Object
Programming

IDL Version 6.2

July 2005 Edition
Copyright © RSI
All Rights Reserved

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RSI reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any othersresulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of ITT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software devel oped by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1
The Basics of Using Objects iN IDLcoooiiiiiiiiiiiiiiiiee e 13
Object-Oriented Programming CONCEPRLScvverieeiieerieeseereeseeseestee e eseesseeeseesseesnsesneeas 14
USING IDL ODBJECES ..ttt sttt st s r e sae st sneenaesaesrenns 15
(= (] T T o] ="t £ TS 17
Acting on Objects USINg MENOUSc.ccviiiiieeiiieciceee et 18
ODbjeCt MELhOO SYNLBXcccveieeiiecee et et e s e sreesnee s 18
ATGUMENES .ttt ettt e b e sab e sabe e sate e s ate e sabeesateesabeesnbeesneean 19
Modifying ObJECt PrOPEITIESccveiieeiicriecseee et e e ree e st e e s e e e sreesreesree s 21
Properties and the Property Sheet Interfacecoecevvve e 21
Setting Properties at INitialiZationccccceeveeiieesiecieere e 22
Setting Properties of EXisting ODJECLSccvcviiiiiiieeseceeeere e 22
Retrieving Property SEIINGScoeveeriiireieene s 23
About Object Property DESCIIPLIONScccccuvierieriir e seesee e e e sre e e e see e e 23
DeStroying ODJECESccuvriiiiieieirie e e s 25

Object Programming 3

Using Operations With OBJECEScccviiiiiece e 26
(@ o] 1= ot S T 0] 0 0 | 26
Object Equality and INEQUEAIILYccceieieeeie e 27

ODJECE EXAMPIES ..ottt ettt e e et s e eeseeseeeneensesesneeneas 28

Chapter 2

Creating an Object Graphics Displayccccccceiviiiiiiieeeiiiieeeeeen, 29

Overview of Object GraphiCS ClIaSSEScccciieiieiice e 30
NaMING CONVENTIONScoviiieeieieeiesieeee sttt s b s se e s b nnenes 30

Creating an Object GraphiCS DiSplaycccceevvevieiiieeie e 31

Object Graphics Display Hi€rarChy ... 33
Components of an Object Graphics Hierarchyccccvcvviivvivin v 33

DestinatiOnN OBJECESc..eoveiriiriirieieeeie sttt r e e b e e 35

(DTS o = @ o] <o £ 36

ViSUBIZatioN ODJECESc.eeueieiieiieiieeeese e 38

File FOrmMat ODJECESvviieeii ettt st e s e s ae et e e nre e sreenas 41

Color in ODJECE GIaPNICSovvieeerierierieriee ettt r e er e re e 43

Color and Destination OBJECLScccceecieeiieeiiere e ee e s 45
A Note about Draw WIAJELScccovireiirinirieieeeese e 45
Indexed Color Model in Object GraphiCscccccvvveieerieere e e 45
RGB Color Model in Object GraphiCscoeoeeiiineneeceneseseeee s 46

[L ST = £ 47
Creating Palette ODJECESoeriiirieieieerere e e 47
USING Palette ODJECESccvveiecieciece et sre s 47

SPECITYING ODJECE COIONviiiiieieieeeerieee st b e 48
Example Specifying RGB VAUEScccv vttt 48

How IDL INterpretS Color VAIUEScocoiiriiieirieriesei ettt 50
INdexed Color MOOE! ..ot 50
€12 @] o Y/ o L= S 50

(S 10 L= T 0o T] o= £ 52
SIMPIE PIOL EXAMPIE ...t 53

Controlling the Depth of ObJECtSIN AVIEWoccvv e 55

Controlling OBJECt TraNSPAIENCYcoerveriririererieeeirte ettt ere e s 57
OpaCity and TraNSPAIENCY ..cveeiveerreeireeireeireerieeseeesteeeeseeeeessesseessessesssesssesssesssesssesns 58
Blending MathemELiCSooueireririeieene et 58
S 10 L= T 0o T] {0 (= 59

Contents Object Programming

Viewing and ROLEHIONccccceiuieieieie ettt sae e nns 60
Depth BUFfer UPatingcoeoeeeeeeereneeeeeee e s 62
Performance Tuning ObjeCt GraphiCsccvceeieieie et 63
Chapter 3
Positioning ODJectS iN & VIEWooviiiiiiiiiiiiiiiiieeeeeee e 65
Positioning VisualiZatioNS iN @ VIBWccceiiiiiieiinireseeeeee e 66
BT 1.7 o o 66
0= 1 oo R 66
Coordinate Systems and SCAlINGcceeiieeiieieeiieseereere e ese et see e sreesreesreens 66
RV L= Y] o TP PP PRPSON 67
Location and DIMENSIONcoeeieerirenieieneesee st sre e see s seeeseeeesae e e e eneeseene 67
PIOJECTION ...ttt ettt b e e e e e bt nn e 69
Parallel ProJECLIONScciiiiiiiie e st e s sttt ettt seeeneesneesnne s 69
PErspECtiVE PrOJECLIONSc.ccuiiiiiiiieeieerie sttt s 70
L 0 1 (1] SRS 71
VIBW VOIUIME .ottt sttt st ene e e e stestesneenteseesteeneensensenneas 73
Viewplane ReCLaNGIEooov i 73
Near and Far ClippinNg PlaNES ..o 73
Finding an Appropriate VIiew VOIUMEccociiiiiiiiie et see e 74
Converting Data to Normal COOIAINGLEScccereereririeieieriese e 76
A Function for Coordinate CONVEISIONcccceeeeerierereneenieseseesee e sresee e see e 77
Example: Centering an IMagEccoeeeieenereseeeese et 79
Example: Transforming @ SUMaCEcccveiiccie et 82
Zooming Within an ODJECt DISPlayc.ceeereeiririereeeees e 84
Zooming in on an Object Graphics Image Displaycccccveeveeveeveese e 84
Tranglating, Rotating and Scaling ODJECEScoeceeirererieeeere e 87
L= 15 = 1o L SRS 87
0= 1o 1 S 88
1o | o USSP 89
CombiniNg TranSfOrMELTIONScccciereerieiririereeeee et sre e 89
Interactive 3D TransforMEationscoeeiererineerese e 90
Chapter 4
Working with Image ODJECTScovvvviiiiiiiiiiiiieee e 91
Overview Of IMage ObJECESc.cciv ittt st s eesne e 92
Defining IMage PalELESoco e 92

