The “Completed” Binary Template Dialog](image)

8. Now click **OK**.
Now we will use the READ_BINARY function to read the template we have just created.

9. At the IDL Command Line, enter:

   \[
   \text{MARBELLS\_BINARY=READ\_BINARY (FILEPATH('surface.dat', $}
   \text{SUBDIR=['examples', 'data'])), TEMPLATE=MARBELLSTEMPLATE)}
   \]

10. Now display the image by entering:

   \[
   \text{SURFACE, MARBELLS\_BINARY.MARBELLS}
   \]

You can view an image in IDL with two different routines. The TV procedure writes an array to the display as an image without scaling. The TVSCL procedure displays the image with the color values scaled to use the whole color table.

**Importing Binary Data into an iTool**

The iTools are fully interactive and automatically walk you through reading your binary data using the same Binary Template as used previously.

Here is an example of opening a binary file in an iTool:
1. From the iTool window (depending upon the desired visualization type, in this case, iSurface) open an example file named surface.dat from the examples\data subdirectory of your IDL distribution. You can open the file either by selecting File → Open or by clicking the Import File button in the Data Manager or Insert Visualization dialog. This is a data file containing a damped sine wave with severe high frequency noise.

2. The Binary Template window is then displayed. At this point you will follow the binary template’s three steps as outlined in the previous command line example.

3. Continue to follow the template steps until the data is visualized in iSurface.

![Figure 3-11: Surface.dat Displayed in iSurface](image)
Saving a Template From the Command Line

If you have multiple ASCII or Binary files of the same format, you can save your template so that you can reuse it. We'll demonstrate saving the template we created earlier in this section:

1. Save the ASCII template you have just created by entering:
   
   \begin{verbatim}
   SAVE, PLOTTEMPLATE, FILENAME='MYPLOTTEMPLATE.dat'
   \end{verbatim}

2. Then, you can restore the template so that you can read another ASCII file:
   
   \begin{verbatim}
   RESTORE, 'PLOTTEMPLATE.dat'
   \end{verbatim}

   This actually restores the variable named MYPLOTTEMPLATE which contains the template information.

   You can now read in another file using the READ_ASCII function by specifying \texttt{MYPLOTTEMPLATE.dat} for the \texttt{TEMPLATE}.

\textbf{Note}

You may also use an ASCII template to read another ASCII file provided that the data starts on the same line as the template specifies and that it is delimited in the same way as the template specifies.
Reading and Writing Images

You can import image data into IDL directly at the command line or also using the iImage tool.

Importing Image Data at the Command Line

Reading image files directly into IDL is easy if you know the format in which the image is stored. First we must read in the image. Here we will use a TIFF format image of an aerial satellite view of Manhattan Island in New York City.

1. Enter the following at the IDL Command Line:
   ```idl```
   ```
   MYIMAGE=READ_TIFF(FILEPATH('image.tif',SUBDIR= $ 
   ['examples', 'data']))
   ```
 This command reads the image into memory.

2. Now display the image:
   ```idl```
   ```
 TV, MYIMAGE
   ```
3. Another way to import image data is to use the **Import Image File** toolbar button on the IDLDE toolbar. To use this feature simply click the button and the dialog will appear so that you may select “image.tif”. However, this will name the image differently than shown in this example. For more information, see Chapter 13, “Reading and Writing Images” in *Using IDL*. Now, using IDL’s WRITE_TIFF command, rename and write the file:

\[ \text{WRITE_TIFF, 'imagecopy.tif', MYIMAGE} \]

**Importing Image Data into an iTool**

The iTools are fully interactive and automatically read your image data.

Here is an example of opening an image file in iImage:

1. From the iImage window, select **File → Open** and from the `examples\data` directory choose a file named `image.tif`. 

![Figure 3-12: Reading and displaying an image file](image.jpg)
2. Select **Open**, and the file is displayed in iImage.

![Image.tiff Displayed in iImage](image.tiff)
More Information on IDL and Input/Output

For more information about IDL’s input/output capabilities, see *Using IDL*. For more information about the iTools’ input/output capabilities, see the *iTool User’s Guide*. Also, for more detailed information on the functions and procedures you have seen in this chapter, see the *IDL Reference Guide*. 
Chapter 4:
2-D Plots

This chapter describes the following topics:

<table>
<thead>
<tr>
<th>IDL and 2-D Plotting</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Command Line Plotting</td>
<td>49</td>
</tr>
<tr>
<td>Plotting with Data Sets</td>
<td>52</td>
</tr>
<tr>
<td>Other Plotting Capabilities</td>
<td>53</td>
</tr>
<tr>
<td>Using the iPlot Tool</td>
<td>54</td>
</tr>
<tr>
<td>More Information on 2-D Plotting</td>
<td>58</td>
</tr>
</tbody>
</table>
IDL and 2-D Plotting

IDL makes plotting data easy. X versus Y plots can be displayed with a single command, and multiple plots can be viewed at the same time. You can also use the new IDL iPlot tool to visualize and manipulate your plot data. This chapter demonstrates some of IDL’s plotting capabilities. We will also examine how you enter statements at the IDL Command Line and how to use the iPlot tool. This demonstrates IDL’s interactive capability, and shows how easy it is to manipulate your data.

*Note*

To simplify obtaining useful results from the command line examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```
Simple Command Line Plotting

Simple plots can be charted using the PLOT procedure. Each call to PLOT establishes the plot window (the rectangular area enclosed by the axis), the plot region (the box enclosing the plot window and its annotation), the axis types (linear or logarithmic), and the scaling.

First, we’ll plot a simple graph using a sine function. Use the FINDGEN function here to specify the dimensions of the array. The FINDGEN function returns a single-precision, floating-point array, with the specified dimension, where each element of the array is set to the value of its one-dimensional subscript.

1. First, create a value for the X axis:
   \[ X = 2*\pi/100 \times \text{FINDGEN}(100) \]

2. Now, use PLOT to visualize the array:
   \[ \text{PLOT, SIN(X)} \]

Also, additional data can be added, as before, using the OPLOT procedure. Frequently, the color index, linestyle, or line thickness parameters are changed in each call to OPLOT to distinguish the data sets. The *IDL Reference Guide* contains a table describing the features you can change.

*Figure 4-1: A simple sine wave using the PLOT command*

Also, additional data can be added, as before, using the OPLOT procedure. Frequently, the color index, linestyle, or line thickness parameters are changed in each call to OPLOT to distinguish the data sets. The *IDL Reference Guide* contains a table describing the features you can change.
Using OPLT

Now use OPLT to plot the new information over the existing plot:

1. Plot at twice the frequency:
   \[ \text{OPLT, SIN(2*X)} \]

2. Plot at three times the frequency:
   \[ \text{OPLT, SIN(3*X)} \]

The results are shown in the following figure.

\[\text{Figure 4-2: Graphing various data using the OPLT command}\]
Printing a Plot

IDL allows you to easily print the plot just created. Simply enter the following command lines shown.

1. First, save the original settings of your plotting environment:
   ```idl```
 `MYDEVICE=!D.NAME`
   ```idl```

2. Tell IDL that you wish to designate the printer to be the destination for the plot:
   ```idl```
 `SET_PLOT, 'printer'`
   ```idl```

3. Now plot again to the printer:
   ```idl```
 `PLOT, SIN(X)`
   ```idl```

4. Close the printing device:
   ```idl```
 `DEVICE, /CLOSE`
   ```idl```

5. Redesignate the original setting as the future destination for any plots:
   ```idl```
 `SET_PLOT, MYDEVICE`
   ```idl```

**Note**

If you are having problems printing on UNIX, be sure your printer is configured correctly. For more information on this see `DIALOG_PRINTERSETUP` in the *IDL Reference Guide*. 
Plotting with Data Sets

To demonstrate IDL’s capability to read a data set and plot it, we will use the template and data set used in the last chapter (Chapter 3, “Reading and Writing Data”).

1. At the IDL Command Line, enter the following:

   \[
   \text{PLOT_ASCII=READ_ASCII(FILPATH('plot.txt', SUBDIR= } \$
   \text{['examples', 'data']}, \text{TEMPLATE=PLOTTEMPLATE)}
   \]

2. Plot the first set of data on temperatures which is stored in Temp1:

   \[
   \text{PLOT, PLOT_ASCII.TIME, PLOT_ASCII.TEMP1}
   \]

![Plot of data set](image)

**Figure 4-3: Plotting an existing data set using PLOT**

Note

The file is read into a structure variable. For more information on importing data into structure variables, see *Using IDL*. 
Other Plotting Capabilities

Now add titles to the simple plot graph using the TITLE, XTITLE, and YTITLE keywords. Using these simple keywords, IDL allows you to add a title to your plot as well as descriptive titles for your X and Y axis.

1. Plot with titles:

   PLOT, PLOT_ASCII.TIME, PLOT_ASCII.TEMP1, TITLE= $ 'Temperature Over Time', XTITLE= $ 'Time in Seconds', YTITLE= 'Temperature Celsius'

   ![Graph showing temperature over time with titles](image)

   *Figure 4-4: Adding titles to a plot using TITLE, XTITLE and YTITLE*
Using the iPlot Tool

The iPlot tool’s primary design is to display plot data, though the tool is capable of much more once the data is plotted. The iPlot tool can display multiple types of plots and allows you to manipulate and edit the displays.

Displaying a 2D Plot

The first task is to display plot data. Here is a simple example of how to display a plot.

At the IDL command line, enter:

```
iPlot, RANDOMU(seed, 20)
```

![Figure 4-5: A Simple 2D Plot Using the iPlot Tool](image)
Displaying an Overplot

Once you have plotted data, you may overplot new plot data in the original iPlot window. Overplotting is the process of plotting new data over the top of original data or datasets for the purpose of analyzing or comparing more than one dataset at a time.

For example, in order to overplot cosine data onto a plot of sine wave data follow these steps:

1. Create a variable named “theory” to contain sine wave data to be plotted:
   
   \[
   \text{theory} = \sin(2.0\times\text{FINDGEN}(200)\times\pi/25.0)\times\exp(-0.02\times\text{FINDGEN}(200))
   \]

2. Plot theory using iPlot:
   
   \[
   \text{iPlot, theory}
   \]

![Figure 4-6: Sin Wave Data Plotted](image)
3. Create a variable named “newtheory” which stores cosine data to be used for overplotting:

   \[ \text{newtheory} = \cos(2.0 \times \text{FINDGEN}(200) \times \pi/25.0) \times \exp(-0.02 \times \text{FINDGEN}(200)) \]

4. Now overplot the new cosine data onto your original plot:

   \[ \text{iPlot, newtheory, /OVERPLOT} \]

---

**Figure 4-7: Cosine Data Overplotted on Sine Data**

**Note**

You can also overplot in the iPlot tool any other way you can load new data into the existing iPlot tool (for example, using **File → Open**.)
Modifying Plots

The iPlot tool allows you many options for modifying and manipulating your plots, such as displaying 3D plots, displaying polar plots, adding error bars, legends, colorbars, curve fitting, filtering, and annotating among other things. For much more information on working with the iPlot tool, see Chapter, “Working with Images” in the iTool User’s Guide manual.
More Information on 2-D Plotting

IDL has many more plotting capabilities than the ones shown in this chapter. To take advantage of all of IDL’s powerful capabilities in creating two-dimensional plots, look for more information in *Using IDL*. And for more information about the iPlot tool Chapter 13, “Working with Plots” in the *iTool User’s Guide* manual.
Chapter 5: Signal Processing

This chapter describes the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDL and Signal Processing</td>
<td>60</td>
</tr>
<tr>
<td>Creating a Data Set</td>
<td>61</td>
</tr>
<tr>
<td>Signal Processing with SMOOTH</td>
<td>64</td>
</tr>
<tr>
<td>Frequency Domain Filtering</td>
<td>65</td>
</tr>
<tr>
<td>Displaying the Results</td>
<td>68</td>
</tr>
<tr>
<td>More Information on Signal Processing</td>
<td>70</td>
</tr>
</tbody>
</table>
IDL and Signal Processing

This chapter introduces you to IDL’s digital signal processing tools. Most of the procedures and functions mentioned here work in two or more dimensions. For simplicity, only one-dimensional signals are used in the examples.

A signal, by definition, contains information. Any signal obtained from a physical process also contains noise. It is often difficult or impossible to make sense of the information contained in a digital signal by looking at it in its raw form—that is, as a sequence of real values at discrete points in time. Signal analysis transforms offer natural, meaningful, alternate representations of the information contained in a signal.
Creating a Data Set

First, we need to create a dataset to display.

1. Enter the following command to create a sinewave function with a frequency that increases over time and store it in a variable called `ORIGINAL`:

   \[
   \text{ORIGINAL} = \sin\left(\text{FINDGEN}(200)/35\right)^{2.5}
   \]

   The `FINDGEN` function returns a floating-point array in which each element holds the value of its subscript, giving us the increasing “time” values upon which the sinewave is based. The sine function of each “time” value divided by 35 and raised to the 2.5 power is stored in an element of the variable `ORIGINAL`.

2. To view a quick plot of this dataset, shown in the following, enter:

   `PLOT, ORIGINAL`

![Plot of increasing frequency](image.png)

*Figure 5-1: Plot of increasing frequency*
3. Now add some uniformly-distributed random noise to this dataset and store it in a new variable:

\[ \text{NOISY} = \text{ORIGINAL} + \left( \frac{(\text{RANDOMU(SEED, 200)} - .5)}{2} \right) \]

4. Now plot the array:

\[ \text{PLOT, NOISY} \]

![Figure 5-2: Plot of random noise](image)

The \text{RANDOMU} function creates an array of uniformly distributed random values. The original dataset plus the noise is stored in a new variable called \text{NOISY}. This dataset looks more like real-world test data.
5. Display the original dataset and the noisy version simultaneously by entering the following commands:

   PLOT, ORIGINAL, XTITLE="Time", YTITLE="Amplitude", THICK=3

6. Then overplot the previous data:

   OPLOT, NOISY

The XTITLE and YTITLE keywords are used to create the X and Y axis titles. The OPLOT command plots the NOISY dataset over the existing plot of ORIGINAL without erasing. Setting the THICK keyword causes the default line thickness to be multiplied by the value assigned to THICK, so you can differentiate between the data. This result can be seen in the following figure.

![Figure 5-3: Combined plotting of datasets using the OPLOT command and THICK keyword](image)
Signal Processing with SMOOTH

A simple way to smooth out the NOISY dataset is to use IDL’s SMOOTH function. It returns an array smoothed with a boxcar average of a specified width.

1. Create a new variable to hold the smoothed dataset by entering the following command:
   
   $$\text{SMOOTHED} = \text{SMOOTH} \left( \text{NOISY}, \ 5 \right)$$

2. Now plot your new data set:

   $$\text{PLOT} \left( \text{SMOOTHED}, \ \text{TITLE}='\text{Smoothed Data}' \right)$$

   The TITLE keyword draws the title text centered over the plot. Notice that while SMOOTH did a fairly good job of removing noise spikes, the resulting amplitudes taper off as the frequency increases.