Object Programming Contents

Configuring Common Object Propertiesccceevueveiiveeceesese e 93
Creating 1Mage ODJECLScoeeie ettt se e e e teseeeneensenseseesneas 94
Displaying Binary Images with Object GraphiCscccceveevereveeieesese e 9
Displaying Grayscale Images with Object GraphicCsccccoevvreeierieneneere e 96
Positioning Image ODJECIS iN @VIBWccecveeieiiceceeese et 99
Displaying Multiple Imagesin Object GraphiCscccoovvereerereneeiere e seeeeeens 100
Panning in Object GraphiCscccocvii e e 104
Defining Transparency in ImMage OJECEScocvvieiireieee e 108
Transparency and Image WarPingcccccecveieiiseeieese s 108
Image Transparency EXamMPIEScccooeeieieiiieeere e 108
Warping Image ObJECLScciieeieiece ettt sttt aesreeneas 114
Mapping an ImMage ONto @ SPNEIEooeeeeii e 125
Mapping an Image onto a Sphere Using Object Graphicscccccoevvvveeveesienvenenn, 125
L pF= o TSI I T o U 129
T T 0 TSl Y =00 o 130
=0 Lo I 132
Adding Tiling to Your APPlICatioNceeeeiieieiieeecese e 133
QuUErYiNg REQUITED TIIES ..o.veieeiee ettt seesee e 134
Panning Tiled IMBJEScccceeiiiieieeieese et ene s 135
Z00MING TilEA IMAGES ...ueeiiieeeeeee ettt ne e see s 136
Copying and Printing @ Tiled IMageccccvveeeeeveceeeere e 139
(= 072 o [a0 I ST 140
Example: JPEG2000 FIeSTOr TiliNg ...cccveveeveieceeeese sttt 143
Chapter 5
Working with Plots and Graphs ..o, 145
CONOUN OBJECES ...ttt bbb se e 146
Creating Contour ODJECESccciiiiiiicierie e s e s e e e sre e s e s e re e reenreereenne s 146
USING CONLOUN ODJECLSveveueeiiriesiesieeee sttt nne e 146
[[0 0 o] £ 149
Creating PIOt ODJECESoiveeeeiriiiiieeieeeie st 149
O LS T To . Lo R @] o] = £ 149
0] o (T 153
F N ST o= o U 154
Creating AXiS ODJECESoivieeiiriiriirieieeet ettt s 154
USING AXIS ODJECES ..oeiuiieiecii et es e s e te e e sre ettt e eneesneesneesnee e 154

Contents Object Programming

LOQArtNMIC AXES oottt sttt e et et be e e e sreenis 156
Displaying Date/Time Data on AXiS ODJECLSccccvviriereeeriniesierieesese e 158
Displaying Date/Time Dataon aPlot Displayccccovveeveeveiicecceececeseee e 158
Displaying Date/Time Data on a Contour Displayc.ccoevererereneneieneneneeeee 162
AXiSTitlesand TICKMArK TEXLccovovreriririsiiieererie e e 166
ReVErSe AXIS PIOING ...coeiiieiiierese et 166
Y100 @ o= ox P 168
Creating Symbol ODJECESooveeeee e 168
UsSING SYMDBOl ODJECLSocviiiiiieee e 170
A PIOtING ROULING ...ttt sttt e e e e 172
Improvements to the OBJ PLOT ROULINEccccevuerieiieeiese e sie e 173
Chapter 6
Working with Surface ODJECESccevvvviiiiiiiiiiiieee e 175
S U= o T @ o] = o £ 176
Creating SUrface ODJECESceieieie et 176
USING SUIfaCe OBJECESeviiiiiiiiieiee ettt sre e 177
An Interactive SUrface EXamPIe ... 181
Chapter 7
Creating VolUME ODJECTS ..uvuuiiiiiiiiii e 185
Creating aVolumMeE ODJECTooeiieeririerieeeeses et 186
USING VOIUME ODJECES ..ottt e et ee e enas 186
Setting Volume Object AttHDULESooeieiriee e 188
WV OIUME OPBCILY -eeuveveeeieiesiesieetie ettt sttt e e e et e s re e e eesaeseeeneeneesaennens 188
VOIUME COlOF .ttt sttt sb et 189
VOIUME LIGNEING «oeeeeeeieee e 189
(0010031 1] oo P 190
B =1 = 1 oo 190
T pL= 5 00! = 1 o o P TSTROPR 191
RENAENNG SPEEA ...ttt eeeenas 191
Chapter 8
Polygon and Polyline ODJECESceuvviiviiiiiiiii e 193
About Polygon and Polyling ODJECLScccceevieiiiiiie e 194
0] 1 Y70 0] 0 1 o= o SRR 195
Creating Polygon ObJECLScceeieiiiiceeiese sttt 195

Object Programming Contents

Configuring POlygon OBJECEScceeveeiiiiceecee s 195

TESSEIAOr ODJECLSeoeeieeeee et seeeneas 197
Creating Tessallator ODJECLSccvvivieeeeie ettt 197
Using Tessellator ODJECEScooviiiiieeeere e 197

[L0 £ IO o= £ S 198
Creating Pattern ODJECLSocueeieece e 198
USING PatterN ODJECLSoiviieieeiiecie ettt s se e ae e ene s 198

0] 1Y/0 o] 0 @ o111 4 11.2= 1 o o 200
Polygon Mesh OptimiZationccceeereieiieee e 200
BaCK-TACE CUING ..eeueieiieeeeeeeeee ettt eneeee e 203
NOrmMal COMPULBLIONSocveeeeeeiieitesieee e e e et re e a et sresre e e e nsesreeneens 203

POIYIING ODJECLS ...ttt ettt eseesteene e e aesneeneeneees 205
Creating PoIYIINE OLJECESc.ecveeiie ettt sttt 205
USING POlYIINE ODJECESovieieieiesie et 205

Chapter 9

Annotating an Object DISPlaycciiiieiiiieeee 207

Annotating Object GraphiC DiSPlayscccecveieriicece e e 208

TEXE OBJECES ...ttt b et e b e 209
(O e (] g To T = O o= £ R 209
USING TEXE ODJECESuevirieieieiiriesie ettt ne e sne e 209
F N I C =1 o) = S 212

FONE ODJECES ...ttt et ettt b e er e e s 213
(O (] gTo 0] O] o] =t £ 214
Assigning aFont Object to a Text ODJECEcceoeeririnereee e 215
Font Objects and RESOUICE USEcoieeieeiiecie s rieese e esie et 216

ROI ODJECES ...ttt ettt st e et b e bttt sb e s b e s 217

(=0 = 00 [o] = £ 218
Creating Legend ODJECEScvviiirieireeerieeeeese e e 218
UL Tplo l =0 =010 @] o] = £ S 218

COlOrDar ODJECESovieeieeieieriee et 221
(7= (] g To @0 Folq o= o @ o= £ 221
USING COlOrbar ODJECLScoerueerierierieieeieesie et 221

[T 0] o] = £ 223
Creating Light ODJECEScc.eveuieiiiiirieieieeie et 223
Configuring Light ODJECESecvviiie et 224

Contents Object Programming

Optimizing Light OBJECt USEecueeeiiceceese e 225
Custom Image Object ANNOLELIONScoiieiereiereeie e ens 226
Annotating Indexed Image ObJECESccccveviiiiieieesecee e 226
Annotating RGB Image ODJECESoooeeeiiii e 230
Chapter 10
ANIMating ODJECTES .ouuuiiiiii i 235
Overview of ObjeCt ANIMELIONceccveeiieiecrr e e e sre e s 236
Configuring an Animation Model ODJECTcccoveiiririreeeese e 238
USING MUILIPIE MOTELSoeceeeceece et 238
Controlling the ANiMation RALEccocoveieeirirereene e 240
Designing aBehavior ODJECEcccveiiiiiccece e s 241
Factors Affecting Animation Performancecccocverereienineneseeese e 243
MUItiple IMage COPIEScveeeeeeeceeeie et ee e e ste e st ente e nneeeeennas 243
Graphics Display Refresh RAEcccvviiirieirineeeee e 244
Example: Interactive Cine ANIMELIONccccouviierieriiee e e see e e s e e e e e e e e e sreennes 245
Chapter 11
Selecting ODJECTS oo 247
Selection and Data PiCKiNGcccoiiieeeiee et 248
(@ o= ot ST 1= o) R 249
SEIECHING VIBWS ..ottt sttt b e e e s ne s 249
Selecting Visualization ODJECESccoovvieiiiireceere e 249
SEECHING MOGEIS ...ttt srenre s 250
A SElECtiON EXAMPIE ... 251
D= = U o T (] o TSSO 252
A Data Picking EXAMPIEcoiiieeeeeee e 253
Chapter 12
Displaying, Copying and Printing Objectsccccccvviiiiiiiiiiiiiinnnnnn. 255
Overview of Object Graphic DeStiNalioNScccvcvieeieiiveeeeere e 256
WiINAOW ODJECES ...ttt ettt e e seesre e e e nee e e 257
Creating Window ODJECESccveeeieiiceeieste e ree et sae st e e re e 257
(0] Vo 1Y/ oo = ST 257
Note 0N WINAOW SIZE LIMITS ...ccvvueiririiiieerese s 258
USING WINAOW OBJECESeeeiiieeieeee ettt s eneas 259
Erasing @WINGOWc.couiiiiiiiieee ettt sttt sne et sreenas 259

Object Programming Contents

10

Exposing or Hiding @WIiNAOWccceveiiieiieie e 259
Koo 1Y/ T oo = AV T oo o 259
Setting the WINAOW CUISOEocuiiieieeierie et e st sre st aesaesreeneas 260
Saving/ReStOriNG WINCOWSccoiieerenieriiieeeesie e 260
Saving Window ContentSto aFilecoceciiieceeiececees e 260
Improving Window Drawing Performanceccoceeeeenieneeeeceneseeeeee e 262
Hardware vs. Software RENAENNGcccvvvereeieii ettt 262
Retained Graphics and EXPOSE EVENLSccoceriiieeeienene e 263
Instancing to Improving Redraw Performanceccccoveveeveeieveceeciese e 263
T] = o £ 265
Creating BUFfer ODJECEScueceeie ittt 265
(@110 00720 @] o] = £ 266
Creating Clipboard ODJECESc.coviiiiieeieie ettt sreeneas 267
110 O o= £ 268
Creating Printer ODJECLSocvieieece ettt 268
(@0 Fo 1Y/ oo < RSP PRRRSTSR 268
110 G D T= oo 1 268
Drawing to @PrINTEr ... e 269
Positioning Objects Within @Pageccccceeeeiiiiieeese et 270
Starting aNew Page 0n @ Printercoocoiiii e 274
SUbMIttiNG @ PIINLEr JOD ...ovevecee e e 274
Bitmap and Vector GraphiC OULPULccereiirieieese e 275
Bitmap GraphiCSccueiiiiceeee st ene s 275
RV A= ot (0] G] =T T o ST 276
Guidelines for Choosing Bitmap or Vector GraphicCscccceeeeeeveieseeceseseenens 277
Controlling What is Displayed in Vector GraphiCscooeeeeereneneeieeneneneeeeees 278
Chapter 13
Creating Custom ODbjJects iN IDLccccciiiiiiiiiiiiiiieeeeeee e 285
Creating CUSLOM ODJECEScccveiieierierie et eee e s e see s s sre e sre e sre e re e te e te e eesneennens 286
DL ODJECE OVEIVIBW ...vitiieeeicriesieeeie ettt sttt ne e e e e 287
ClasseS aNd INSEANCESccvieerieiirie ettt st sae e e seeeneas 287
ENCAPSUIBLION ..ottt ene e 287
=10 L 287
POIYMOIPRISIM <.t 287
INNEITTANCE ...ttt b s ee b eae e 288

Contents Object Programming

PEISISLENCE ..ottt bbb 288
Undocumented ODJECE CIASSEScoerveiererririeieesesese e 289
Creating an ObJeCt Class SLUCIUIEccecvieueerieriecieeeese sttt sttt ens 290

Automatic Class Structure Definitioncocoeoeriniiieiee e 291

INNEITANCE ..ottt b e ettt b et 292

N T I] = o £ 293
Object HEap VariabIeScceeeii ettt st s 294

Dangling REFEIENCEScoeiieiieieeee ettt 295

Heap Variable “Leakage”cccooeieiiciece ettt 295

Freeing Heap VariabDIesc.ooeoiieeeee e e 295
The OBJECE LITECYCIE ..oveeeeeee ettt 297

Creation and INItialiZationcccoiiiineeeee e 297

(D= L (1 (o PR SSTRRP 299
Creating Custom Object Method ROULINEScooviieieiiieeeeee e 300

Defining Method ROULINEScooveiiiiiiiicre ettt 300

The Implicit SEf ArgUMENToco e 301

Calling MethOd ROULINESccueeiiiiceeecese e 301

Searching for Method ROULINEScoiiiiiiieceeee e 303
MEthOd OVEITIAING ...ocveiiiticeeese sttt e e sresresnaensesrenreas 304

Specifying Class Namesin Method Callscoooeveiirieeene e 305
ODJECE EXAMPIES ...ttt ettt sttt s r e e reere b b e e naeseeens 307

Creating Composite Classes Or SUDCIBSSEScoeieererrrieeeeene e 307
INAEX ettt aaaaaaas 309

Object Programming Contents

Chapter 1

The Basics of Using
Objects in IDL

The following topics are covered in this chapter:

Object-Oriented Programming Concepts .. 14
UsingIDL Objects. 15
Creating Objects
Acting on Objects Using Methods

Object Programming

Modifying Object Properties 21
Destroying Objectst 25
Using Operations with Objects 26
ObjectExamples 28

13

14 Chapter 1: The Basics of Using Objects in IDL

Object-Oriented Programming Concepts

Traditional programming technigues make a strong distinction between routines
written in the programming language (procedures and functionsin the case of 1DL)
and data to be acted upon by the routines. Object-oriented programming beginsto
remove this distinction by melding the two into objects that can contain both routines
and data. Object orientation provides alayer of abstraction that allows the
programmer to build robust applications from groups of reusable elements.

Beginning in version 5.0, IDL provides a set of tools for devel oping object-oriented
applications. IDL’s Object Graphics engineis object-oriented, and a class library of
graphics objects allows you to create applications that provide equivalent graphics
functionality regardless of your (or your users') computer platform, output devices,
etc. Asan IDL programmer, you can use IDL’s traditional procedures and functions
aswell asthe new object features to create your own object modules. Applications
built from object modules are, in general, easier to maintain and extend than their
traditional counterparts.

This chapter describes how to create, configure and destroy inherent IDL graphic
objects. For information on how to create and use custom abject that you create, see
Chapter 13, “ Creating Custom Objectsin IDL”. If you are developing a custom i Tool
or components of an iTool (such as an operation or manipulator) see the i Tool
Developer’s Guide for complete details and examples.

A complete discussion of object orientation is beyond the scope of this book—if you
are new to object oriented programming, consult one of the many references on
object oriented program that are available.

Object-Oriented Programming Concepts Object Programming

Chapter 1: The Basics of Using Objects in IDL 15

Using IDL Objects

The IDL Object Graphics system is a collection of pre-defined object classes, each of
which is designed to encapsulate a particular visual representation. Actions (such as
the modification of attributes, or data picking) may be performed on instances of
these object classes by calling corresponding pre-defined methods. These objects are
designed for building complex three-dimensional data visualizations.

For example, the IDLgrAXxis object provides an encapsulation of all of the
components associated with a graphical representation of an axis. One of the actions
that can be performed on an axis is retrieving the current value of one or more of its
attributes (such asits color, tick values, or datarange). This action may be performed
viathe IDLgrAXxis::GetProperty method. See “Graphic Objects—Visualization” in
the functional category “Object Class Library” in the IDL Quick Reference manual
for acomplete listing of these types of objects.

Object Graphics should be thought of as a collection of building blocks. In order to
display something on the screen, the user selects the appropriate set of blocks and
puts them together so that as a group they provide a visual result. In this respect,
Object Graphics are quite different than Direct Graphics. A singleline of codeis
unlikely to produce a complete visualization. Furthermore, a basic understanding of
the IDL object system isrequired (for instance, how to create an object, how to call a
method, how to destroy an object, etc.). Because of the level at which these objects
are presented, Object Graphics are aimed at application programmers rather than
command line users.