![Figure 5-4: Using the SMOOTH command](image)
Frequency Domain Filtering

Perhaps a better way to eliminate noise in the NOISY dataset is to use Fourier transform filtering techniques. Noise is basically unwanted high-frequency content in sampled data. Applying a lowpass filter to the noisy data allows low-frequency components to remain unchanged while high-frequencies are smoothed or attenuated. Construct a filter function by entering the following step-by-step commands:

1. Create a floating point array using FINDGEN which sets each element to the value of its subscript and stores it in the variable Y by entering:
   \[ Y = \text{FINDGEN(100)}, \text{FINDGEN(100)} - 100 \]

2. Next, make the last 99 elements of Y a mirror image of the first 99 elements:
   \[ Y[101:199] = \text{REVERSE}(Y[0:98]) \]

3. Now, create a variable filter to hold the filter function based on Y:
   \[ \text{filter} = 1.0 / (1 + (Y/40)^{10}) \]

4. Finally, plot:
   \[ \text{PLOT, FILTER} \]

![Figure 5-5: Constructing a filter function](image-url)
To filter data in the frequency domain, we multiply the Fourier transform of the data by the frequency response of a filter and then apply an inverse Fourier transform to return the data to the spatial domain.

1. Now we can use a lowpass filter on the NOISY dataset and store the filtered data in the variable lowpass by entering:

   \[ \text{LOWPASS} = \text{FFT} (\text{FFT(NOISY,1)} \times \text{filter}, -1) \]

2. Then plot:

   \[ \text{PLOT, LOWPASS} \]

*Figure 5-6: Using a LOWPASS filter*

**Note**

Your plots may look slightly different due to the random number generator.
1. The same filter function can be used as a high-pass filter (allowing only the high frequency or noise components through) by entering:

   \[ \text{HIGHPASS} = \text{FFT} \left( \text{FFT} \left( \text{NOISY}, 1 \right) \times (1.0 - \text{filter}), -1 \right) \]

2. Then plot:

   \[ \text{PLOT, HIGHPASS} \]

*Figure 5-7: Using a highpass filter*
Displaying the Results

Now look at all of the results at the same time. The plotting window can be split into six sections, making each section display a different plot. The system variable !P.MULTI tells IDL how many plots to put on a single page.

Enter the following lines to display a plotting window which shows all of the plots simultaneously.

1. To display all plots at the same time with two columns and three rows, enter:

   !P.MULTI=[0,2,3]

2. Now, display original dataset, upper-left:

   PLOT,ORIGINAL,TITLE='Original (Ideal) Data'

3. Next, display noisy dataset in the upper-right:

   PLOT,NOISY,TITLE='Noisy Data'

4. Display filter function, middle-left. The SHIFT function was used to show the filter's peak as centered.

   PLOT,SHIFT(filter,100),TITLE='Filter Function'

5. Now, display low-pass filtered dataset in the middle-right:

   PLOT,LOWPASS,TITLE='Lowpass Filtered'

6. Display high-frequency noise, lower-left:

   PLOT,HIGHPASS,TITLE='Highpass Filtered'
7. Finally, display the SMOOTH function dataset for comparison with the low-pass filtered data in the lower right.

   \[
   \text{PLOT, smoothed, TITLE = 'Smoothed with Boxcar average'}
   \]

8. Before continuing with the rest of the chapters, reset the plotting window to display a single image by entering the command:

   \[
   !P.MULTI = 0
   \]
More Information on Signal Processing

Using just a few IDL commands, we have performed some complex and powerful signal processing tasks. IDL has many more signal processing abilities than the ones shown in this chapter. To take advantage of all of IDL’s powerful capabilities, look for more information in the *Using IDL* manual.
Chapter 6: Images

This chapter describes the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDL and Images</td>
<td>72</td>
</tr>
<tr>
<td>Image Data and the Command Line</td>
<td>73</td>
</tr>
<tr>
<td>Resizing an Image</td>
<td>76</td>
</tr>
<tr>
<td>Resizing a Graphics Window</td>
<td>78</td>
</tr>
<tr>
<td>Contrast Enhancement</td>
<td>79</td>
</tr>
<tr>
<td>Smoothing and Sharpening</td>
<td>85</td>
</tr>
<tr>
<td>Other Image Manipulations</td>
<td>89</td>
</tr>
<tr>
<td>Extracting Profiles</td>
<td>91</td>
</tr>
<tr>
<td>Using the iImage Tool</td>
<td>92</td>
</tr>
<tr>
<td>More Information on Images in IDL</td>
<td>94</td>
</tr>
</tbody>
</table>
IDL and Images

IDL is ideal for working with image data because of its interactive operation, uniform notation, and array-oriented operators and functions. Images are easily represented as two-dimensional arrays in IDL and can be processed just like any other array. IDL also contains many procedures and functions specifically designed for image display and processing. In addition, the iImage tool allows you great flexibility in manipulating and visualizing image data.

In this chapter, we will image process by entering statements at the IDL Command Line as well as trying out the new iImage tool. This will demonstrate IDL’s interactive capability, and will show how easy it is to manipulate your data.

Note

To simplify obtaining useful results from the command line examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
Image Data and the Command Line

The following sections show examples of reading and displaying image data at the command line.

Reading Image Data

First we must import an image to be processed into IDL. Reading image data files into IDL is easy whether at the command line or using the iImage tool.

The file that we will read contains the image we used in Chapter 3, “Reading and Writing Data” of an aerial view above Manhattan in TIFF format.

1. Read the file by entering:

   MYIMAGE=READ_TIFF(FILEPATH('image.tif',SUBDIR=['examples','data']))

Displaying Image Data

Using the IDL command line, you can view an image with two different routines. The TV procedure writes an array to the display as an image without scaling. Enter the commands below at the IDL Command Line. The TVSCL routine is another routine which is described following the TV routine.

Note

The default graphics window size is 640 by 512 pixels in size on a UNIX workstation and one-fourth of the display size on most Windows environments.

1. Display the image:
2. Enter WDELETE at the Command Line to dismiss the graphics window.

   WDELETE

3. The TVSCL procedure displays the image with the color values scaled to use the whole color table. Display the scaled image:

   TVSCL, MYIMAGE
Figure 6-2: Displaying an image with TVSCL

4. Enter WDELETE at the Command Line to dismiss the graphics window.

WDELETE
Resizing an Image

The REBIN function in IDL makes it easy to resize a vector or array to new dimensions. The supplied dimensions must be proportionate (that is, integral multiples or factors) to the dimensions of the original image. Since our original image array here is 768 by 512, we’ll need to decide the correct dimensions of our new resized image. If we want to resize the image to half the original size then simply take half of the array’s original dimensions.

1. Create a new image with new dimensions using the REBIN function:

   \[
   \text{NEWIMAGE} = \text{REBIN(MYIMAGE, 384, 256)}
   \]

2. Now display the image:

   \[
   \text{TV, NEWIMAGE}
   \]

3. Enter WDELETE at the Command Line to dismiss the graphics window.

   \[
   \text{WDELETE}
   \]

*Figure 6-3: MYIMAGE resized to one half the original array size*
Note

The CONGRID function also shrinks or expands the size of an array. CONGRID differs from REBIN in that where REBIN requires that the new array size must be an integer multiple of the original size, CONGRID will resize an array to any arbitrary size. For more information, see CONGRID in the IDL Reference Guide.
Resizing a Graphics Window

IDL automatically creates a window for displayed graphics if one does not already exist. You can use the WINDOW command to create new windows with custom sizes.

1. To display Manhattan in a larger graphics window, enter:
   
   `WINDOW, 0, XSIZE=800, YSIZE=600`

2. Then enter:
   
   `TV, MYIMAGE`

3. Enter WDELETE at the Command Line to dismiss the graphics window for the next graphic.
   
   `WDELETE`

The WINDOW command above creates a new version of window number 0 that is 800 pixels wide (specified with the XSIZE keyword) and 500 pixels tall (specified with the YSIZE keyword).
Contrast Enhancement

In order to improve the look of an image, sometimes all that is necessary is a change in how the colors are represented. IDL provides several ways to manipulate the contrast.

Thresholding

One of the simplest contrast enhancements that can be performed on an image is thresholding. Thresholding produces a two-level mapping from all of the possible intensities into black and white. The IDL relational operators, EQ, NE, GE, GT, LE, and LT, return a value of 1 if the relation is true and 0 if the relation is false. When applied to images, the relation is evaluated for each pixel and an image of 1’s and 0’s results.

1. To display the pixels in the image that have values greater than 140 as white and all others as black, as shown in the following, enter:

   \[ \text{TVSCL, MYIMAGE GT 140} \]

   \[ \text{Figure 6-5: Image with all values greater than 140 shown as white} \]
2. Similarly, the pixels that have values less than 140 can be displayed as white, as shown, by entering the command:

\[ \text{TVSCL, MYIMAGE LT 140} \]

![Figure 6-6: Image with all values less than 140 shown as white](image)

*Figure 6-6: Image with all values less than 140 shown as white*

In many images, the pixels have values that are only a small subrange of the possible values. By spreading the distribution so that each range of pixel values contains an approximately equal number of members, the information content of the display is maximized, as shown in the following.
3. The HIST_EQUAL function performs this redistribution on an array. To display a histogram-equalized version of myimage, enter the following:

```idl
TV, HIST_EQUAL(myimage)
```

*Figure 6-7: A histogram-equalized version of the image*
Scaling Pixel Values

Another way to enhance the contrast of an image is to scale a subrange of pixel values to fill the entire range of displayed brightnesses. The > operator, the IDL maximum operator, returns a result equal to the larger of its two parameters. The following commands contrast the maximum and minimum operators.

1. Scale pixels with a value of 100 or greater into the full range of displayed brightnesses:

   \[ \text{TVSCL, MYIMAGE} > 100 \]

2. Scale pixels with a value less than 140 into the full range of brightnesses.

   \[ \text{TVSCL, MYIMAGE} < 140 \]

Figure 6-8: Image with pixels >100 scaled to full range of brightness
3. The minimum and maximum operators can be used together for more complicated contrast enhancements. Set the minimum brightness to 140, set the maximum brightness to 200, scale myimage and display it by entering:

\[
\text{TVSCL, MYIMAGE } >140<200
\]

*Figure 6-9: Image with pixels <140 scaled to full range of brightness*

*Figure 6-10: Image with minimum brightness at 140 and maximum brightness at 200*
Note

Although this command illustrates the use of the IDL minimum and maximum operators, the same function can be executed more efficiently by IDL with the command:

TV, BYTSCL(MYIMAGE, MIN=140, MAX=200, TOP=!D.TABLE_SIZE)
Smoothing and Sharpening

Images can be rapidly smoothed to soften edges or compensate for random noise in an image using IDL’s SMOOTH function. SMOOTH performs an equally weighted smoothing using a square neighborhood of an arbitrary odd width, as shown below.

1. Display myimage smoothed using a 7 by 7 area:
   
   TVSCL, SMOOTH(MYIMAGE, 7)

   Figure 6-11: Smoothing with SMOOTH
Unsharp Masking

The previous image looks a bit blurry because it contains only the low frequency components of the original image. Often, an image needs to be sharpened so that edges or high spatial frequency components of the image are enhanced. One way to sharpen an image is to subtract a smoothed image containing only low-frequency components from the original image. This technique is called *unsharp masking*.

1. Unsharp mask and display image:

   \[ \text{TVSCL, FLOAT(MYIMAGE) - SMOOTH(MYIMAGE, 7)} \]

   \[ \text{Figure 6-12: Unsharp masking} \]

   This command subtracts a smoothed version of the image from the original, scales the result, and displays it, as shown previously.
Sharpening Images with Differentiation

IDL has other built-in sharpening functions that use differentiation to sharpen images. The ROBERTS function returns the Roberts gradient of an image. Enter the following commands:

1. Create a new variable, R, that contains the Roberts gradient of myimage:
   \[
   R = \text{ROBERTS} (\text{MYIMAGE})
   \]
2. Display array R:
   \[
   \text{TVSCL, } R
   \]

Another commonly used gradient operator is the Sobel operator. IDL’s SOBEL function operates over a 3 by 3 region, making it less sensitive to noise than some other methods. Enter the following commands.

1. Create a Sobel sharpened version of the image:
   \[
   \text{SO} = \text{SOBEL} (\text{MYIMAGE})
   \]
2. Display the sharper image:
   \[
   \text{TVSCL, SO}
   \]

*Figure 6-13: Roberts gradient of myimage*
Loading Different Color Tables

Try loading some of the pre-defined IDL color tables to make this image more visible. While the graphics window is visible, type XLOADCT at the IDL Command Input Line. The XLOADCT widget application appears. Select a color table from the field; the window will reflect the color scheme. Click “Done” to accept a color table. When you are finished looking at the effects of different tables, click on the first color table in the field, B-W Linear, and click “Done” to load the original black and white color table.

Note

If you load a new color table while an image is still being displayed on a 24-bit (true) color display, you will need to close the image and reload it in IDL in order to see the new image displayed in the new color scheme. In an 8-bit (pseudo) color display however, you will not need to re-display the image as the color change will be immediate.

Figure 6-14: Sobel sharpened version of myimage
Other Image Manipulations

Sections of images can be easily displayed by using subarrays.

1. Erase the current display, create a new array that contains Manhattan and display it by entering:

   ERASE
   
   E=MYIMAGE[100:300, 150:250]

2. Then enter:

   TV, E

3. Enter WDELETE at the Command Line to dismiss the graphics window.

   WDELETE
Rotating an Image

Simple rotation in multiples of 90 degrees can be accomplished with the ROTATE function.

1. Rotate the image by 90 degrees, as shown below, by entering:
   \[ R = \text{ROTATE}(E, 1) \]

2. Now enter to display:
   \[ \text{TVSCL, } R \]

![Figure 6-16: The image rotated by 90 degrees](image)

The second parameter of ROTATE is an integer from 1 to 8 that specifies which one of the eight possible combinations of rotation and axis reversal to use.

3. Enter WDELETE at the Command Line to dismiss the graphics window for the next graphic.
   \[ \text{WDELETE} \]
Extracting Profiles

Another useful image processing tool is the PROFILES routine. This routine interactively draws row or column profiles of an image. It allows you to view an image and an X-Y plot of the pixel brightnesses in any row or column of the image simultaneously.

1. Use the PROFILES routine with the rotated image that you just displayed by entering the following:

   PROFILES, R

   A new window for displaying the profiles appears. Move the cursor in the window containing the image R to display the profiles of different rows and columns.

2. Click the left mouse button while the cursor is in the image window to switch between displaying row and column profiles.

3. Click the right mouse button while the cursor is in the image window to exit the PROFILES routine.

   Figure 6-17: Viewing an image and an X-Y plot of the pixel brightnesses in any row or column

A new window for displaying the profiles appears. Move the cursor in the window containing the image R to display the profiles of different rows and columns.
Using the iImage Tool

The iImage tool is a powerful option for visualizing and manipulating image data. Unlike the command line-oriented visualizations shown previously, with iImage, a single command will give you a fully interactive environment.

Displaying an Image

Using our same TIFF data, follow these steps:

1. At the IDL Command Line, enter `iImage`.
2. As shown in Chapter 3, “Reading and Writing Data”, select `File → Open` and from the `examples\data` directory choose a file named `image.tif`.
3. Select `Open`, and the file is displayed in iImage.

![Figure 6-18: TIFF Data View of Manhattan in the iImage Tool](image)

*Figure 6-18: TIFF Data View of Manhattan in the iImage Tool*
Modifying Images

The iImage tool allows you many options for modifying and manipulating your images, for example the Data Window on the iImage tool allows you to adjust and manipulate the image brightness by changing the RGA or indexed channel values. For indexed color images, Channel 0 represents the image data values. For RGBA images, Channel 0 represents the red values, Channel 1 represents the green values and Channel 2 represents the blue values. Within each channel is a red bar representing minimum values and a green bar representing maximum values. You can click on each bar in each channel (which are tabbed) to manipulate these values.

Other options are available in iImage such as displaying multiple images, manipulating image color and lighting as well as brightness and contrast, filtering, resampling, morphing, surfacing, adding contours, and annotating among other things. For much more information on working with the iImage tool, see Chapter 8, “Working with Images” in the iTool User’s Guide manual.
More Information on Images in IDL

IDL offers much more in the area of Image Processing. To learn more including some of the new functionality added to IDL on image display and image processing, see *Using IDL* and For much more information on working with the iImage tool, see Chapter, “Working with Images” in the *iTool User’s Guide* manual.
Chapter 7:
Surfaces and Contours

This chapter describes the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surfaces and Contours in IDL</td>
<td>96</td>
</tr>
<tr>
<td>Surface Data and the Command Line</td>
<td>97</td>
</tr>
<tr>
<td>Using the iSurface Tool</td>
<td>103</td>
</tr>
<tr>
<td>Contour Data and the Command Line</td>
<td>106</td>
</tr>
<tr>
<td>Plotting with SHOW3</td>
<td>111</td>
</tr>
<tr>
<td>Using the iContour Tool</td>
<td>112</td>
</tr>
<tr>
<td>More Information on Surfaces and Contours</td>
<td>114</td>
</tr>
</tbody>
</table>
Surfaces and Contours in IDL

IDL provides many command line techniques for visualizing two-dimensional arrays, including contour plots, wire-mesh surfaces, and shaded surfaces. The new iSurface and iContour tools are also available for easy surface and contour visualization and manipulation. This chapter demonstrates just a few of the options for visualizing and manipulating data in three dimensions.

**Note**
To simplify obtaining useful results from the command line examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```
Surface Data and the Command Line

Surface data can be visualized and manipulated at the IDL Command Line. First, we need to create a two-dimensional dataset which we will then visualize. For this example we will use the binary dataset of the Maroon Bells Mountains that we used in the section “Reading and Writing Binary Data” on page 37. You will need to turn back to that section to once again use the BINARY_TEMPLATE and READ_BINARY functions to read this data set for use. Once you have read the file into IDL, you are ready to move on to visualizing the data set three-dimensionally.

Displaying a Surface

First, view the array MARBELLS_BINARY.MARBELLS as a three-dimensional, “wire-mesh” surface. Use the CONGRID procedure initially to resample the data set so that the “mesh” can be displayed at a size visible to the human eye.

1. Here resample the array size to 35 by 45, or one tenth its original size. To do this enter:

   MARBELLS=CONGRID(MARBELLS_BINARY.MARBELLS, 35, 45)

2. Now we are ready to visualize the mesh using the SURFACE command:

   SURFACE, MARBELLS

Figure 7-1: Surface plot with default angles
The SURFACE command can be used to view your data from different angles. AX and AZ are plotting keywords that are used to control the SURFACE command. The keyword AX specifies the angle of rotation of the surface (in degrees towards the viewer) about the X axis. The AZ keyword specifies the rotation of the surface in degrees counterclockwise around the Z axis.
3. View the array from a different angle by entering the following command:

```
SURFACE, MARBELLS, AX = 70, AZ = 25
```

---

**Displaying a Shaded Surface**

You can also view a two-dimensional array as a light-source shaded surface.

1. First, load one of the pre-defined IDL color tables by entering:

   ```
 LOADCT, 3
   ```

2. To view the light-source shaded surface, shown in the following, simply enter the command:
To look at the array from another angle, enlarge the label text, and add a title. Again, keywords are used to control certain features of the shaded surface plot. The AX and AZ keywords control the viewing angle, just as they did with the SURFACE command.

The CHARSIZE keyword controls the size of plotted text. The TITLE keyword was used to add the title “Shaded Surface Representation”.

```idl
SHADE_SURF, MARBELLS, AX=45, AZ=20, CHARSIZE=1.5, $
 TITLE='Shaded Surface Representation'
```
4. You can create a different kind of shaded surface, where the shading information is provided by the elevation of each point. Now different shading colors on the plot correspond to different elevations (the BYTSCL function scales the data values into the range of bytes).

You could also specify a different array for the shading colors.

```
SHADE_SURF, MARBELLS, SHADE=BYTSCL(MARBELLS)
```

![Surface plot with annotated surface plot](image1)

*Figure 7-4: Surface plot with annotated surface plot*

![Byte-scaled surface plot](image2)

*Figure 7-5: Byte-scaled surface plot*
5. You can plot a wire-frame surface of the Maroon Bells Mountains right over the existing plot. The XSTYLE, YSTYLE, and ZSTYLE keywords are used to select different styles of axis. Here, SURFACE is set to not draw the X, Y, and Z axes because they were already drawn by the SHADE_SURF command. The /NOERASE keyword allows the SURFACE plot to be drawn over the existing SHADE_SURF plot. Enter the following:

   SURFACE, MARBELLS, XSTYLE=4, YSTYLE=4, ZSTYLE=4, /NOERASE

*Figure 7-6: Byte-scaled surface plot with an overlaid wire-frame*
Using the iSurface Tool

The IDL iSurface tool provides interactive access to surface data. You can visualize surfaces and then modify and manipulate those surfaces in a single interactive environment.

Displaying a Surface

To import a file containing surface data into the iSurface tool:

1. Follow steps 1 through 9 to read in the binary marbells.dat file in the examples\data directory of your IDL installation. The steps are located in “Reading and Writing Binary Data” in Chapter 3, Reading and Writing Data.

2. After entering all steps to read in your binary template, at the IDL Command Line, type: iSurface, MARBELLS_BINARY.MARBELLS
3. The Surface is now displayed in iSurface.

![Figure 7-7: Maroon Bells Binary Data Visualized in the iSurface Tool]

**Modifying Surfaces**

The iSurface tool allows you many options for manipulating and modifying surfaces. For example, rotation tools are provided in the iSurface tool to make it easier to see all aspects of a 3-D surface visualization. Surfaces can be rotated freely or along an axis with the mouse, and they can be rotated in fixed or arbitrary increments from the Operations menu.

To rotate a surface freely or along an axis with the mouse:

1. Select the surface in the iSurface window.
2. Click Rotate on the Manipulator toolbar. The rotation sphere is displayed around the surface.
Chapter 7: Surfaces and Contours

• To rotate the surface freely, position the mouse pointer over the surface so that it changes to a free rotation pointer \( \Rightarrow \). Click and drag to rotate the surface in the desired direction.

• To rotate the surface along an axis, position the mouse pointer over an axis so that it changes to an axis rotation pointer \( \Rightarrow \). Click and drag to rotate the surface along the axis in the desired direction.

To rotate a surface in 90° increments left or right from the Operations menu:

1. Select the surface in the iTool window.
2. Select \textbf{Operations} \textrightarrow \textbf{Rotate} \textrightarrow \textbf{Rotate Left} or \textbf{Operations} \textrightarrow \textbf{Rotate} \textrightarrow \textbf{Rotate Right}.

To rotate a surface an arbitrary number of degrees from the Operations menu:

1. Select the surface in the iTool window.
2. Select \textbf{Operations} \textrightarrow \textbf{Rotate} \textrightarrow \textbf{Rotate by Angle}.
3. In the Rotate Angle dialog, enter the desired number of degrees to rotate the surface.

Other options are available in iSurface such as manipulating surface color, texture mapping, and annotating among other things. For much more information on working with the iSurface tool, see Chapter 11, “Working with Surfaces” in the iTool User’s Guide manual.
Contour Data and the Command Line

Contour data can be visualized and manipulated at the IDL Command Line. First, we need to create a two-dimensional dataset which we will then visualize. For this example we will use the binary dataset of the Maroon Bells mountains that we used in the section “Reading and Writing Binary Data” on page 37. You will need to turn back to that section to once again use the BINARY_TEMPLATE and READ_BINARY functions to read this data set for use. Once you have read the file into IDL, you are ready to move on to visualizing the data set three-dimensionally.

Displaying a Contour

Another way to view a two-dimensional array is as a contour plot. A simple contour plot of the Data can be created.

1. Set the array size back to its original 350 by 450 size by entering:

   \[ \text{MARBELLS}=\text{MARBELLS\_BINARY\_MARBELLS} \]

2. Plot the contour:

   \[ \text{CONTOUR, MARBELLS} \]

   That command was very simple, but the resulting plot was not as informative as it could be.

   \[ \text{Figure 7-8: Contour plot} \]
3. Create a customized CONTOUR plot with more elevations and labels by entering:

```
CONTOUR, MARBELLS, NLEVELS=8, C_LABELS=[0, 1]
```

By using the NLEVELS keyword, CONTOUR was told to plot eight equally-spaced elevation levels. The C_LABELS keyword specifies which contour levels should be labeled. By default, every other contour is labeled. C_LABELS allows you to override this default and explicitly specify the levels to label.
4. Similarly, you can create a filled contour plot where each contour level is filled with a different color (or shade of gray) by setting the FILL keyword. To do this, enter:

```
CONTOUR, MARBELLS, NLEVELS=8, /FILL
```

5. To outline the resulting contours, make another call to CONTOUR and set the OVERPLOT keyword to keep the previous plot from being erased.

You can add tickmarks that indicate the slope of the contours (the tickmarks point in the downhill direction) by setting the DOWNHILL keyword:

```
CONTOUR, A, NLEVELS=8, /OVERPLOT, /DOWNHILL
```
Chapter 7: Surfaces and Contours

Getting Started with IDL

Contour Data and the Command Line

6. CONTOUR plots can be rendered from a three-dimensional perspective. First, set up the default 3-D viewing angle by entering:

   SURFR

7. By using the T3D keyword in the next call to CONTOUR, the contours will be drawn as seen from a 3-D perspective. Enter:

   CONTOUR,MARBELLS,NLEVELS=8,/T3D

---

Figure 7-11: Contour plot with downhill tickmarks labeled
Figure 7-12: Contour plot with 3-D contour plot
Plotting with SHOW3

In addition to IDL’s built-in routines, there are many functions and procedures included with IDL that are written in the IDL language and that can be changed, customized, or even rewritten by IDL users. The SHOW3 procedure is one of these routines.

1. Create a plot that shows a two-dimensional array as an image, wire-frame surface, and contour simultaneously.

SHOW3, MARBELLS

Figure 7-13: Combined surface and contour plots using SHOW3
Using the iContour Tool

The IDL iContour tool provides interactive access to contour data. You can visualize contours and then modify and manipulate those contours in a single interactive environment.

Displaying a Contour

To import a file containing binary data into the iContour tool:

1. Follow steps 1 through 9 to read in the binary marbells.dat file in the examples\data directory of your IDL installation. The steps are located in “Reading and Writing Binary Data” in Chapter 3, Reading and Writing Data.

2. After entering all steps to read in your binary template, at the IDL Command Line, type: iContour, MARBELLS_BINARY.MARBELLS
The Surface is now displayed in iContour.

![Image of Maroon Bells Binary Data Visualized in the iContour Tool]

**Figure 7-14: Maroon Bells Binary Data Visualized in the iContour Tool**

### Modifying a Contour

The iContour tool allows you many options for contour modification and manipulation. For example, you can add a legend to your contour which shows the levels of the contour in their increments. To add a legend, select **Insert → Legend** from the iContour tool window. Once you have placed a legend on your contour can edit the legend settings such as the title and level increments as well as the color options on the legend. Double-clicking on the legend itself will show you the Visualization Browser.

There are many other tasks available within iContour such as manipulating contour color, values, and annotating among other things. For much more information on working with the iContour tool, see Chapter 12, “Working with Contours” in the *iTool User’s Guide* manual.
More Information on Surfaces and Contours

IDL offers much more in the area of working with Surfaces and Contours. To learn more about surface and contour functionality in IDL, see *Using IDL* and For much more information on working with the iSurface and iContour tools, see Chapter 11, “Working with Surfaces” in the iTool User’s Guide manual and Chapter 12, “Working with Contours” in the iTool User’s Guide manual.
This chapter describes the following topics:

- IDL and Volume Visualization . . . . . . . . . 116
- Volume Visualization and the Command Line 117
- Volume Slices and the IDL Slicer . . . . . . . 122
- Displaying a Surface with the Slicer . . . . 124
- Using the iVolume Tool . . . . . . . . . . . . . 126
- More Information on Volume Visualization . . 129

Chapter 8:
Volume Visualization
IDL and Volume Visualization

IDL can be used to visualize multi-dimensional volume datasets either at the command line or using the new iVolume tool. Given a 3-D grid of density measurements, IDL can display a shaded surface representation of a constant-density surface (also called an iso-surface). For example, in medical imaging applications, a series of 2-D images can be created by computed tomography or magnetic resonance imaging. When stacked, these images create a grid of density measurements that can be contoured to display the surfaces of anatomical structures.

This chapter demonstrates the use of the SHADE_VOLUME and POLYSHADE commands for iso-surface visualization at the command line. The chapter then concludes with a brief look at the interactive iVolume tool.

Note
To simplify obtaining useful results from the command line examples in this manual, create a bitmap buffer for your graphic windows by entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
Volume Visualization and the Command Line

Visualizing volume data at the IDL command line is as easy as reading in data and then calling the correct command to visualize. The following sections will guide you through the process of reading and visualizing volume data via the command line.

Reading in a Dataset for Visualization

The following steps illustrate the use of BINARY_TEMPLATE and READ_BINARY to read in a dataset:

1. First, create the template for reading the data. At the IDL Command Line, enter:

   ```idl
 MYTEMPLATE=BINARY_TEMPLATE(FILEPATH('head.dat', $
 SUBDIR=['examples', 'data']))
   ```

   The binary template dialog box appears.

2. In the Template Name field, enter “Head” as the name of the new template.

3. Now we are ready to enter the field values, click the box in the lower left corner of the dialog box called “New Field”.

4. When the New/Modify Field dialog appears, enter “B” as the field name. Check the box in the upper right corner marked “Returned” since we will want our data set returned at the time it is read.

   At the “Number of Dimensions” pull-down menu, be sure to specify that we are dealing with a three-dimensional data set. These data are contained in an 80 by 100 by 57 array, so we will enter these values in the three boxes marked “size”.

   Finally, let the binary template dialog know that we are dealing with Byte type data by specifying “Byte (Unsigned 8-bits)” at the “Type” pull-down menu.

   Once you have entered the above data, the binary template dialog appears once again showing the specifications you have made.

5. Click “OK”.

   Now we will use the READ_BINARY procedure to read the data defined by template we have just created.

6. At the IDL Command Line, enter:

   ```idl
 HEAD_BINARY=READ_BINARY(FILEPATH('head.dat', $
 SUBDIR=['examples', 'data']), TEMPLATE=MYTEMPLATE)
   ```
3-D Transformations

When creating “3-D” plots at the IDL command line (for example, surfaces, shaded surfaces, and volume visualizations), a three-dimensional transformation needs to be set up. The 3-D transformation applies the requested translation, rotation, and scaling to a 3-D plot before displaying it.