Object Graphics do not interact in any way with the system variables (such as!P, X,
1Y, and !Z). Each graphic object is intended to encapsulate all of the information
required to fully describe itself. Reliance on external structuresis not condoned. The
advantage of this approach is that once an object is created, it will always behavein
the same way even if the system state is modified by another program, or if the object
is moved to another user’s IDL session, where the system state may have been
customized in a different way than the state in which the object was originally
defined.

Object Graphics are designed for building interactive three-dimensional visualization
applications. Direct manipulation tools (such as the Trackball object) are provided to
aid the application developer. Selection and data picking are also built in, so the
developer can spend less time working out data projection issues and more time
focusing on domain specific data analysis and visualization features.

Object Programming Using IDL Objects

16 Chapter 1: The Basics of Using Objects in IDL

Over time, RSI will continue to build higher-level applications with these objects,
applications that are suitable for users who prefer not to become programmers to
interact with their data. The IDL Intelligent Tools (iTools) are good examples of
currently available applications built using Object Graphics. For more information,
see theiTools User’s Guide.

Additional examples based on Object Graphics can be found in the IDL demo.

Using IDL Objects Object Programming

Chapter 1: The Basics of Using Objects in IDL 17

Creating Objects

To create an object from the IDL object class library, use the OBJ_NEW function.
See“OBJ NEW” inthe DL Reference Guide manual. The Init method for each class
describes the arguments and keywords available when you are creating a new object.

For example, to create a new object from the IDLgrAXxis class, use the following call
to OBJ_NEW aong with the arguments and keywords accepted by the
IDLgrAXxis::Init method:

myAxis = OBJ_NEW(IDLgrAxis, DIRECTION = 1, RANGE = [0.0, 40.0])

When you create an object, it is persistent, meaning it existsin memory until you
destroy it. You use an object reference (myaxis) to access the data associated with
the object. This object reference actually accesses an object heap variable. (See
“Object Heap Variables’ on page 294 for details.)

Once an object has been created, you can access and modify it as needed. (See“The
Object Lifecycle” on page 297 for additional information.) However, you should
always explicitly clean up object references before ending a program. See
“Destroying Objects’ on page 25 for more information.

Object Programming Creating Objects

18 Chapter 1: The Basics of Using Objects in IDL

Acting on Objects Using Methods

In order to perform an action on an object’s instance data, you must call one of the
object’s methods. In addition to their own specific methods, all object classes shipped
with IDL except for the IDL_Container class have four methods in common:
Cleanup, Init, GetProperty, and SetProperty. The Cleanup and Init methods are life-
cycle methods, and cannot be called directly except within asubclass’ Cleanup or Init
method. (See“ The Object Lifecycle” on page 297.) The GetProperty and SetProperty
methods allow you to inspect (get) or change (set) the various properties associated
with a given object. See “Madifying Object Properties’ on page 21 for details.

To call amethod, you must use the method invocation operator,-> (the hyphen
followed by the greater-than sign).

Object Method Syntax

In the IDL Reference Guide, the Syntax section of each object method shows the
proper syntax for calling the method.

Procedure Methods

IDL procedure methods have the syntax:
Obj->Procedure_Name, Argument [, Optional_Arguments]

where Obj isavalid object reference, Procedure_Name is the name of the procedure
method, Argument is arequired parameter, and Optional_Argument is an optional
parameter to the procedure method. The square brackets around optional arguments
are not used in the actual call to the procedure, they are ssmply used to denote the
optional nature of the arguments within this document.

Function Methods

IDL function methods have the syntax:
Result = Obj->Function_Name(Argument [, Optional _Arguments])

where Obj isavalid object reference, Result is the returned value of the function
method, Function_Name is the name of the function method, Argument is arequired
parameter, and Optional_Argument is an optional parameter. The square brackets
around optional arguments are not used in the actual call to the function, they are
simply used to denote the optional nature of the arguments within this document.

Acting on Objects Using Methods Object Programming

Chapter 1: The Basics of Using Objects in IDL 19

Note
All arguments and keywords to functions should be supplied within the parentheses

that follow the function’s name.

Arguments

The Arguments section describes each valid argument to the method.

Note
These arguments are positional parameters that must be supplied in the order

indicated by the method’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
method (“output arguments”) are described as accepting “ named variables.” A named
variableissimply avalid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sending an
EXression causes an error.

Keywords

The Keywords section describes each valid keyword argument to the method.

Note
Keyword arguments are formal parameters that can be supplied in any order.

Keyword arguments are supplied to IDL methods by including the keyword name
followed by an equal sign (“=") and the value to which the keyword should be set.
Note that keywords can be abbreviated to their shortest unique length. For example,
the XSTY LE keyword can be abbreviated to XST.

Note
In the case of Init, GetProperty and SetProperty methods, keywords often
correspond to object properties. See “Modifying Object Properties” on page 21 for
additional discussion.

Object Programming Acting on Objects Using Methods

20 Chapter 1: The Basics of Using Objects in IDL

Setting Keywords

When the documentation for a keyword says something similar to, “ Set this keyword
to enable logarithmic plotting,” the keyword is simply a switch that turns an option
on and off. In general, setting such keywords equal to 1 (or using the/KEY WORD
syntax) causes the option to be turned on. Explicitly setting the keyword to zero (or
not including the keyword) turns the option off.

Acting on Objects Using Methods Object Programming

Chapter 1: The Basics of Using Objects in IDL 21
Modifying Object Properties

Some IDL objects have properties associated with them — things like color, line
style, size, and so on. Properties are set or changed by supplying property-value pairs
in acal to the object class Init or SetProperty method:

Obj->0BJ NEW('ObjectClass', PROPERTY = value, ...)
or
Obj->SetProperty, PROPERTY = value, ...

where PROPERTY is the name of a property and value is the associated property
value.

Property values are retrieved by supplying property-value pairsin a cal to the object
class GetProperty method:

Obj->GetProperty, PROPERTY = variable, ...

where PROPERTY is the name of a property and variable is the name of an IDL
variable that will hold the associated property value.

Note
Property-value pairs behave in exactly the same way as Keyword-value pairs. This
means that you can set the value of a boolean property to 1 by preceding the name
of the property with a“/” character. The following are equivalent:

Obj->SetProperty, PROPERTY = 1

Obj->SetProperty, /PROPERTY

If you are familiar with IDL Direct Graphics, you will note that many of the
properties of IDL objects correspond to keywords to the Direct Graphics routines.
Unlike IDL Direct Graphics, the IDL Object Graphics system allows you to change
the value of an object’s properties without re-creating the entire object. Objects must
be redrawn, however, with acall to the destination object’s Draw method, for the
changes to become visible.

Properties and the Property Sheet Interface

In addition to being able to set and change object property values programmeatically,
IDL providesaway for usersto change property values viaagraphical user interface.
The WIDGET_PROPERTY SHEET function creates a user interface that allows
users to select and change property values using the mouse and keyboard.

Object Programming Modifying Object Properties

22 Chapter 1: The Basics of Using Objects in IDL

For an object property to be displayed in a property sheet, the property must be
registered.

See " Registered Properties’ in Chapter 4 of the IDL Reference Guide manual for
additional discussion.

Setting Properties at Initialization

Often, you will set an object’s properties when creating the object for the first time,
which is done by specifying any keywords to the object’s Init method directly in the
call of OBJ _NEW that creates the object. For example, suppose you are creating a
plot and wish to use ared lineto draw the plot line. You could specify the COLOR
keyword to the IDLgrPlot::Init method directly in the call to OBJ_NEW:

myPlot = OBJ NEW('IDLgrPlot', xdata, ydata, COLOR = ([255, 0, 0])

In most cases, an abject’s Init method cannot be called directly. Argumentsto
OBJ NEW are passed directly to the Init method when the object is created.