Three-dimensional transformations are especially important when using the POLYSHADE routine. Unless the transformation is set up such that the entire volume is visible, the volume will not be rendered correctly. Once a 3-D transformation has been established, most IDL plotting routines can be made to use it by including the T3D keyword.

There are a number of ways to set up a transformation matrix in IDL.

One way is that a transformation matrix can be entered explicitly into the system variable !P.T. This method is rather difficult, because you have to figure out the transformation yourself. More information about the transformation matrix can be found in Chapter 18, “Plotting Multi-Dimensional Arrays” of Using IDL.

Another method, is the SURFACE and SHADE_SURF commands, which automatically create a 3-D transformation based on the datasets being visualized.

1. For example, specify a slice of the data:
   \[ \text{SLICE} = \text{(HEAD_BINARY.B)} \left[ \ast, \ast, 25 \right] \]

2. Now surface the slice specified:
   \[ \text{SURFACE, SLICE} \]
Visualizing an Iso-Surface

Two IDL commands, SHADE_VOLUME and POLYSHADE, are used together to visualize an iso-surface. SHADE_VOLUME generates a list of polygons that define a 3-D surface given a volume dataset and a contour (or density) level. The function POLYSHADE can then be used to create a shaded-surface representation of the iso-surface from those polygons.

Like many other IDL commands, POLYSHADE accepts the T3D keyword that makes POLYSHADE use a user-defined 3D transformation. Before you can use POLYSHADE to render the final image, you need to set up an appropriate three-dimensional transformation. The XRANGE, YRANGE, and ZRANGE keywords accept 2-element vectors, representing the minimum and maximum axis values, as
arguments. POLYSHADE returns an image based upon the list of vertices, \( v \), and list of polygons, \( p \). The T3D keyword tells POLYSHADE to use the previously-defined 3D transformation. The TV procedure displays the shaded-surface image.

Enter the following lines:

1. Create the polygons and vertices that define the iso-surface with a value of 70. Return the vertices in \( V \) and the polygons in \( P \):

\[
\text{T3D} \\
\text{SHADE_VOLUME, HEAD_BINARY.B, 70, V, P, /LOW}
\]

2. Set appropriate limits for the X, Y, and Z axes with the SCALE3 procedure:

\[
\text{SCALE3, XRANGE=[0, 80], YRANGE=[0, 100], ZRANGE=[0, 57]}
\]
3. Display a shaded-surface representation of the previously generated arrays of vertices and polygons:

```
TV, POLYSHADE(V, P, /T3D)
```

*Figure 8-2: Shaded-surface representation using POLYSHADE*
Volume Slices and the IDL Slicer

Another useful volume visualization tool is IDL’s SLICER3 procedure. The Slicer is a widget-based application that allows you to create iso-surfaces and pass cutting planes through 3-D datasets.

The IDL Slicer provides many other volume visualization techniques. As the name implies, the slicer allows you to look at slices through a volume dataset.

1. To use the slicer with dataset B, it is first required to pass in a pointer to the data set by entering the following at the IDL Command Line:

   BDATA=PTR_NEW(HEAD_BINARY.B)

2. Then enter:

   SLICER3,BDATA

3. The IDL Slicer appears. The Slicer window will come up empty by default though the data is loaded. Be sure that the Mode pull-down menu is set to Slice which is the default. Position the pointer within the cube. Hold down the left mouse button and move the mouse. (In IDL for Macintosh, the mouse button is interpreted as the left mouse button.) An outline of the cutting plane appears. This plane moves only in the direction indicated by the orientation display.
Move the cutting plane to the center of the volume and release the mouse button. A cross-section of the volume is displayed.

4. To make slices in different orientations, move the cursor into the large drawing window and press the right mouse button.

5. To simulate a right mouse button press, *IDL for Macintosh* users can hold down the command key and click the mouse. The orientation display changes to show the new direction of the cutting plane.

6. Click the right button a second time to see the third possible orientation.

7. Make slices in these orientations by clicking on the mouse button and dragging the cutting plane outline to the desired location.

*Figure 8-3: IDL Slicer3*
Displaying a Surface with the Slicer

To display a surface with the IDL Slicer, do the following:

1. To create a surface in Slicer similar to the one you created previously at the IDL command line, click on the Surface option on the Mode pull-down menu on the Slicer. A Surface Threshold window, a slider, and a number of new buttons should appear.

2. Click in the Surface Threshold and slide the determiner line to choose the Display button. A status window reports on the number of vertices and polygons generated and then the iso-surface appears.

![Figure 8-4: IDL Slicer3 with a surface](image)
Dismiss the Slicer and Volume Windows

When you are done experimenting with the Slicer, before continuing with other chapters in this book, you should dismiss the Slicer window.

1. To exit the volume window, enter the following at the Command Line:
   
   WDELETE

2. To exit the IDL Slicer, choose the path File → Quit.
Using the iVolume Tool

The interactive iVolume tool allows you great flexibility in manipulating and visualizing true volume data.

Displaying a Volume

Here is a simple example of one way to visualize a volume using the iVolume tool.

1. At the IDL command line, specify the location of the data file:

   ```idl
 file = FILEPATH('head.dat',
 SUBDIRECTORY = ['examples', 'data'])
 data = READ_BINARY(file, DATA_DIMS = [80, 100, 57])
   ```

2. Now invoke the iVolume tool to visualize the volume:

   ```idl
 iVolume, data
   ```

   Volume data does not automatically appear in the tool window since volume rendering can be a time consuming operation. To render the volume, click the **Render** button on the tool. Auto-render is available but not set by default since it can slow down your iTool session if you have simultaneous operations.

   **Note**

   Volume data is only rendered if the volume dataspace is selected. Thus, if you have multiple volumes in your dataspace, auto-render must be turned on in order to render both simultaneously.
The data loaded earlier can be displayed by clicking the **Render** button.

![Figure 8-5: Rendered MRI Head Volume Data](image)

**Volume Rendering Quality**

The volume can be rendered in two quality modes:

- **Low** — Done with a stack of 2D texture-mapped semi-transparent polygons. The polygons are oriented so that the flat sides face the viewer as directly as possible. On most systems, Low-quality mode renders faster than High-quality mode, but not as accurately.

- **High** — Done with the IDLgrVolume ray-casting volume renderer. This quality mode is CPU-intensive and will usually take much longer than the Low-quality mode.

**Volume Extents**

Since the volume is not always rendered, iVolume draws wireframe volume extents to help you locate and select the volume. You can select the volume by selecting on the extents, without rendering the volume. By default, iVolume draws a translucent solid cube with internal extents. You can also select a wire frame, or no extents.
Note

Use caution when turning off extents. If extents are turned off and Auto-Render is also off, you may need to use the Visualization Browser to select the volume again.

Modifying Volume Data

The iVolume tool allows you many options such as displaying multiple planes, manipulating volume color and lighting, filtering, resampling, image planes, isosurfaces, interval volumes, viewing statistics and annotating. For much more information on working with the iVolume tool, see Chapter 14, “Working with Volumes” in the iTool User’s Guide manual.
More Information on Volume Visualization

More information on the SHADE_VOLUME procedure can be found in Chapter 18, “Plotting Multi-Dimensional Arrays” of Using IDL. Also, see SCALE3, SHADE_VOLUME, and TV in the IDL Reference Guide.

A complete description of the slicer’s capabilities is beyond the scope of this tutorial. Click the Slicer’s Help button or see SLICER3 in the IDL Reference Guide for more information.

For much more information on working with the iImage tool, see Chapter 14, “Working with Volumes” in the iTool User’s Guide manual.
This chapter describes the following topics:

- IDL and Mapping ........................................ 132
- Drawing Map Projections .............................. 133
- Drawing an Orthographic Projection ............... 135
- Plotting a Portion of the Globe ..................... 136
- Plotting Data on Maps ................................. 137
- Reading Latitudes and Longitudes ................. 139
- Plotting Contours Over Maps ....................... 140
- Warping Images to Maps ............................. 142
- Using the iMap Tool .................................. 147
- More Information on Mapping ...................... 148
IDL and Mapping

IDL’s mapping facilities allow you to plot data over different projections of the globe. This chapter shows how to display various map projections and plot data over them.

In this chapter, we will enter statements at the IDL Command Input Line. This demonstrates IDL’s interactive capability, and shows how easy it is to manipulate your data.

**Note**

To simplify obtaining useful results from the examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```
Drawing Map Projections

Drawing continental outlines and plotting data in different projections is easy using IDL’s mapping routines. The MAP_SET routine is the heart of the mapping package. It controls the type of projection and the limits of the global region to be mapped.

1. Reset the graphics window to default size:
   
   ```idl
 WINDOW
   ```

2. Display a cylindrical projection map of the world:
   
   ```idl
 MAP_SET,/CYLINDRICAL,/GRID,/CONTINENTS,/LABEL
   ```

![Figure 9-1: A cylindrical projection](image)

The CYLINDRICAL keyword tells MAP_SET to use the cylindrical projection. The GRID keyword causes the latitude and longitude lines to be drawn. The LABEL keyword adds the latitude and longitude labels. The CONTINENTS keyword tells MAP_SET to draw continental outlines.

A similar map could be created by entering a series of separate commands to set up the type of projection, draw the continent outlines, and then draw the grid lines.

Although the single-line MAP_SET command is quicker to enter, by using the separate MAP_SET, MAP_GRID, and MAP_CONTINENTS commands, you exercise more control over the map colors, fills, and so on.
3. Load a new color table.
   
   \texttt{LOADCT, 39}

4. Display a Miller cylindrical projection of the world.
   
   \texttt{MAP\_SET,/MILLER}

5. Draw the continent outlines. The \texttt{FILL} keyword fills in the continents using the color specified by the \texttt{COLOR} keyword.
   
   \texttt{MAP\_CONTINENTS, COLOR=220, /FILL}

6. Draw the grid lines. The \texttt{COLOR} keyword specifies the color of the grid lines. The \texttt{LABEL} keyword labels the lines.
   
   \texttt{MAP\_GRID, COLOR=160, /LABEL}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure9-2.png}
\caption{Miller cylindrical projection with \texttt{MAP\_CONTINENTS} and \texttt{MAP\_GRID}}
\end{figure}

The order of \texttt{MAP\_GRID} and \texttt{MAP\_CONTINENTS} depends on how you wish to display your map. In the above example, if you call \texttt{MAP\_GRID} before \texttt{MAP\_CONTINENTS}, the filled continents are drawn over the labeled grid lines.

7. Dismiss the graphics window:
   
   \texttt{WDELETE}
Drawing an Orthographic Projection

To draw a map that looks more like a globe, use the orthographic projection.

1. Open a graphics window for viewing:
   \begin{verbatim}
   WINDOW
   \end{verbatim}

2. Enter the following at the Command Line:
   \begin{verbatim}
   MAP_SET,30,-100,0,/ORTHOGRAPHIC,/ISOTROPIC,/GRID, $ 
   /CONTINENTS,/LABEL,/HORIZON
   \end{verbatim}

   Figure 9-3: Orthographic projection showing North America at the center

   The numbers following the MAP_SET command (30, -100, and 0) are the
   latitude and longitude to be centered and the angle of rotation for the North
   direction. The ISOTROPIC keyword creates a map that has the same scale in
   the vertical and horizontal directions, so we get a circular map in a rectangular
   window. IDL keywords (but not function and procedure names) can always be
   abbreviated to their minimum unique length. The GRID, COLOR, and LABEL
   keywords work the same as before. The HORIZON keyword draws the line at
   which the horizon exists. Without the HORIZON keyword, MAP_SET only
   draws the grid and the continents.

3. Dismiss the graphics window:
   \begin{verbatim}
   WDELETE
   \end{verbatim}
Plotting a Portion of the Globe

You do not always have to plot the entire globe, you can plot a section of the globe by using the LIMIT keyword which specifies a region of the globe to plot.

1. Open a graphics window for viewing:
   
   WINDOW

2. Enter the following at the Command Line:
   
   MAP_SET, 32, -100, /AZIM, LIMIT=[10, -130, 55, -70], $ /GRID, /CONT, /LABEL

   Figure 9-4: Azimuthal equidistant projection

   The azimuthal equidistant projection shows the United States and Mexico. The AZIM keyword selects the azimuthal equidistant projection. The keyword LIMIT is set equal to a four-element vector containing the minimum latitude, minimum longitude, maximum latitude, and maximum longitude.

3. Dismiss the graphics window:
   
   WDELETE
Plotting Data on Maps

You can annotate plots easily in IDL. To plot the location of selected cities in North America, as shown in the following figure, you need to create three arrays: one to hold latitudes, one to hold longitudes, and one to hold the names of the cities being plotted.

1. Open a graphics window for viewing:
   
   WINDOW

2. Create a 5-element array of floating-point values representing latitudes in degrees North of zero.
   
   \[
   \text{LATS} = [40.02, 34.00, 38.55, 48.25, 17.29]
   \]

3. The values in LONS are negative because they represent degrees West of zero longitude.
   
   \[
   \text{LONS} = [-105.16, -119.40, -77.00, -114.21, -88.10]
   \]

4. Create a five-element array of string values. Text strings can be enclosed in either single quotes ("text") or double quotes ("text").
   
   \[
   \text{CITIES} = ['Boulder, CO', 'Santa Cruz, CA', 'Washington, DC', 'Whitefish, MT', 'Belize, Belize']
   \]

5. Draw a Mercator projection featuring the United States and Mexico.
   
   MAP_SET,/MERCATOR,/GRID,/CONTINENT,LIMIT=[10, -130, 60, -70]

6. Place a plotting symbol at the location of each city.
   
   \[
   \text{PLOTS, LONS, LATS, PSYM=4, SYMSIZE=1.4, COLOR=220}
   \]
7. Place the names of the cities near their respective symbols.

\[
\text{XYOUTS, LONS, LATS, CITIES, COLOR=80, } \$
\text{CHARTHICK=2, CHARSIZE=1.25, ALIGN=0.5}
\]

The PSYM keyword makes PLOTS use diamond-shaped plotting symbols instead of connecting lines. The SYMSIZE keyword controls the size of the plotting symbols. XYOUTS draws the characters for each element of the array CITIES at the corresponding location specified by the array elements of LONS and LATS. The CHARTHICK keyword controls the thickness of the text characters and the CHARSIZE keyword controls their size (1.0 is the default size). Setting the ALIGN keyword to 0.5 centers the city names over their corresponding data points.
Reading Latitudes and Longitudes

If a map projection is displayed, IDL can return the position of the cursor over the map in latitude and longitude coordinates.

1. Enter the command:

   `CURSOR, LON, LAT & PRINT, LAT, LON`

The CURSOR command reads the “X” and “Y” positions of the cursor when the mouse button is pressed and returns those values in the LON and LAT variables. Use the mouse to move the cursor over the map window and click on any point. The latitude and longitude of that point on the map are printed in the Output Log.

2. When you are finished with your map, dismiss the graphics window:

   `WDELETE`
Plotting Contours Over Maps

Contour plots can easily be drawn over map projections by using the OVERPLOT keyword to the CONTOUR routine. See the map in the figure below. Enter the following at the Command Line:

1. Open a graphics window for viewing:
   
   WINDOW

2. Create a dataset to plot:
   
   A=DIST(91)

3. Create an X value vector containing 91 values that range from -90 to 90 in 2 degree increments:
   
   LAT=FINDGEN(91)*2-90

4. Create a Y value vector containing 91 values that range from -180 to 180 in 4 degree increments:
   
   LON=FINDGEN(91)*4-180

5. Create a new sinusoidal map projection over which to plot the data:
   
   MAP_SET,/GRID,/CONTINENTS,/SINUSOIDAL,/HORIZON

6. Draw a twelve-level contour plot of array A over the map:
   
   CONTOUR,A,LON,LAT,/OVERPLOT,NLEVELS=12
Since latitudes range from -90 to 90 degrees and longitudes range from -180 to 180 degrees, you created two vectors containing the “X” and “Y” values for CONTOUR to use in displaying the array A. If the X and Y values are not explicitly specified, CONTOUR will plot the array A over only a small portion of the globe.

7. When you are finished with the map, dismiss the graphics window:

`WDELETE`
Warping Images to Maps

Image data can also be displayed on maps. The MAP_IMAGE function returns a warped version of an original image that can be displayed over a map projection. In this example, elevation data for the entire globe is displayed as an image with continent outlines and grid lines overlaid.

1. Define the template for the file worldelv.dat. This file contains a 360 by 360 square array of byte values.

   WORLDTEMPLATE=BINARY_TEMPLATE(FILEPATH('worldelv.dat', $ SUBDIR=["examples", 'data'])

2. When the binary template dialog box appears, name the template “WORLDTEMPLATE” and then click New Field.

3. In the New Field dialog, enter “W” for the Field Name, be sure to specify that you have two dimensions and that the field sizes are 360 and 360.

4. Also select Byte (unsigned) in the Type field. Now click OK in the New Field dialog. Click “OK” to close the binary template dialog as well. Next, read the file by entering:

   WORLDDELV_BINARY=READ_BINARY(FILEPATH('worldelv.dat', $ SUBDIR=["examples", 'data']),TEMPLATE=WORLDTEMPLATE)

5. Load a color table.

   loadct, 26

6. View the data as an image.

   TV, WORLDDELV_BINARY.W
The first column of data in this image corresponds to 0 degrees longitude. Because MAP_IMAGE assumes that the first column of the image being warped corresponds to -180 degrees, we’ll use the SHIFT function on the dataset before proceeding.

7. Shift the array 180 elements in the row direction and 0 elements in the column direction to make -180 degrees the first column in the array.

\[
\text{WORLDELV_BINARY.W=SHIFT(WORLDELV_BINARY.W, 180, 0)}
\]

8. View the data as an image.

\[
\text{TV, WORLDELV_BINARY.W}
\]
From the image contained in the data, we can create a warped image to fit any of the available map projections. A map projection must be defined before using MAP_IMAGE, because MAP_IMAGE uses the currently defined map parameters.

9. Create a Mollweide projection with continents and gridlines.

```idl
MAP_SET,/MOLLWEIDE,/CONT,/GRID,COLOR=100
```

10. Warp the image using bilinear interpolation and save the result in the variable `new`.

```idl
NEW=MAP_IMAGE(WORLDELV_BINARY.W,SX,SY,/BILIN)
```

The SX and SY in the command above are output variables that contain the X and Y position at which the image should be displayed. Setting the BILIN keyword causes bilinear interpolation to be used, resulting in a smoother warped image.

11. Display the new image over the map:

```idl
TV,NEW,SX,SY
```
The SX and SY variables provide TV with the proper starting coordinates for the warped image. TV usually displays images starting at position (0, 0). See the map in the previous figure. Note that the warped image gets displayed over the existing continent and grid lines.

12. The continent outlines and thick grid lines can be displayed, as shown next, by entering:

```idl
MAP_CONTINENTS
MAP_GRID,GLINETHICK=3
```
Figure 9-10: Showing gridlines and continents
Using the iMap Tool

The interactive iMap tool allows you great flexibility in manipulating and visualizing map data.

Displaying a Map

You can apply a map projection before or after you import image or contour data into the iMap tool. To do so, select Operations $\rightarrow$ Map Projection. This command opens the Map Projection dialog, shown in the following figure:

![Map Projection Dialog](image)

Figure 9-11: The Map Projection Dialog

You can apply a map projection to another iTool as well. If you do, the tool will adapt to expose iMap functionality, including the iMap operations and the Map panel.

Modifying Map Data

The iMap tool allows you many options such as inserting a map grid and inserting shapefiles. For much more information on working with the iMap tool, see Chapter 15, “Working with Maps”.

Getting Started with IDL

Using the iMap Tool
More Information on Mapping

More information on the IDL mapping routines can be found in *Using IDL* and in the *IDL Reference Guide*. 


This chapter describes the following topics:

- **IDL and Plotting Irregularly-Gridded Data** 150  
  Plotting the Results with TRIGRID  . . . . . . . 155
- **Creating a Dataset** 151  
  More Information on Gridding  . . . . . . . . . . 157
- **The TRIANGULATE Procedure** . . . . . . . . . . 153
IDL and Plotting Irregularly-Gridded Data

IDL can be used to display and analyze irregularly-gridded data. IDL routines allow you to easily fit irregularly-sampled data to a regular grid. This regularly-gridded data can then be sent to IDL’s plotting routines. In this chapter, we will see how easy it is to manipulate your irregularly-gridded data.

**Note**
To simplify obtaining useful results from the examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
Creating a Dataset

Create a set of 32 irregularly-gridded data points in 3-D space that we can use as arguments to the TRIGRID and TRIANGULATE functions.

1. Open a window for viewing:
   \[
   \text{WINDOW}
   \]
2. Set SEED to the longword value 1. SEED is used to generate random points.
   \[
   \text{SEED}=1L
   \]
3. Set the number of points to be randomly generated.
   \[
   \text{N}=32
   \]
4. Create a set of X values for each of the 32 data points.
   \[
   \text{X}=\text{RANDOMU}(\text{SEED}, \text{N})
   \]
5. Create a set of Y values for each of the 32 data points.
   \[
   \text{Y}=\text{RANDOMU}(\text{SEED}, \text{N})
   \]
6. Create a set of Z values for each of the 32 data points from the X and Y values.
   \[
   \text{Z}=\exp (-3\times ((\text{X}-0.5)^2+(\text{Y}-0.5)^2))
   \]
7. Plot the XY positions of the random points.

\[ \text{PLOT, X, Y, PSYM=1, TITLE='Random XY Points'} \]

![Figure 10-1: Plot of random values](image)

8. Dismiss the graphics window:

WDELETE
The TRIANGULATE Procedure

The TRIANGULATE procedure constructs a Delaunay triangulation of a planar set of points. After a triangulation has been found for a set of irregularly-gridded data points, the TRIGRID function can be used to interpolate surface values to a regular grid.

1. Open a window for viewing:

   WINDOW

2. To return a triangulation in the variable TR, enter the command:

   TRIANGULATE, X, Y, TR

   The variable TR now contains a three-element by 54-element longword array (you may see this by typing “Help, TR” at the IDL Command Line).

   **Note**

   This is not always a 54-element array, it may vary based on the number of points.

3. To produce a plot of the triangulation, shown below, enter the following commands:

   PLOT, X, Y, PSYM=1, TITLE='Triangulation'

   FOR i=0, N_ELEMENTS(TR)/3 - 1 DO BEGIN & T = $ [TR[*, i],TR[0, i]] & PLOTS, X[T], Y[T] & ENDFOR
Figure 10-2: The triangulation of the random values

4. Dismiss the graphics window

WDELETE
Plotting the Results with TRIGRID

Now that we have the triangulation TR, the TRIGRID function can be used to return a regular grid of interpolated Z values.

1. Display a surface plot of the gridded data by passing the result of the TRIGRID function to SURFACE, using the default interpolation technique and add a title to the plot, shown below, by entering:

```
SURFACE, TRIGRID(X, Y, Z, TR)
XYOUTS,.5,.9,'Linear Interpolation',ALIGN=.5,/NORMAL
```

The TRIGRID function can also return a smoothed interpolation. Set the QUINTIC keyword to use a quintic polynomial method when interpolating the grid.

*Figure 10-3: Linear interpolation of triangulated data*
2. Display the results of the quintic gridding method, shown below, by entering:

```idl
SURFACE, TRIGRID(X, Y, Z, TR, /QUINTIC, XYOUTS, .5, .9, 'Quintic Interpolation', ALIGN=.5, /NORMAL)
```

*Figure 10-4: Quintic interpolation of triangulated data*
More Information on Gridding

More information on the TRIGRID and TRIANGULATE routines as well as other triangulation routines, can be found in the *IDL Reference Guide*. 
Chapter 11: Animation

This chapter describes the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDL and Animation</td>
<td>160</td>
</tr>
<tr>
<td>Animating a Series of Images</td>
<td>161</td>
</tr>
<tr>
<td>Displaying an Animation as a Wire Mesh</td>
<td>163</td>
</tr>
<tr>
<td>Animation with XINTERANIMATE</td>
<td>166</td>
</tr>
<tr>
<td>Cleaning Up the Animation Windows</td>
<td>168</td>
</tr>
<tr>
<td>More Information on Animation</td>
<td>169</td>
</tr>
</tbody>
</table>
IDL can help you visualize your data dynamically by using animation. An animation is just a series of still frames shown sequentially. In IDL, a series of frames can be represented by a 3-D array (for example, a 3-D array could hold forty, 300 pixel by 300 pixel images). This chapter shows you how to create an array of images and play them back as an animated sequence.

**Note**

To simplify obtaining useful results from the examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```
Chapter 11: Animation

Animating a Series of Images

To create an animation that shows a series of images that represent an abnormal heartbeat, first read in the images to be displayed. The file holds 16 images of a human heart as 64 by 64 element arrays of bytes.

1. Enter the following commands at the IDL Command Line:
   
   ```idl
 HEARTTEMPLATE=BINARY_TEMPLATE(FILEPATH('abnorm.dat', $
 SUBDIR=['examples', 'data']))
   ```

2. When the binary template dialog box appears, name the template “Animation” and then click New Field.

3. Enter “H” for the Field Name, be sure to specify that you have three dimensions and that the sizes are 64, 64 and 16.

4. Also select Byte in the Type field. Now click OK for both open dialogs.

5. Next, read the images into variable HEART_BINARY:
   
   ```idl
 HEART_BINARY=READ_BINARY(FILEPATH('abnorm.dat', SUBDIR= $
 ['examples', 'data']), TEMPLATE=HEARTTEMPLATE)
   ```

6. Load an appropriate color table:
   
   ```idl
 LOADCT, 3
   ```

7. Display the first “slice” of our 3-D array:
   
   ```idl
 TV,HEART_BINARY.H[*, *, 0]
   ```

   The asterisks (*) in the first two element positions tell IDL to use all of the elements in those positions. Hence, the TV procedure displays a 64 by 64 byte image. The image is rather small.

8. Now resize each image in the array with bilinear interpolation by entering:
   
   ```idl
 H=REBIN(HEART_BINARY.H,320,320,16)
   ```

9. Then display:
   
   ```idl
 TV,H[*, *, 0]
   ```

   Each image in H is 5 times its previous size.

   Now a simple FOR statement can be used to “animate” the images. (A more robust and convenient animation routine, XINTERANIMATE, is described next.)

10. To animate, enter:
Chapter 11: Animation

Animating a Series of Images

Getting Started with IDL

FOR I=0,15 DO TVSCL,H[*,*,i]

IDL displays the 16 images in the array $H$ sequentially. To repeat the animation, press the “up arrow” key to recall the command and press enter.

Note

If the IDLDE screen covers an existing IDL window, you may want to delete the current IDL window before recalling the FOR statement in order to clearly see the animation.

11. Dismiss the window:

WDELETE

Figure 11-1: Representation of an abnormal heartbeat
Displaying an Animation as a Wire Mesh

The same series of images can be displayed as different types of animations. For example, each frame of the animation could be displayed as a SURFACE plot.

1. Create a new array to hold the heartbeat data:

   \[ S = \text{REBIN(HEART_BINARY.H, 32, 32, 16)} \]

   \( S \) now holds 32 byte by 32 byte versions of the heartbeat images. SURFACE plots are often more legible when made from a resized version of the dataset with fewer data points in it.

2. Display the first image in \( S \), as a wire-mesh surface by entering:

   \[ \text{SURFACE, } S[^*,^*,0] \]

3. To do this, first create a three-dimensional array to hold all of the images by entering:

   \[ \text{FRAMES} = \text{BYTARR(300, 300, 16)} \]

   The variable \( \text{frames} \) will hold sixteen, 300 by 300 byte images.
4. Now create a 300 by 300 pixel window in which to display the images:

   WINDOW,1,TITLE='IDL Animation',xsize=300,ysize=300

   A blank IDL Animation screen will appear.

   The next command will draw each frame of the animation. A SURFACE plot is drawn in the window and then the TVRD function is used to read the image from the plotting window into the frames array. The FOR loop is used to increment the array indices. The lines which follow are actually a single IDL command. The dollar sign ($) works as a continuation character in IDL and the ampersand (&) allows multiple commands in the same line.

5. Enter:

   FOR I=0,15 DO BEGIN SURFACE,$[*,*],i,ZRANGE=[0,250]$
   & FRAMES[0,0,i]=TVRD()&END

   You should see a series of SURFACE plots being drawn in the animation window, as shown in below. The ZRANGE keyword is used to keep the “height” axis the same for each plot.

6. Now display the new images in series by entering:

   FOR I=0,15 DO TV,FRAMES[*,*]

![Figure 11-3: One of the SURFACE plots of the animation window](image-url)
Note

Once again, if the IDLDE screen covers an existing IDL window, you may want to delete the current IDL window before recalling the FOR statement in order to clearly see the animation.
Animation with XINTERANIMATE

IDL includes a powerful, widget-based animation tool called XINTERANIMATE. Sometimes it is useful to view a single wire-mesh surface or shaded surface from a number of different angles. Let’s make a SURFACE plot from one of the S dataset frames and view it rotating through 360 degrees. by entering:

1. Save the first frame of the S dataset in the variable A to simplify the next set of commands:
   \[ A = S[*,*,0] \]

2. Create a window in which to display your surface:
   \[ WINDOW,0,XSIZE=300,YSIZE=300 \]

3. Display A as a wire-mesh surface:
   \[ SURFACE,A,XSTYLE=4,YSTYLE=4,ZSTYLE=4 \]

   Setting the XSTYLE, YSTYLE, and ZSTYLE keywords equal to 4 turns axis drawing off. Usually, IDL automatically scales the axes of plots to best display all of the data points sent to the plotting routine. However, for this sequence of images, it is best if each SURFACE plot is drawn with the same size axes. The SCALE3 procedure can be used to control various aspects of the three-dimensional transformation used to display plots.