For some graphics objects, you can specify a keyword that has the same meaning as
an argument. In Object Graphics, the value of the keyword overrides the value set by
the argument. For example,

myPlot = OBJ NEW('IDLgrPlot', xdata, ydata, DATAX = newXData)

The Plot object uses the datain newxData for the plot's X data.
Setting Properties of Existing Objects

After you have created an object, you can also set its properties using the object’s
SetProperty method. For example, the following two statements duplicate the single
call to OBJ_NEW shown above:

myPlot = OBJ NEW('IDLgrPlot', xdata, ydata)
myPlot->SetProperty, COLOR = [255, 0, O]

Note
Not all keywords available when the object is being initialized are necessarily
available via the SetProperty method. Keywords available when using an object’s
SetProperty method are noted with the word “ Set” in the table included after the
text description of the property.

Modifying Object Properties Object Programming

Chapter 1: The Basics of Using Objects in IDL 23

Retrieving Property Settings

You can retrieve the value of a particular property using an object’s GetProperty

method. The GetProperty method accepts alist of keyword-variable pairs and returns
the value of the specified properties in the variables specified. For example, to return
the value of the COLOR property of the plot object in our example, use the statement:

myPlot->GetProperty, COLOR = plotcolor
The value of the COLOR property isreturned in the IDL variable plotcolor.

You can retrieve the values of all of the properties associated with a graphics abject
by using the ALL keyword to the object’s GetProperty method. The following
statement:

myPlot->GetProperty, ALL = allprops

returns an anonymous structure in the variable a11props; the structure contains the
values of all of the retrievable properties of the object.

Note
Not all keywords available when the object is being initialized are necessarily
available via the GetProperty method. Keywords available when using an object’s
GetProperty method are noted with the word “Get” in the table included after the
text description of the property.

About Object Property Descriptions

In the documentation for the IDL object class library, the description of each classis
followed by a section describing the properties of the class. Each property description
isfollowed by atable that looks like this:

Property Type Boolean

Name String Hide

Get: Yes Set: No Init: Yes Registered: Yes
where

e Property Type describes the property type associated with the property. If the
property isregistered, the property type will be one of a number of registered
property datatypes. If the property is not registered, thisfield will describe the
generic IDL data type of the property value.

Object Programming Modifying Object Properties

24 Chapter 1: The Basics of Using Objects in IDL

* Name String isthe default value of the Name property attribute. If the
property isregistered, thisisthe value that appears in the left-hand column
when the property is displayed in aproperty sheet widget. If the property isnot
registered, this field will contain the words not displayed.

e Get, Set, and Init describe whether the property can be specified as a keyword
to the GetProperty, SetProperty, and Init methods, respectively.

* Registered describes whether the property is registered for display in a
property sheet widget.

See Registered Property Data Types and “ Registered Properties’ in Chapter 4 of the
IDL Reference Guide manual for additional information.

Modifying Object Properties Object Programming

Chapter 1: The Basics of Using Objects in IDL 25

Destroying Objects

Use the OBJ DESTROY procedure to destroy an object. When an object is created
using OBJ NEW, memory is reserved for the object on the heap (see “ Object Heap
Variables’ on page 294 for details). You must explicitly destroy objectsin order to
clean up the reference and the remove the data from memory. Objects are released as
with acall to OBJ_DESTROY. Internally, this calls the object’s Cleanup method (see
“Destruction” on page 299 for details).

For example, if you have created an axis object called myAxis, use the following
syntax to clean up the object reference:

OBJ_DESTORY, myAxis

See“OBJ DESTROY” in the IDL Reference Guide manual for further details.

Object Programming Destroying Objects

26

Chapter 1: The Basics of Using Objects in IDL

Using Operations with Objects

Object reference variables are not directly usable by many of the operators, functions,
or procedures provided by IDL. You cannot, for example, do arithmetic on them or
plot them. You can, of course, do these things with the contents of the structures
contained in the object heap variables referred to by object references, assuming that
they contain non-object data.

There are four IDL operators that work with object reference variables: assignment,
method invocation (described in “Acting on Objects Using Methods’ on page 18),
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for object references and are not defined.

Note
The structure dot operator (.) is alowed within methods of a class of a custom
object. See “The Implicit Self Argument” on page 301 for details.

Many non-computational functions and proceduresin IDL do work with object
references. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It isworth
noting that the only 1/0 allowed directly on object reference variables is default
formatted output, in which they are printed as a symbolic description of the heap
variable they refer to. Thisis merely a debugging aid for the IDL programmer—
input/output of object reference variables does not make sense in general and is not
allowed. Please note that this does not imply that 1/O on the contents of non-object
instance data contained in heap variablesis not alowed. Passing non-object instance
data contained in an object heap variable to the PRINT command is asimple example
of thistype of 1/0.

You can also get information about an object as described in “ Returning Object Type
and Validity” on page 186.

Object Assignment

Assignment works in the expected manner—assigning an object reference to a
variable gives you another variable with the same reference. Hence, after executing
the statements:

;Define a class structure.
struct = { cname, datal:0.0 }

;Create an object.
A = OBJ NEW('cname')

Using Operations with Objects Object Programming

Chapter 1: The Basics of Using Objects in IDL 27

;Create a second object reference.

B =A
HELP, A, B
IDL prints:
A OBJREF = <ObjHeapVarl (CNAME) >
B OBJREF = <ObjHeapVarl (CNAME) >

Note that both A and B are references to the same object heap variable.
Object Equality and Inequality

The EQ and NE operators allow you to compare object references to seeif they refer
to the same object heap variable. For example:

;Define a class structure.
struct = {cname, data:0.0}

;Create an object.
A = OBJ_NEW('CNAME')

;B refers to the same object as A.
B =A

;C contains a null object reference.
C = OBJ_NEW()

PRINT, 'A EQ B: ', A EQ B & $

PRINT, 'A NE B: ', ANE B & $

PRINT, 'A EQ C: ', AEQC & $

PRINT, 'C EQ NULL: ', C EQ OBJ NEW() & $

PRINT, 'C NE NULL:', C NE OBJ NEW()
IDL prints:

A EQ B: 1

A NE B: 0

A EQ C: 0

C EQ NULL: 1

C NE NULL: O

Object Programming Using Operations with Objects

28 Chapter 1: The Basics of Using Objects in IDL

Object Examples

We have included a number of examples of object-oriented programming as part of
the IDL distribution. Many of the examples used in this volume are included —
sometimesin expanded form — inthe examples/doc/objects subdirectory of the
IDL distribution. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
“IPATH” in the IDL Reference Guide manual for information on IDL's path.

Object Examples Object Programming

Chapter 2

Creating an Object
Graphics Display

This chapter discusses creating and configuring Object Graphic displays.

Overview of Object GraphicsClasses 30
Creating an Object Graphics Display 31
Object Graphics Display Hierarchy 33
Destination Objects 35
Display Objects 36
Visudization Objects 38
FileFormat Objects 41
Color in Object Graphics. 43

Object Programming

Color and Destination Objects 45
PaletteObjects ...t 47
Specifying Object Color 48
How IDL Interprets Color Values 50
Rendering Objects 52
Controlling the Depth of ObjectsinaView 55
Controlling Object Transparency 57
Performance Tuning Object Graphics 63

29

30 Chapter 2: Creating an Object Graphics Display

Overview of Object Graphics Classes

The following sections provide an overview of the different types of objectsincluded
inthe IDL Object Graphics classlibrary. In order to describe the attributes of the IDL
Object Graphics classes, we have grouped the objects into functional categories:
Display Objects, Visualization Objects, Destination Objects, and File Format
Objects.