4. Force the X and Y axis ranges to run from 0 to 32 and the Z axis range to run from 0 to 250:
   \[ SCALE3,XRANGE=[0,31],YRANGE=[0,31],ZRANGE=[0,250] \]

5. Set up the XINTERANIMATE routine to hold 40, 300 by 300 byte images:
   \[ XINTERANIMATE,SET=[300,300,40],/SHOWLOAD \]

6. Return focus to the plot window for the SURFACE calls which follow.
   \[ WSET, 0 \]

7. Generate each frame of the animation and store it for the XINTERANIMATE routine. Once a 3-D transformation has been established, most IDL plotting routines can be made to use it by including the T3D keyword. The [XYZ]STYLE keywords are shortened to [XYZ]ST:
   \[ \text{FOR } I=0,39 \text{ DO BEGIN } SCALE3,AZ=-i*9 \& \text{ SURFACE, A, } \$
   /T3D,XSTYLE=4,YSTYLE=4,ZSTYLE=4 \& \text{ XINTERANIMATE,}$
   \text{FRAME}=I,WIN=0 \& \text{ END} \]
8. Play images back as an animation after all the images have been saved in the XINTERANIMATE routine:

XINTERANIMATE

Figure 11-4: The XINTERANIMATE window

The XINTERANIMATE window should appear, as shown above. “Tape recorder” style controls can be used to play the animation forward, play it backward, or stop. Individual frames can also be selected by moving the “Animation Frame” slider. The “Options” menu controls the style and direction of image playback. Click on “End Animation” when you are ready to return to the IDL Command Line.
Cleaning Up the Animation Windows

Before continuing with the rest of the tutorials, delete the two windows you used to create the animations. The WDELETE procedure is used to delete IDL windows.

1. Delete both window 0 and window 1 by entering:

   WDELETE, 0
   WDELETE, 1
More Information on Animation

With just a few IDL commands, you’ve created a number of different types of animation. For a list of other animation related commands, see the IDL Reference Guide.
Chapter 12:
Programming in IDL

This chapter describes the following topics:

IDL and Programming  . . . . . . . . . . . . . . . . 172
Programming Capabilities in the IDLDE  . 173
Executing a Simple IDL Example Program  176
Debugging Tools in IDL  . . . . . . . . . . . . . . 179
Using IDL Projects  . . . . . . . . . . . . . . . . . . 181
More Information on IDL Programming  . 183
IDL and Programming

IDL encompasses a complete set of program control statements that allow for the writing of sophisticated programs and applications. These control statements are similar to, if not identical to, those found in other major programming languages. This chapter demonstrates some of IDL’s more basic yet important programming capabilities.

**Note**
For optimum performance when using these examples, create a bitmap buffer for your graphic windows and use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```

**Note**
See Chapter 5, “Library Authoring” in the *Building IDL Applications* manual for information on naming procedures to avoid conflicts with IDL routine names. It is important to implement and consistently use a naming scheme from the earliest stages of code development to avoid namespace conflicts.
Chapter 12: Programming in IDL

Programming Capabilities in the IDLDE

The IDL Development Editor (IDLDE) offers you the ability to program applications with ease. The term “IDL Application” is used very broadly and any program written in the IDL language is treated as an IDL application. IDL applications range from the very simple (for example, a MAIN program entered at the IDL command line) to the very complex (for example, large programs with graphical user interfaces). Whether you are writing a small program to analyze a single data set or a large-scale application for commercial distribution, it is useful to understand the programming concepts used by the IDL language. IDL even allows you to call IDL from other programs written in other languages and call other programs from IDL.

Built-In Editor

The IDL Editor is a programmer-style editor. For example, some characteristics include:

- Indenting a line using the Tab key also allows following lines to be indented
- Using the Shift-Tab key moves position left one tab stop
- Moving the cursor position within an IDL Editor window can be done with the mouse or the keyboard

A thorough listing of IDL Editor window key definitions is given in Using IDL.

Chromacoded Editor

The Windows IDL Editor supports chromacoding— the automatic coloring of different types of IDL statements. Chromacoding is a default setting. The Editor tab from Preferences in the File menu displays the colors used for different types of entries recognized by IDL. Here you can change the foreground color to change the color of the word itself. Highlight the word by specifying the background color.

Types of IDL Programs

There are multiple ways of executing a program within IDL. These involve varying levels of complexity and include:

Main

A main program unit consists of a sequence of IDL statements that end in an END statement. Only one main program unit may exist within an IDL project window at
Programming Capabilities in the IDLDE

any time. All commands (except executive statements) that can be entered at the IDL Command Line can also be contained in an IDL program.

**Procedure**

A procedure is a self-contained sequence of IDL statements that performs a well-defined task. A procedure is identified by a procedure definition statement where the procedure name is the name of the IDL statement you are creating and the parameters are named variables that are used in the procedure.

**Function**

A function is a self-contained sequence of IDL statements that performs a well-defined task and returns a value to the calling program unit when it is executed. All functions return a function value which is given as a parameter in the RETURN statement used to exit the function.

**Compound Statements**

The compound statements in IDL are:

- **BEGIN...END** — Creates a block of statements

**Conditional Statements**

The conditional statements in IDL are:

- **IF ... THEN ... ELSE** — Conditionally executes a statement or a block of statements
- **CASE** — Selects one, and only one, statement for execution
- **SWITCH** — Selects one statement for execution from multiple choices

**Loop Statements**

The loop statements in IDL are:

- **FOR...DO** — Executes one or more statements repeatedly, while incrementing or decrementing a variable with each repetition, until a condition is met
- **REPEAT...UNTIL** — Repetitively executes a subject statement until a condition is true
- **WHILE...DO** — Executes a statement repeatedly while a condition remains true
Jump Statements

The jump statements in IDL are:

- **BREAK** — Provides a convenient way to immediately exit from a loop statement without resorting to the GOTO statement
- **CONTINUE** — Provides a convenient way to immediately start the next iteration of the enclosing FOR, WHILE, or REPEAT loop
- **GOTO** — Transfers program control to a point in the program specified by the label

Note

For more detailed information about the functions of these IDL statements, see Chapter 13, “Program Control” in Building IDL Applications.
Executing a Simple IDL Example Program

To show IDL’s programming capabilities, the following program removes the bridges from the image of Manhattan Island in New York City using IDL’s erosion and dilation capabilities.

1. From the IDLDE, open a new IDL Editor window by selecting File → New → Editor (or for Macintosh, simply File → New).

2. Type (or copy) the following lines of code into the new Editor window to form a program:

```idl
PRO remove_bridges
 ; Read an image of New York.
 xsize = 768 ; pixels.
 ysize = 512 ; pixels.
 img = read_binary($
 filepath('nyny.dat', subdir=['examples', 'data']), $
 data_dims=[xsize, ysize])
 ; Increase image's contrast.
 img = bytscl(img)
 ; Create an image mask from thresholded image.
 threshold_level = 70 ; determined empirically.
 mask = img lt threshold_level
 ; Make a disk-shaped "structuring element."
 disk_size = 7 ; determined empirically.
 se = shift(dist(disk_size), disk_size / 2, disk_size / 2)
 se = se le disk_size / 2
 ; Remove details in the mask's shape.
 mask = dilate(erode(mask, se), se)
 ; Fuse gaps in the mask's shape.
 mask = erode(dilate(mask, se), se)
 ; Remove all but the largest region in the mask.
 label_img = label_region(mask)
 labels = label_img[where(label_img ne 0)] ; Remove background.
 label = where(max(label) eq max(histogram(label)))
 mask = label_img eq label[0]
 ; Generate a new image consisting of local area minimums.
 new_img = dilate(erode(img, se, /gray), se, /gray)
```
Chapter 12: Programming in IDL

Getting Started with IDL

Executing a Simple IDL Example Program

Note
Semicolons (;) in IDL code are indicators of the beginning of comment lines, which explain what the actual code lines are doing and/or to help you understand your code (while being ignored by IDL itself).

Note
The dollar sign ($) at the end of the first line is the IDL continuation character. It allows you to enter long IDL commands as multiple lines.

Note
For the current settings for the various colors represented in the chromacoded editor go to File → Preferences and then select the Editor tab (on Macintosh, select File → Preferences → Syntax Coloring).

Saving, Compiling and Running

To view the program at work, IDL requires a few additional steps:

1. Save the file as remove_bridges.pro by selecting File → Save As and then entering “remove_bridges.pro”.

2. Compile the program by selecting Run → Compile remove_bridges.pro (or on Macintosh, simply Run → Compile).
3. Run the program by selecting **Run → Run remove_bridges.pro** (or for Macintosh, simply **Run → Run**). You should observe the following:

![Running Your IDL Program](image)

**Figure 12-1: Running Your IDL Program**

**Note**

If your program encounters an error in running be sure to check your code for typographical errors.
Debugging Tools in IDL

IDL provides many features to help you debug your program. These features are discussed in the following sections.

Breakpoints

Setting breakpoints in your program allows you to determine stoppages in the execution of the program. You can then observe the value of variables at those points and continue execution of the program.

Variable Watch Window

The Variable Watch Window displays current variable values after IDL has completed execution of your program. If the calling context changes during execution — such as when stepping into a procedure or function — the variable table is replaced with a table appropriate to the new context.

While IDL is at the main program level, the Variable Watch Window remains active and displays any variables created.
The IDL Code Profiler

The Code Profiler helps you analyze the performance of your applications. You can easily use it to monitor the calling frequency and execution time for procedures and functions. The Profiler can be used with programs entered from the command line as well as programs run from within a file.

![Figure 12-4: The Profile Dialog](image)
Using IDL Projects

IDL’s project capabilities allow you to easily develop applications. You can manage, compile, run, and create distributions of all the files you will need to develop your application. All of your application files can be organized so that they are more easily accessed and imported to other developers, colleagues, or users.

Accessing All Application Files

IDL projects have an easy to use interface that allows you to group:

- IDL source code files (.pro)
- GUI files (.prc) created with the IDL GUIBuilder
- Data files (ASCII text or binary)
- Image files (.tif, .jpg, .bmp, etc.)
• Other files (help files, .sav files, etc.)

After adding files to a project, you can simply double click on .pro files to open them in the IDL editor or .prc files to open them in the IDL GUIBuilder.

Working with Project Files

IDL projects makes it easy to add, remove, move, edit, compile, and test files in your project. All of your workspace information is saved as well. If you save and exit your project with open files, when again opening the project, those files will be opened automatically. IDL projects also store breakpoint information. There is no need to reset breakpoints every time you open the project.

Compiling and Running Applications

Compiling and running applications is fast and easy. You can compile all of your source files or just the files that you have modified and then run your application through the Projects menu. You can customize how your application is compiled and run by specifying options for your project.

Building Distributions

Once you have completed your application, you can quickly and easily create a distribution. If you have purchased the IDL Developer’s Kit, your application is automatically licensed for distribution.

Exporting Applications

You can easily move your application to another platform or distribute your source code to colleagues by exporting your project. All your source code, GUI files, data files, and image files are copied to a directory you specify. You also have the option of creating an IDL Run Time distribution with your application.
More Information on IDL Programming

This chapter has given you a very brief introduction and overview into programming in IDL. Many more resources are available to you if you wish to continue to learn to program in IDL. A wealth of information exists in the Building IDL Applications manual. Also see the documentation for specific routines in the IDL Reference Guide.
Chapter 13:
Manipulating Data

This chapter describes the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDL and Manipulating Data</td>
<td>186</td>
</tr>
<tr>
<td>IDL Array Routines</td>
<td>187</td>
</tr>
<tr>
<td>Avoiding IF Statements by Summing Elements</td>
<td>188</td>
</tr>
<tr>
<td>Avoiding IF Statements by Using Array Operators and the WHERE Function</td>
<td>189</td>
</tr>
<tr>
<td>More Information on Manipulating Data</td>
<td>192</td>
</tr>
</tbody>
</table>
IDL and Manipulating Data

IDL has been specifically designed to process arrays easily and naturally. You can get excellent performance in your applications by using the built-in array processing routines instead of other methods like FOR loops. This chapter will show how easy it is to manipulate your data using IDL’s capabilities.
IDL Array Routines

IDL contains many array processing procedures and functions dealing with array creation, array manipulation, and array and image processing. For detailed information on these routines, see the IDL Quick Reference Manual.
Avoiding IF Statements by Summing Elements

Programs with array expressions run faster than programs with scalars, loops, and IF statements.

The first example adds all positive elements of array B to array A.

- Using a loop will be slow:
  

- Fast way: Mask out negative elements using array operations.
  
  `A = A + (B GT 0) * B`

- Faster way: Add `B > 0`
  
  `A = A + (B > 0)`

When an IF statement appears in the middle of a loop with each element of an array in the conditional, the loop can often be eliminated by using logical array expressions.
Avoiding IF Statements by Using Array Operators and the WHERE Function

Programs with array expressions run faster than programs with scalars, loops, and IF statements.

In the example below, each element of C is set to the square-root of A if A[I] is positive; otherwise, C[I] is set to minus the square-root of the absolute value of A[I].

- Using an IF statement is slow.
  \[
  \text{FOR } I=0, (N-1) \text{ DO IF A[I] LE 0 THEN C[I]=-SQRT(-A[I]) ELSE C[I]=SQRT(A[I])}
  \]

- Fast way
  \[
  C = ((A GT 0) * 2 - 1 ) * SQRT(ABS(A))
  \]

The expression \((A GT 0)\) has the value 1 if \(A[I]\) is positive and has the value 0 if \(A[I]\) is not. \((A GT 0) * 2 - 1\) is equal to +1 if \(A[I]\) is positive or -1 if \(A[I]\) is negative, accomplishing the desired result without resorting to loops or IF statements.

Another method is to use the WHERE function to determine the subscripts of the negative elements of A and negate the corresponding elements of the result.

- Get subscripts of negative elements.
  \[
  \text{NEGS}=\text{WHERE}(A LT 0)
  \]

- Take root of absolute value.
  \[
  C = \text{SQRT}(\text{ABS}(A))
  \]

- Negate elements in C corresponding to negative elements in A.
  \[
  C[\text{negs}] = -C[\text{negs}]
  \]

Example— Using Vector and Array Operations

Whenever possible, vector and array data should always be processed with IDL array operations instead of scalar operations in a loop. For example, consider the problem of flipping a 512 × 512 image. This problem arises because approximately half the available image display devices consider the origin to be the lower-left corner of the screen, while the other half recognize it as the upper-left corner.
The following example is for demonstration only. The IDL system variable !ORDER should be used to control the origin of image devices. The ORDER keyword to the TV procedure serves the same purpose.

A programmer without experience in using IDL might be tempted to write the following nested loop structure to solve this problem:

```idl
FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN
 Temporarily save pixel:
 TEMP=IMAGE[I, J]
 Exchange pixel in same column from corresponding row at bottom.
 image[I, J] = image[I, 511 - J]
 image[I, 511-J] = temp
ENDFOR
```

A more efficient approach to this problem capitalizes on IDL’s ability to process arrays as a single entity.

```idl
FOR J = 0, 255 DO BEGIN
 Temporarily save current row.
 temp = image[*, J]
 Exchange row with corresponding row at bottom.
 image[*, J] = image[*, 511-J]
 image[*, 511-J] = temp
ENDFOR
```

At the cost of using twice as much memory, processing can be simplified even further by using the following statements:

```idl
GET a second array to hold inverted copy.
image2 = BYTARR(512, 512)
Copy the rows from the bottom up.
FOR J = 0, 511 DO image2[*, J] = image[*, 511-J]
Even more efficient is the single line:
image2 = image[*, 511 - INDGEN(512)]
that reverses the array using subscript ranges and array-valued subscripts.
```

```idl
Finally, using the built-in ROTATE function is quickest of all:
image = ROTATE(image, 7)
```
This works because inverting the image is equivalent to transposing it and rotating it 270 degrees clockwise.