Note
These category names are purely descriptive; for example, display objects contain
the IDLgrModel, IDLgrScene, and IDLgrView classes, but no class named display.

See “Object Graphics Display Hierarchy” on page 33 for a discussion of the object
tree, which shows the relationships between object classes.

Thereis some commonality among visualization object properties Following sections
provide information about common properties including color, depth-buffering (how
objects are layered in aview), and alpha-channel setting (transparency).

Naming Conventions

In general, object classes shipped with IDL have names of the form:

IDLxxXYYyy

where xx represents the broad functional grouping (gr for graphics objects, db for
database objects, and an for analysis, for example). vyyy isthe class name itself
(such as axis or Ssurface). Object classes that are useful in more than one
functional context (container objects, for example) omit the functional grouping code
entirely (IDL_Container). All object classes shipped with IDL are prepended with the
letters IDL—we strongly suggest that you do not use this prefix when writing your
own object classes, as we will continue to add new object classes using this
convention.

The typographical convention used to describe IDL objectsis dightly different from
that used for non-object functions and procedures. Whereas non-object procedures
are presented in upper case letters, object classes and methods use mixed case. For
example, we refer to the PLOT routine, but to the IDLgrPlot object. Method names
are also presented in mixed case (IDLgrAXxis::GetProperty).

Overview of Object Graphics Classes Object Programming

Chapter 2: Creating an Object Graphics Display 31

Creating an Object Graphics Display

All Object Graphics applications require at least two basic building blocks. These
include:

¢ A destination object - the device (such as awindow, memory buffer, file,
clipboard, or printer) to which the visualization is to be rendered.

* A view object - the viewport rectangle (within the destination) within which
the rendering is to appear (as well as how data should be projected into that
rectangle).

For example:

; Create a destination object, in this case a window:
oWindow = OBJ_NEW ('IDLgrWindow')

; Create a viewport that fills the entire window:
oView = OBJ NEW('IDLgrView')

; Draw the view within the window:

OWindow->Draw, oView

By themselves, awindow and a single view are not particularly enlightening, but you
will find that these two types of objects are utilized by al Object Graphics
applications. To change an attribute of an object, you do not have to create a new
instance of that object. Instead, use the SetProperty method on the original object to
modify the value of the attribute.

For example, to change the color of the view to gray:

; Set the color property of the view:
OView->SetProperty, COLOR=[60,60,60]
; Redraw:

OWindow->Draw, oView

If more than one view isto be drawn to the destination, then an additional object is
required:

e A sceneabject - acontainer of views

For example:

; Create a scene and add our original view to it:

OScene = OBJ NEW (’IDLgrScene’)

oScene->Add, oView

; Modify our original view so that it covers

; the upper left quadrant of the window.

OView->SetProperty, LOCATION=[0.0,0.5], DIMENSIONS=[0.5,0.5], $
UNITS=3

Create and add a second red view that covers

7

Object Programming Creating an Object Graphics Display

32

Creating an Object Graphics Display

Chapter 2: Creating an Object Graphics Display

; the right half of the window.
OView2 = OBJ NEW(’IDLgrView’, LOCATION=[0.5,0.0], $
DIMENSIONS=[0.5,1.0], UNITS=3,COLOR=[255,0,0])

OScene->Add, oView2
; Now draw the scene, rather than the view, to the window:

OWindow->Draw, oScene

In the examples so far, the views have been empty canvases. For data visualization
applications, these views will need some graphical content. To draw visual
representations within the views, two additional types of objects are required:

¢ A model object - atransformation node

» A visuaization graphic object - a graphical representation of data (such asan
axis, plot line, or surface mesh). For more information, see “Visualization
Objects’ on page 38.

For example, to include atext label within aview:

; Create a model and add it to the original view:

oModel = OBJ_NEW('IDLngOdel')

oView->Add, oModel

; Create a text object and add it to the model:

oText = OBJ NEW('IDLgrText', 'Hello World', ALIGNMENT=0.5)

oModel->Add, oText
; Redraw the scene:
OWindow->Draw, oScene

Notice that the scene, views, model, and text are all combined together into a self-
contained hierarchy. It isthe overall hierarchy that is drawn to the destination object.

The transformation associated with the model can be modified to impact the text it
contains. For example:

; Rotate by 90 degrees about the Z-axis:

oModel->Rotate, [0,0,1], 90

; Redraw:
OWindow->Draw, oScene

When the objects are no longer required, they need to be destroyed. Destination
objects must be destroyed separately, but the graphic hierarchies can be destroyed in
full by simply destroying the root of the hierarchy. For example:

OBJ_DESTROY, oWindow
OBJ_DESTROY, oScene

In this example, the destruction of the scene will cause the destruction of all of its
children (including the views, model, and text).

Object Programming

Chapter 2: Creating an Object Graphics Display 33

Object Graphics Display Hierarchy

An Object Graphics display can be thought of as a group of graphics objects
organized into a hierarchy or tree. For example, a graphics object tree with four
graphics atoms (visualization objects) might be contained in three separate model
objects, which are in turn contained in two distinct view objects, both of which are
contained in one scene object, which isthe root of the graphics tree.

graphics| |graphics| |graphics graphics
atom atom atom atom
Model Model Model
View View
Scene

Figure 2-1: A Graphics Object Tree

Components of an Object Graphics Hierarchy

An object graphics display is commonly made up of the following components:

« Destination objects— awindow, printer, clipboard or memory buffer that
contains the display. One of these objectsis required for any graphicstree. For
more information, see “Destination Objects’ on page 35. In the tree analogy,
one of these objectsis the ground.

Object Programming Object Graphics Display Hierarchy

34 Chapter 2: Creating an Object Graphics Display

« Display objects— ascene, view, or viewgroup that contains one or more
models. Each model controlsthe spatial positioning of the visualization objects
that it contains. See “Display Objects’ on page 36.

Note
IDL_Container, like aview, can act as a container for other objects. Adding

objects to a container object allows you to group disparate IDL objectsinto
single object, and allows you to easily move or destroy the objects within the
container. See “A Plotting Routine” on page 172 for an example that uses an
IDL_Container object.

« Visualization objects — these low-level objects (shown as graphic atomsin
Figure 2-1) are the used to create visualizations such as plot, contour, surface,
and image displays. These objects contain data and have attributes such as
size, color, or associated color palette. Visualization objects do not have an
independent transformation matrix and do not contain other objects. See
“Visualization Objects’ on page 38 for more information.

Object Graphics Display Hierarchy Object Programming

Chapter 2: Creating an Object Graphics Display 35

Destination Objects

Destination objects are objects on which object trees can be rendered (displayed on a
screen or printed on a printer). Detailed information about destination objectsis
available in Chapter 12, “Displaying, Copying and Printing Objects’.

Destination Description
Buffer Objects of the IDLgrBuffer class represent an off-screen, in-
memory data area that may serve as a graphics source or
destination.
Clipboard Objects of the IDLgrClipboard class send Object Graphics to

the operating system’s native clipboard or to afilein bitmap or
vector format. See “ Clipboard Objects’ on page 266 for
examples.

Printer Objects of the IDLgrPrinter class represent a hardcopy
graphics destination. By default, printer objects represent the
default system printer; you can use the IDL routines
DIALOG_PRINTJOB and DIALOG_PRINTERSETUP to
change the printer associated with a printer object. See
“Printer Objects’ on page 268 for examples.

Window Objects of the IDLgrWindow class represent an on-screen area
on adisplay device in which graphic objects can be rendered.
See “Window Objects’ on page 257 for more information.
Also see“ Saving Window Contentsto aFile” on page 260 for
information on how to save aview of displayed objectsto an
imagefile.