**Note**

Another way to invert the image is to enter:

```idl
image = REVERSE(image, 2)
```
More Information on Manipulating Data

IDL has many more array processing capabilities than the ones shown in this chapter. To take advantage of all of IDL’s powerful capabilities in manipulating data, look for more information in *Building IDL Applications*. 
Chapter 14: Using the IDL GUIBuilder

This chapter describes the following topics:

- What is the IDL GUIBuilder? ............ 194
- IDL GUIBuilder Tools ................. 196
- Creating an Example Application ....... 197
- Widget Types .......................... 207
- More Information on the IDL GUIBuilder 209
What is the IDL GUIBuilder?

The IDL GUIBuilder is part of the IDL Development Environment. A GUI stands for *Graphical User Interface* and therefore the IDL GUIBuilder supplies you with a way to interactively create user interfaces. You can then generate the IDL source code that defines that interface and contains the event-handling routine place holders that complete your interface.

*Note*

The IDL GUIBuilder is supported on Windows only. However, the code it generates is portable to other platforms and will run on the same version of IDL or higher.

The IDL GUIBuilder has several tools that simplify application development. These tools allow you to create the widgets that constitute user interfaces, define the behavior of those widgets, define menus, as well as create and edit color bitmaps for use in buttons.

*Note*

When using code generated by the IDL GUIBuilder on other non-Windows platforms, more consistent results are obtained by using a row or column layout for your bases instead of a bulletin board layout. By using a row or column layout, problems caused by differences in the default spacing and decorations (for example, beveling) of widgets on each platform can be avoided.

Using the IDL GUIBuilder

These are the basic steps you will follow when building an application interface using the IDL GUIBuilder:

1. Interactively design and create a user interface using the components, or *widgets*, supplied in the IDL GUIBuilder. Widgets are simple graphical objects supported by IDL, such as sliders or buttons.

2. Set attribute properties for each widget. The attributes control the display, initial state, and behavior of the widget.

3. Set event properties for each widget. Each widget has a set of events to which it can respond. When you design and create an application, it is up to you to decide if and how a widget will respond to the events it can generate. The first step to having a widget respond to an event is to supply an event procedure name for that event.
4. Save the interface design to an IDL resource file, *.prc file, and generate the portable IDL source code files. There are two types of generated IDL source code: widget definition code (*.pro files) and event-handling code (*.eventcb.pro files).

5. Modify the generated *_eventcb.pro event-handling code file using the IDLDE, then compile and run the *.pro code. This code can run on any IDL-supported platform.

The *_eventcb.pro file contains place holders for all of the event procedures you defined for the widgets, and you complete the file by filling in the necessary event callback routines for each procedure.

**Warning**

Once you have generated the widget definition code (*.pro files), you should not modify this file manually. If you decide to change your interface definition, you will need to regenerate the interface code, and will therefore overwrite that *.pro file. The event handling code will not be overwritten but will instead be appended.

You can also create user interfaces programmatically in IDL without the GUIBuilder. Chapter 28, “Widgets” in Building IDL Applications contains complete information about IDL widgets, and it describes this process.
**IDL GUIBuilder Tools**

You will use the following tools to design and construct a graphical interface using the IDL GUIBuilder:

- The IDL GUIBuilder Toolbar, which you use to create the widgets that make up your interface.
- Widget Properties dialog, which you use to set widget attributes and event properties.
- Widget Browser, which you can use to see the widget hierarchy and to modify certain aspects of the widgets in your application.
- The Menu Editor, which you use to define menus to top-level bases and buttons.
- The Bitmap Editor, which you use to create or modify bitmap images to be displayed on button widgets.
- The IDLDE to modify, compile, and run the generated code.

**Using the IDL GUIBuilder Toolbar**

The IDL GUIBuilder has its own toolbar in the IDE, which you use to create the widgets for your user interface. The components of the toolbar are shown in the following figure.

![IDL GUIBuilder Toolbar](image)

*Figure 14-1: IDL GUIBuilder Toolbar*
Creating an Example Application

This simple example application contains a menu and a draw widget. When complete, the running application allows the user to open and display a graphics file in PNG format, change the color table for the image display, and perform a smooth operation on the displayed image.

The following example shows in various steps how to create a widget, set widget properties, and write IDL code to handle events:

Defining Menus for the Top-Level Base

To define the menu, follow these steps:

1. Open a new IDL GUIBuilder window by selecting File → New → GUI from the IDLDE menu, or click the “New GUI” button on the IDLDE toolbar.

2. Drag out the window so that the top-level base to a reasonable size for displaying an image.

To view the property values, right-click on the base, and choose Properties from menu. In the Properties dialog, scroll down to view the X Size and Y Size property values.

3. Right-click on the top-level base in the IDL GUIBuilder window, then choose Edit Menu. This action opens the Menu Editor.

4. In the Editor’s Menu Caption field, enter “File” and click Insert. Clicking Insert sets the entered value and adds a new line after the currently selected line, and the new line becomes the selected line.

5. To define the File menu items:
   - With the new line selected, click on the right arrow in the Menu Editor, which indents the line and makes it a menu item.
   - Click in the Menu Caption field and enter “Open”.
   - Click in the Event Procedure field and enter “OpenFile”. The OpenFile routine will be called when the user selects this menu.
   - To create a separator after the Open menu, click the line button at the right side of the dialog (above the arrow buttons).
   - To set the values and move to a new line, click Insert.
   - In the Menu Caption field, enter “Exit”.

Getting Started with IDL
• In the Event Procedure field, enter “OnExit”.
• To set the values and move to a new line, click Insert.

6. To define the Tools menu and its one item, do the following:
• With the new line selected, click the left arrow to make the line a top-level menu.
• In the Menu Caption field, enter “Tools”, then click Insert.
• Click the right arrow to make the new line a menu item.
• In the Menu Caption field, enter “Load Color Table”.
• In the Event Procedure field, enter “OnColor”.
• To set the values and move to a new line, click Insert.

7. To define the Analyze menu and its one menu item, do the following:
• With the new line selected, click the left arrow to make the line a top-level menu.
• In the Menu Caption field, type “Analyze”, then press Enter.
• Click the right arrow to make the new line a menu item.
• In the Menu Caption field, enter “Smooth”.
• In the Event Procedure field, enter “DoSmooth”.

Figure 14-2: Menu Editor Dialog with Example Menus
8. Save your menu definitions by clicking OK in the Menu Editor.
9. At this time you can click on the menus to test them.
10. From the IDLDE File menu, choose Save, which opens the “Save As” dialog.
11. In the “Save As” dialog, select a location, enter “example.prc” in the File name field, and click Save. This action writes the portable resource code to the specified file.

To create a draw area that will display PNG image files, follow these steps:

1. Click on the Draw Widget tool button (the dark square icon), then drag out an area that fills the top-level base display area. Leave a small margin around the edge of the draw area when you drag it out.
2. Right click on the draw area, and choose Properties. This action opens the Properties dialog for the draw area; the draw widget properties are displayed in the dialog.
3. In the Properties dialog, click the push pin button (in the top right corner of the dialog box) so the dialog will stay open and on top.

**Note**

This Properties dialog floats and is resizeable.

4. In the Properties dialog, change the draw widget Name attribute value to “Draw”.
Later, you will write code to handle the display of the image in this draw area widget. Renaming the widget now will make it easier to write the code later; the “Draw” name is easy to remember.

**Note**
The Name property must be unique to the widget hierarchy.

5. In the IDL GUIBuilder window, click on the top-level base widget to select it. When you do so, the **Properties** dialog will update and display the attributes for this base widget.

6. In the **Properties** dialog, locate the **Component Sizing** property, and select **Default** from the droplist values. This action sizes the base to the draw widget size you created.
When the size of the base was first dragged out, the Component Sizing property changed from Default to Explicit—you explicitly sized the widget. Now that the base widget contains items, you can return it to Default sizing, and IDL will handle the sizing of this top-level base.

7. From the File menu, choose Save.

Running the Application in Test Mode

You can run the application in test mode, which allows you to test the display of widgets and menus.

To run your application in test mode:
• From the Run menu, choose Test GUI.
  This action displays the interface as it will look when it runs.

To exit test mode:
• Press the Esc key or Click the close X in the upper-right corner of the test application window.

Generating the IDL Code

To generate the code for the example application, follow these steps:
1. From the File menu, choose Generate .pro. This action opens the “Save As” dialog.

2. In the “Save As” dialog, find the location where you want the files saved, enter “example.pro” in the File name field, and click Save.

This action generates an example.pro widget definition file and an example_eventcb.pro event-handling file.

The example.pro file contains the widget definition code, and you should never modify this file. If you decide later to change your interface, you will need to regenerate this interface code, and thus overwrite the widget code file.

The example_eventcb.pro contains place holders for all the event procedures you defined in the IDL GUIBuilder Menu Editor and Properties dialog. You must complete these event procedures by filling in event callback routines. This file will only be appended to when new event handlers are added so changes made will not be lost.
Note

You should modify only the generated event-handling file (*.eventcb.pro); you should never modify the generated interface code (the *.pro file).

Handling the Open File Event

You can now modify the generated example_eventcb.pro file to handle the events for the application. First, you will modify the OpenFile routine.

When the user selects Open from the File menu of the example application, the appropriate event structure is sent, and the OpenFile routine handles the event. For this application, the Open menu item will launch an Open dialog to allow the user to choose a PNG file, and then the routine will check the selected file’s type, read the image, and display it in the draw area.

To open the file and add the code to handle the OpenFile event, follow these steps:

1. From the File menu in the IDLDE, choose Open, which launches the Open dialog.
2. In the Open dialog, locate and select the example_eventcb.pro file, and click Open. This file contains the event handling routine placeholders, which you will now complete.
3. In the example_eventcb.pro file, locate the OpenFile procedure, which looks like this:

   ```idl
 PRO OpenFile, Event
 END
   ```

   Tip
   To find the OpenFile routine, select OpenFile from the Functions/Procedures drop-down list on the IDLDE toolbar.

4. Add the following code between the PRO and END statements to handle the event:

   ```idl
 ; If there is a file, draw it to the draw widget.
 sFile = DIALOG_PICKFILE(FILTER='*.png')
 IF(sFile NE '') THEN BEGIN
 ; Find the draw widget, which is named Draw.
 wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw');
 ; Make sure something was found.
 IF(wDraw GT 0) THEN BEGIN
 ; Make the draw widget the current, active window.
           ```
WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
WSET,idDraw
; Read in the image.
im = READ_PNG(sFile, r, g, b)
; If TrueColor image, quantize image to pseudo-color:
IF (SIZE(im, /N_DIM) EQ 3) THEN $
   im = COLOR_QUAN(im, 1, r, g, b)
; Size the image to fill the draw area.
im = CONGRID(im, !D.X_SIZE, !D.Y_SIZE)
; Handle TrueColor displays:
DEVICE, DECOMPOSED=0
; Load color table, if one exists:
IF (N_ELEMENTS(r) GT 0) THEN TVLCT, r, g, b
; Display the image.
TV, im
; Save the image in the uvalue of the top-level base.
WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY
ENDIF
ENDIF

Note
In the added code, you used the FIND_BY_UNAME keyword to find the draw widget using its name property. In this example, the widget name, “Draw”, is the one you gave the widget in the IDL GUIBuilder Properties dialog. The widget name is case-sensitive.

Now re-save example.pro to be sure that the changes are retained.

Handling the Exit Event

To add the code that causes the example application to close when the user chooses Exit from the File menu, follow these steps:

1. Locate the OnExit procedure placeholder, which looks like this:

   PRO OnExit, Event

   END

2. Add the following statement between the PRO and END statements to handle the destruction of the application:

   WIDGET_CONTROL, Event.top, /DESTROY
Handling the Load Color Table Event

To add the code that causes the example application to open the IDL color table dialog when the user chooses **Load Color Table** from the **Tools** menu, follow these steps:

1. Locate the OnColor routine place holder, which looks like this:

   ```idl
 PRO OnColor, Event
 END
 ``

2. Add the following code between the PRO and END statements:

   ```idl
   XLOADCT, /BLOCK
   ; Find the draw widget, which is named Draw:
   wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw')
   IF(wDraw GT 0) THEN BEGIN
   ; Make the draw widget the current, active window:
   WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
   WSET, idDraw
   WIDGET_CONTROL,Event.top, GET_UVALUE=im, /NO_COPY
   ; Make sure the image exists:
   IF (N_ELEMENTS(im) NE 0) THEN BEGIN
   ; Display the image:
   TV, im
   ; Save the image in the uvalue of the top-level base:
   WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY
   ENDIF
   ENDIF
   ``

This procedure opens a dialog from which the user can select from a set of predefined color tables. When the user clicks the name of a color table, it is loaded and the displayed image changes appropriately.

**Note**

The XLOADCT color table dialog affects only 8-bit display devices.

Handling the Smooth Event

When the user selects **Smooth** from the **Analyze** menu, a smooth operation is performed on the displayed image. The smooth operation displays a smoothed image with a boxcar average of the specified width, which in the example code is 5.

To add the callback routines to handle the smooth operation, follow these steps:

1. Locate the DoSmooth routine place holder, which looks like this:
Chapter 14: Using the IDL GUIBuilder

PRO DoSmooth, Event

END

2. Add the following code between the PRO and END statements to handle the smooth operation:

; Get the image stored in the uvalue of the top-level-base.
WIDGET_CONTROL, Event.top, GET_UVALUE=image, /NO_COPY
; Make sure the image exists.
IF(N_ELEMENTS(image) GT 0)THEN BEGIN
; Smooth the image.
image = SMOOTH(image, 5)
; Display the smoothed image.
TV, image
; Place the new image in the uvalue of the button widget.
WIDGET_CONTROL, Event.top, SET_UVALUE=image, /NO_COPY
ENDIF

3. From the **File** menu, choose **Save**, which saves all your changes to the `example_eventcb.pro` file.
Compiling and Running the Example Application

To compile and run your example application, follow these steps:

1. Type `example` at the IDL> command prompt. This compiles and runs the example application, opening the GUI interface that has been created.

2. Now open a PNG image to try out the new application. From the File menu choose Open, locate a PNG file, and click “Open”.

3. You will now see the image opened in your GUI window. To manipulate the color schemes, click Tools/Load Color Table The following figure shows the example application and the IDL color table dialog. You can also perform the smooth procedure on the image.

![Example GUI Application](image.png)

*Figure 14-4: The Example GUI Application*
Widget Types

The IDL GUIBuilder toolbar allows you many options for creating widgets of various types. The following table contains a short listing and descriptions of the widget types you can create using the toolbar:

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>Creates a container for a group of widgets within a top-level base container (which is contained in the IDL GUIBuilder window).</td>
</tr>
<tr>
<td>Button</td>
<td>Creates a push button. The easiest way to allow a user to interact with your application is through a button click.</td>
</tr>
<tr>
<td>Radio Button</td>
<td>Creates a toggle button that is always grouped within a base container.</td>
</tr>
<tr>
<td>Checkbox</td>
<td>Creates a checkbox, which you can use either as a single toggle button to indicate a particular state is on or off or as a list of choices from which the user can select none to all choices.</td>
</tr>
<tr>
<td>Text</td>
<td>Creates a text widget.</td>
</tr>
<tr>
<td>Label</td>
<td>Creates a label.</td>
</tr>
<tr>
<td>Horizontal and Vertical Sliders</td>
<td>Creates a slider with a horizontal or vertical layout.</td>
</tr>
<tr>
<td>Droplist</td>
<td>Creates a droplist widget, which you can use to present a scrollable list of items from which the user can select.</td>
</tr>
<tr>
<td>Listbox</td>
<td>Creates a list widget, which you can use to present a scrollable list of items from which the user can select.</td>
</tr>
<tr>
<td>Draw Area</td>
<td>Creates a draw area, which you can use to display graphics in your application.</td>
</tr>
<tr>
<td>Table</td>
<td>Creates a table widget, which you can use to display data in a row and column format.</td>
</tr>
<tr>
<td>Tab</td>
<td>Creates a tab widget on which different “pages” (base widgets and their children) can be displayed by first selecting the appropriate tab.</td>
</tr>
</tbody>
</table>

Table 14-1: Widget Types and Descriptions
Note

The Select Cursor button returns the cursor to its standard state, and it indicates that the cursor is in that state. After you click on another button and create the selected widget, the cursor returns to the selection state.

## Widget Properties

For each widget type, there is a set of attribute values and a set of event values you can set using the IDL GUIBuilder Properties dialog. When you select a widget in the IDL GUIBuilder window or in the Widget Browser, the Properties dialog is updated to contain the properties for the selected widget. These properties include those common to all widgets and those specific to the selected widget.

On the Attributes tab of the Properties dialog (right click on the draw area, and choose Properties. This action opens the Properties dialog for the draw area) the attributes are set to default values and are arranged in the following order:

- Name property
- Combined Alphabetical list of common and widget-specific properties

On the Events tab, the possible events for a widget are listed in alphabetical order, with the common and the widget-specific events combined. By default, no event values are set initially. When you enter a routine name for an event property, you are responsible for making sure that event procedure exists. IDL does not validate the existence of the specified routine.

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>Creates a tree widget, which presents a hierarchical view that can be used to organize a wide variety of data structures and information.</td>
</tr>
</tbody>
</table>

### Table 14-1: Widget Types and Descriptions
More Information on the IDL GUIBuilder

The functionality shown here is only a small part of the capabilities of the IDL GUIBuilder. You can find much more information on building your own user interfaces in the *Building IDL Applications* manual.
Chapter 15:
Where to Go From Here

Using just a few examples, you’ve now gained a brief glimpse at the many and powerful options that IDL offers you for data analysis, visualization, and cross-platform application development. But the power of IDL has only begun and IDL offers you many options to aid you in learning more and more about its incredible functionality.
Learning More about IDL

A multitude of resources are made available to you to assist you as you learn the many capabilities of IDL. IDL manuals are offered both printed and online (in PDF version). IDL also includes an online help system directly accessible from the IDL Development Environment.

IDL Documentation Set

If you have just purchased IDL, you will receive part of the documentation set (depending upon which products you have purchased) in printed form with your order. All IDL manuals are available in PDF form on your product CD-ROM. For more information, see “Online Manuals” on page 215.

Installing and Licensing IDL 6.1

Installing and Licensing IDL 6.1 describes how to install and license IDL on your platform. It provides information about the different types of licensing available for IDL and how to manage licensing on your system.

Using IDL

Using IDL explains IDL from an interactive user’s point of view. It contains information about the IDL environment, the structure of IDL, and how to use IDL to analyze and visualize your data.

Building IDL Applications

Building IDL Applications explains how to use the IDL language to write programs - from simple procedures to large, complex applications. It contains information on the structure of the IDL language, programming techniques, and tools you can use to create applications in IDL.

Image Processing in IDL

Image Processing in IDL introduces you to the full image processing power of IDL, describing how to display, manipulate, and extract information from images. This manual features both Direct Graphics and Object Graphics examples that will aid in developing IDL applications that require image processing.
Chapter 15: Where to Go From Here

iTool User’s Guide

The *iTool User’s Guide* shows you important iTool functionality such as how to start the iTools, how to import data into an iTool, how to export data out of an iTool, the general layout of the iTools, and how to perform common iTool tasks.

iTool Developer’s Guide

The *iTool Developer’s Guide* describes the IDL iTools component framework and provides examples of its use. The manual helps you understand how to use the component framework to create your own intelligent tools.

IDL Quick Reference

The *IDL Quick Reference* provides quick access to the following: IDL procedures and functions (categorized functionally and alphabetically), objects, executive commands, and statements.

IDL Reference Guide

The *IDL Reference Guide* contains detailed information about all of IDL’s procedures, functions, objects, system variables, and other useful reference materials. It also contains detailed information about IDL’s routines for dealing with Common Data Format (CDF), Hierarchical Data Format (HDF), Earth Observing System extensions to HDF (HDF-EOS), and Network Common Data Format (NetCDF) files.

External Development Guide

The *External Development Guide* explains how to use IDL to develop applications that interact with programs written in other programming languages.

Obsolete IDL Features

*Obsolete IDL Features* describes routines that have become obsolete by enhancements to the IDL language. While these routines continue to exist, RSI recommends that you do not use routines that have become obsolete in new code.

IDL Master Index

The *Master Index* is a combined and comprehensive index covering all manuals in the IDL documentation set.
Note
Additional documentation can be ordered from RSI by contacting RSI Sales at (303) 786-9900 or by visiting www.RSInc.com.

IDL DataMiner Guide
The IDL DataMiner Guide contains information on using IDL to interact with databases using the Open Database Connectivity (ODBC) interface.
Online Manuals

All volumes of the IDL documentation set are also available in Adobe Acrobat Portable Document Format (PDF). These PDF files are automatically installed on your machine with IDL. Remember that in order to view these manuals, you will need a copy of Adobe’s Acrobat Reader with Search software (version 3.0 or later). A copy of Adobe Acrobat Reader is included on your product CD-ROM. For more information on Adobe Acrobat Reader, visit their World Wide Web site at www.adobe.com.

How to Access IDL Online Manuals

To access the IDL online manuals after you have installed IDL:

On Windows, select Start → Programs → Research Systems IDL 6.1 → IDL Online Manuals and Tutorials.

On UNIX and Mac OS X, execute the following at the prompt:

```
idlman
```

The IDL online manuals can also be found in the info directory of your product CD-ROM.

Navigation of the IDL Online Manuals

The online IDL manuals are fully hypertext linked for easy navigation. An Online Guide (onlguide.pdf) file is also included which is your guide to the IDL documentation set. It has links for all manuals in the documentation set as well as links on how to get more information from RSI.

Searching within the Online Manual Set

The IDL online manuals are set up to search for any information you might need within the IDL manual set. To search the IDL manual set, you can click on the binocular/page button in the Acrobat Reader tool bar after you have opened any IDL manual in the set including the Online Guide.
Online Help

IDL is equipped with extensive on-line help facilities that provide two kinds of information: documentation of IDL procedures, functions, and keywords, and information on the status of the IDL environment. There are several ways to access these help facilities from within the IDL Development Environment.

The IDL Development Environment Help Menu

One way is to start Help by selecting “Contents” from the “Help” pull-down menu in the IDL Development Environment. You can also search using the “Find Topic” selection on the same menu.

The Question Mark

You can access the IDL Help by entering a question mark (?) at the IDL prompt. The IDL Online Help window appears. The most current documentation on any aspect of IDL is available through this command. Although the help window has buttons for performing searches, you can also perform a keyword search from the command line by entering “?” followed by a keyword for which you want to search. For example, to search for topics related to contouring when starting the help system, you could enter:

? CONTOUR

IDL Help Outside of the IDL Development Environment

You may also access the IDL Help system outside of the IDL Development Environment.

On UNIX and Mac OS X, execute the following at the prompt:

idlhelp

HELP Command

The HELP procedure gives information about the IDL session. Enter:

HELP

with no additional parameters to display an overview of the current IDL session including one-line descriptions of all variables and the names of all compiled procedures and functions. Enter:

HELP, variable

to display information about that variable’s type. Many keyword parameters can be used with the HELP procedure to retrieve more specific information.
IDL Demo Applications and Examples

The IDL Demo Applications illustrate some of the many ways IDL can help visualize data. The IDL Demo Applications are a series of programs written in the IDL language that demonstrate different aspects of IDL. To Start the Demo Applications, complete the following steps:

For Windows, by clicking the Windows Start button and selecting Start → Programs → Research Systems IDL 6.1 → IDL Demo.

For UNIX and Mac OS X, enter the following at the UNIX prompt:

idldemo

Note
If you have already started IDL, you can simply type in DEMO at the IDL prompt.

IDL> DEMO

Another way to access the IDL Demo System is to use the “Run Demo” toolbar button on the IDLDE toolbar. To use this feature simply click the button and the dialog for running the demo will appear.

IDL also comes with many built-in examples such as source code and example data files. These can be found in the RSI-DIR/examples where RSI-DIR is the directory in which you have installed IDL.
Contacting RSI

Address

Research Systems, Inc.
4990 Pearl East Circle
Boulder, CO 80301

Phone

(303) 786-9900
(303) 413-3920 (Technical support)

Fax

(303) 786-9909

E-mail

Sales inquiries: info@RSInc.com
Technical support: support@RSInc.com
Training information: training@RSInc.com

World Wide Web

Symbols

$, continuation character, 164
&, multiple command character, 164

Numerics

2D plot, 61

A

abbreviating keywords, 135
Adobe Acrobat Portable Document Format (PDF), 215
animation, wire mesh surface, 163
annotating, maps, 137
axes, turning off, 166
azimuthal equidistant map projection, 136

B

base widgets, using, 207
button widgets, using, 207
byte scaling, 73, 101

C

checkboxes, using, 207
code
  IDL GUIBuilder generated, 201
  modifying generated, 202
color tables
  example, 204
  loading, 99
colors
  byte scaling, 101
  contrast enhancement, 79
  filling contours, 108
  scaling, 74
Command Input Line, IDLDE for Motif, 19
Contents button, 216
contours
  filling, 108
  iContour tool, 112
  levels, 107
  3D perspective, 109
  tickmarks, 108
contrast enhancement, 79
creating data, 61

D
data
  irregularly-gridded, 150
  manager, 23
data sets
  creating, 61
  plotting, 52
datasets, creating, 61, 151
differentiated smoothing, 87
dismissing windows, 74
displaying, 2D plots in iPlot, 54
draw widgets
  example application using, 199
  using, 207
drawing latitude and longitude lines, 135
droplist widgets, using, 207

E
elevation levels. contours, 107
events, handling in IDL GUIBuilder code, 202

F
files
  IDL GUIBuilder, generated, 201
  modifying generated, 202
  reading image data, 73
  filling contours, 108
  filtering, frequency domain, 65
  filtering techniques, 65
  Fourier transform filtering, 65
  frequency domain filtering, 65

G
globe, drawing, 135
graphics
  window resizing, 78
  windows, dismissing, 74
gridding
  latitude and longitude lines, 135
  quintic, 155

H
help on IDL, 216

I
iContour tool, 112
IDL
  Code Profiler, 180
  getting help, 216
IDL Development Environment, Layout, 17
IDL GUIBuilder
  base widgets, using, 207
  button widgets, using, 207
  checkbox widgets, using, 207
  color table example, 204
  compiling and running example, 206
  creating draw area, example, 199
IDL GUIBuilder (continued)
defining menus, example, 197
draw widgets, using, 207
droplists, using, 207
generating code, 201
horizontal slider, using, 207
label widgets, using, 207
listbox widgets, using, 207
modifying code, example, 202
radio button widgets, using, 207
smooth example, 204
starting, 197
table widgets, using, 207
test mode, 201
text widgets, using, 207
toolbar, 196
tools, 196
vertical slider, using, 207
writing event-handling code, 202
iImage tool, 92
images
contrast enhancement, 79
displaying, 73, 73
iImage tool, 92
opening, 73
reading, 73, 73
rotating, 90
sharpening, 85
smoothing, 85
input and output, 28
interpolation
linear, 155
quintic, 155
iPlot tool, 54
irregularly-gridded data, 150
iSurface tool, 103
iTools, 21
iVolume tool, 126
K
keywords, abbreviating, 135
L
label widgets, using, 207
latitude lines, 135
levels, contour, 107
lines
drawing latitude and longitude, 135
horizon, 135
listbox widgets, using, 207
longitude lines, 135
M
mapping, 132
annotations, 137
grid of latitude and longitude lines, 135
horizon line, 135
limiting region mapped, 136
projection
azimuthal equidistant, 136
orthographic, 135
multiple plot displays, 68
O
opening, image files, 73
orthographic map projection, 135
Output Log, IDLDE for Motif, 19
overplotting, 108
in iPlot, 55
P
PDF files, 215
performance, analyzing, 180
pixel, brightness profile, 91
pixels, scaling, 82
plots
displaying 2-D with iPlot, 54
overplotting in iPlot, 55
plotting
annotating maps, 137
displaying multiple plots, 68
iPlot tool, 54
irregularly-gridded data, 150
other capabilities, 53
overplotting, 108
simple, 49
surfaces, 172
symbols, 152
text size, 100
titles, 64, 100
plotting with data sets, 52
printing a plot, 51
profiling, 180
projections, map
azimuthal equidistant, 136
orthographic, 135
projects, overview, 18, 181

Q
quintic interpolation, 155
quitting IDL, 25

R
radio button widgets, using, 207
reading, images, 73
reading binary data, 37
reading images, 43
real-world test data, 62
rendering volumes, 126
resizing, graphics windows, 78
rotating, images, 90

S
saving a template, 42
scaling pixels, 82
scientific data formats, 29
sharpening images, 85
signal processing, and IDL, 60
SIN function, 61
sinewave function, 61
slices, making, 122
slider widgets, using, 207
smoothing, example, 204
smoothing images, 85
standard, image file formats, 29
Status Bar, IDLDE for Motif, 20
surfaces
displaying, 124
iSurface tool, 103
plotting, 172
wire mesh animation, 163

T
table widgets, using, 207
test data, 62
test mode, IDL GUIBuilder, 201
text, size, 100
text widgets, using, 207
three-dimensional, contour plot, 109
thresholding, 79
toolbars
IDL GUIBuilder, 196
IDLDE for Windows, 18
tutorials, 14

U
unsharp masking, 86
V

Variable Watch Window, 179
variables, displaying current, 179
volumes
  extents, 127
  iVolume tool, 126
  rendering, 126

W

widgets
  bases, using, 207
  buttons, using, 207
  checkboxes, using, 207
  creating in IDL GUIBuilder, 196
  draw, using, 207
  droplists, using, 207
  labels, using, 207
  listbox, using, 207
  radio buttons, using, 207
  slider, using, 207
  table, using, 207
  text, using, 207
windows
  deleting, 168
  dismissing, 74
  resizing, 78
wire mesh surface, animation, 163
writing binary data, 37
writing images, 43