Table 2-1: Destination Objects

Note
When creating an iTool display, there is no need to manually configure a window
object or destination objects. Thisis automatically done for you. See Chapter 3,
“Visudlizations” in theiTool User’'s Guide manual for more information.

Object Programming Destination Objects

36

Display Objects

Chapter 2: Creating an Object Graphics Display

Minimally, you must have aview object in an Object Graphics display. However, it is
likely that you will use acombination of the following display objectsin any display.
The*" Object Graphics Display Hierarchy” on page 33 shows the rel ationship between
these objects as a tree structure.

The advantage of organizing graphic objects into atree structure is that by
manipulating any of the branches of the tree, all of the sub-branches of that branch
can be altered simultaneously. In Figure 2-1, changes to the spatial transformation
associated with the model containing two graphics atoms will affect both of the
visualization objects. Similarly, calling awindow or printer object’s Draw method on
the scene object will render al of the objects in the tree to that window or printer.

Object

Description

IDLgrScene

A scene, or instance of the IDLgrScene class, isthe root-level
object of most graphics trees. Instances of the IDLgrScene
class have Add and Remove methods, which allow you to
include or remove IDLgrView or IDLgrViewgroup objectsin
ascene. A scene object is one of the possible arguments for a
destination object’s Draw method.

It isnot necessary to create a scene object if your graphicstree
contains only one view object; in that case, the view can serve
asthe root of thetree.

IDLgrViewgroup

A viewgroup, or instance of the IDLgrViewgroup class, isa
simple container object, similar to the Scene object. The
Viewgroup differs from the Scene in two ways:

1. It will not cause an erase to occur on a destination when
the destination object’s Draw method is called.

2. It can contain objects which do not have Draw methods.

Viewgroups are designed to be placed within a scene, and
therefor do not typically serve as the root-level object of a
graphics tree. However, aviewgroup object can be an
argument for a destination object’s Draw method. I nstances of
the IDLgrViewgroup class have Add and Remove methods,
which allow you to include or remove objects in a viewgroup.

Display Objects

Table 2-2: Display Support Objects

Object Programming

Chapter 2: Creating an Object Graphics Display 37

Object Description

IDLgrView A view, or instance of the IDLgrView class, can serve asthe
root-level object of a graphicstree. Instances of the
IDLgrView class have Add and Remove methods, which
alow you to include or remove IDLgrModel objectsin aview.
A view object is one of the possible arguments for a
destination object’s Draw method.

Every graphics tree must contain at |east one view object.
Often, it is convenient to divide the objects being rendered
into separate views, which are then contained by aviewgroup
or scene object.

IDLgrModel A model, or instance of the IDLgrModel class, serves as
containers for individual graphic objects (plot lines, axes, text,
etc.) and for other model objects. Model objectsinclude a
three-dimensional transformation matrix that describes how
the model and all of its components are positioned in space.

Altering the model’s transformation matrix changes the
position and orientation of any objects the model contains. If a
model object contains another model object, the contained
model is positioned according to both its own transformation
matrix and that of its container. See Chapter 3, “Positioning
ObjectsinaView” for more information.

Table 2-2: Display Support Objects (Continued)

See “Creating an Object Graphics Display” on page 31 for an example that
introduces the use of these objects. “ Rendering Objects’ on page 52 provides
additional information.

“Mapping an Image onto Elevation Data’ in Chapter 3 of the Image Processing in
IDL manual provides an example using the display objects to support texture-

mapping.

Note
When creating an iTool display, thereis no need to manually configure a window
object or destination objects. Thisis automatically done for you. See Chapter 3,
“Visudlizations” in theiTool User’'s Guide manual for more information.

Object Programming Display Objects

38 Chapter 2: Creating an Object Graphics Display

Visualization Objects

Visualization objects contain data that is designed to produce a visualization. These
graphic objects are the basic drawable elements of the IDL Object Graphics system,
and are container for other objects. Visualization objects are added to a model object,
which controls the spatial positioning of all the objectsit contains. Visualization
objects combined in amodel object (using the model object’s Add method) share the
same transformation matrix and can be rotated, scaled, or translated together.

Within the category of visualization objects, there is a sub-category of attribute
objects. Attribute objects define the appearance of a visualization object, but
themselves are not drawn, and thus do not need to be added to a model object. For
example, an IDLgrFont object is associated with an IDLgrText object through the
FONT property of the text object and defines the type characteristics of the text.
Attribute objects are instances of one of the following classes: IDLgrFont,
IDLgrPalette, IDLgrPattern, or IDLgrSymbol.

The following table introduces objects that are commonly see in different types of
object graphics displays. Your display need not contain these specific combinations.

Display Type Description

Plot Objects of the IDLgrPlot class are individual plot lines,
created from a user-supplied vector of dependent data values
(and, optionally, avector of independent data values). Plots do
not automatically include axes. See Chapter 5, “Working with
Plots and Graphs’ for information on plot, symbol and axis
objects. A plot display may include the following objects:

* Axis— IDLgrAxis objects show data ranges (one object
required for each axis to be rendered)

* Legend — IDLgrLegend objects annotate individual data
items or linesin avisualization. See “Legend Objects’ on
page 218.

e Colorbar — IDLgrColorbar objects annotate the data
val ues associated with colors used in avisualization. See
“Colorbar Objects’ on page 221.

* Symbol — IDLgrSymbol objects define a graphical
element that can be used when plotting data.

Table 2-3: Visualization Object Displays

Visualization Objects Object Programming

Chapter 2: Creating an Object Graphics Display 39

Display Type Description

Contour Objects of the IDLgrContour class are lines representing
contour information plotted from user data. Contour displays,
like plot display, may also include legend, colorbar, or symbol
objects. See Chapter 5, “Working with Plots and Graphs’. You
can a so use the following:

» Pattern — IDLgrPattern objects defines which pixels are
filled and which are left blank when a graphic object is
filled. Patterns can be applied to successive contour levels.

Image Objects of the IDLgrImage class are two-dimensional arrays
of datawith an associated mapping of the data values to pixel
values. See Chapter 4, “Working with Image Objects’.
Displays containing image objects my also include:

» Palette — IDLgrPalette objects define a color lookup
table that maps indices to red, green, and blue values.

* ROI — IDLgrROI objects are representations of aregion
of interest. Regions of interest are described as a set of
vertices that may be connected to generate a path or a
polygon, or may be treated as separate points. Objects of
the IDLgrROIGroup class are representations of a group
of regions of interest.

Surface Objects of the IDLgrSurface class are individua three-
dimensional surfaces, created from a user-supplied array of
data values. See Chapter 6, “Working with Surface Objects’.

» Light — IDLgrLight objects are light sources that
illuminate visualization objects. Light objects are not
actually rendered, but must be contained in amodel object
so that they can be positioned and transformed along with
the graphic objects they illuminate. If no light object is
included in a particular view, default lighting is supplied.

Volume Objects of the IDLgrVolume class map a three-dimensional
array of data valuesto athree-dimensional array of voxel
colors, which, when drawn, are projected to two dimensions.
Volume displays, like surface displays, can also include lights.
See Chapter 7, “Creating Volume Objects”.

Table 2-3: Visualization Object Displays

Object Programming Visualization Objects

40 Chapter 2: Creating an Object Graphics Display

Display Type Description
Polygon and Polygons and polylines are low-level graphic objects that can
Polyline be displayed by themselves or with other objects. See Chapter

8, “Polygon and Polyline Objects’ for more information.

Objects of the IDLgrPolygon class are individual polygons,
created from a user-supplied array of datavalues.

e Tesselator — IDLgrTessellator objects convert asimple
concave polygon (or a simple polygon with holes) into a
number of simple convex polygons (general triangles).
Tessellation is useful because IDL’s polygon object
accepts only convex polygons.

Objects of the IDLgrPolyline class are individual polylines,
created from a user-supplied array of data points. L ocations of
the data points supplied are connected by asingleline.

Text Objects of the IDLgrText class are text strings that can be
positioned within the rendering area. See “ Text Objects’ on
page 209.

* Font — IDLgrFont object define the typeface, size,
weight, and style of atext object with whichitis
associated. See " Font Objects’ on page 213.

Text objects are applicable to any of the previous displays.

Table 2-3: Visualization Object Displays

See the “ Graphic Objects—Visualization” category of the “Object Class Library” in
the IDL Quick Reference manual for an alphabetical list of visualization objects.

Note
Objects of the TrackBall class provide a ssmple interface to allow the user to
translate and rotate three-dimensional Object Graphics hierarchies displayed in an
IDL WIDGET_DRAW window using the mouse. The trackball object trand ates
widget events from a draw widget (created with the WIDGET_DRAW function)
into transformations that emulate a virtual trackball (for transforming object
graphicsin three dimensions). See “Interactive 3D Transformations’ on page 90
and “TrackBall” in the IDL Reference Guide manual for further details.

Visualization Objects Object Programming

Chapter 2: Creating an Object Graphics Display 41

File Format Objects

File format object classes provide access to data stored within files of certain types.
For example, the IDLFFXMLSAX and IDLffXMLDOM classes provide access to
attribute information stored in .xm1 files. The IDLffLangCat class also provides
access to XML data. However, this object allows you to access XML data stored in
language catalog files (.cat), which can be used to support internationalization. File
format objects may or may not have a graphical element that can be displayed.

Format

Object Class Information

DICOM

Objects of the IDLffDICOM class contain the datafor one or
more images embedded in a DICOM Part 10 file. Use this
object for read-only access to the data.

The IDLffDicomEXx class represents an extended I1DL
interface to DICOM format files, which includes read and
write capabilities. The IDLffDicomEXx object isavailable asa
separately-purchased IDL module, and is described in Medical
Imaging in IDL.

DXF

Objects of the IDLffDXF class contain geometry, connectivity
and attributes for graphics primitives.

Note - Also see “XDXF” in the IDL Reference Guide manual
for information on directly displaying a .axf file.

JPEG 2000

Objects of the IDLffIJPEG2000 class provide an interface to
filesin the JPEG 2000 format.

Language
Catalogs

Objects of the IDLffLangCat class provide an interfaceto IDL
language catal og files. See Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual for usage
details and examples.

MrSID

Objects of the IDLffMrSID class are used to query
information about and load image datafrom aMrSID (. sid)
image file.

MPEG

Objects of the IDLgrMPEG class allow you to save an array of
image frames as an MPEG movie.

Object Programming

Table 2-4: File Format Objects

File Format Objects

42 Chapter 2: Creating an Object Graphics Display
Format Object Class Information

ShapeFiles Objects of the IDLffShape class contain geometry,
connectivity and attributes for graphics primitives accessed
from ESRI Shapefiles.

VRML Objects of the IDLgrVRML class allow you to save the
contents of an Object Graphics hierarchy asaVRML 2.0
format file.

XML XML Parser — Objects of the IDLFfFXMLSAX class

represent an XML SAX level 2 parser. The XML parser
allows you to read an XML file and store arbitrary data from
thefilein IDL variables. See Chapter 20, “Using the XML
Parser Object Class’ in the Building DL Applications manual
for further details.

XML DOM — The Document Object Model (DOM)
describes the content of XML data in the form of a document
object, which contains other objects that describe the various
data elements of the XML document. Objects of the
IDLffXMLDOM Classes classes represent itemsin an XML
document; the items can be modified and the XML document
fileitself written to disk using these classes. See Chapter 21,
“Using the XML DOM Object Classes’ in the Building IDL
Applications manual for further details.

Table 2-4: File Format Objects (Continued)

See the “File Format Objects’ category of the “ Object Class Library” inthe IDL
Quick Reference manual for alist of file format objects.

File Format Objects

Object Programming

Chapter 2: Creating an Object Graphics Display 43

Color in Object Graphics

Color in an Object Graphics display is the result of interaction between the color
model defined for the destination object (e.g. window or printer), the destination
object’sinherent color model, and the color assigned to any visualization objects (e.g.
plot, text or image objects) being displayed. This section explains how to specify
color when using Object Graphics and how IDL interacts with the destination devices
on which graphics are finally displayed.

Note
For general information on color systems (RGB, HSV, HLS, and CMY), and
display color schemes (Indexed and RGB) see “Color Systems” or “Display Device
Color Schemes’ in Chapter 8 of the Using IDL manual.

Object Graphics supports two color models for newly created destination objects
(such asan IDLgrWindow): an Indexed Color Model and an RGB Color Model.
Indexed color allows you to map data values to color values using a color palette.
RGB color allows you to specify color values explicitly, using an RGB triple. See
“Indexed Color Model” on page 50 and “RGB Color Model in Object Graphics’ on

page 46.

Note
For some X 11 display situations, IDL may not be able to support a color index
model destination object in object graphics. We do, however, guarantee that an
RGB color model destination will be available for al display situations.

The devices on which graphics are rendered—computer displays, printers, plotters,
frame buffers, etc.—also support one or more color models. IDL performs any
conversions necessary to support either the Indexed or RGB color model on any
physical device. That is, the color model used by IDL is entirely independent of the
color model used by the physical device. “How IDL Interprets Color Values’ on
page 50 explains how IDL’s Object System color models interact with different
device color models.

Note
You can specify the color of any graphic object using either a color index or red,
green, and blue (RGB) value, regardless of the color model used by the destination
object or the physical destination device. See“ Specifying Object Color” on page 48
for details.

Object Programming Color in Object Graphics

44 Chapter 2: Creating an Object Graphics Display

The majority of graphic visualization objects have a COL OR property that can be set
to an indexed value or an RGB triple. You can set the color of any visualization
object when it isfirst created and later change it using this property. In addition to the
COLOR property, you can also associate a palette object (an instance of the
IDLgrPalette class) with many visualization objects using the PALETTE property.

One exception is the IDLgrlmage object, which does not have a COLOR property.
Instead, you use the PALETTE property to specify arelated color table for an
indexed image, or set the INTERLEAVE property to define the arrangement of the
image channelsin a RGB image. Palette objects can aso be associated with
destination objects. See “Pa ette Objects’ on page 47 for more information.

Color in Object Graphics Object Programming

Chapter 2: Creating an Object Graphics Display 45

Color and Destination Objects

Each destination object has one of the two color models associated with it (an
Indexed Color Model, and the RGB Color Model), shown in the following table.Once
a destination object has been created, you cannot change the associated color model.
You can, however, create destination objects that use different color modelsin the
same IDL session. That is, it is possible to have two window objects—one using the
Indexed color model and one using the RGB color model—on your computer screen
at the same time.

Color Model Keyword Value
INDEXED COLOR_MODEL=1
See " Indexed Color Model in Object Graphics’ on page 45.
RGB COLOR_MODEL=0 (default)
See “RGB Color Model in Object Graphics’ on page 46

Table 2-5: Destination Object Color Models

You can specify the color of any graphic object using either a color index or an RGB
value, regardless of the color model used by the destination object or the physical
destination device. The main distinction between the two color models liesin how
IDL manages the color lookup table (if any) of the physical destination device. See
“How IDL Interprets Color Values’ on page 50 for details.

A Note about Draw Widgets

Drawable areas created with the WIDGET_DRAW function deserve a special
mention. When a draw widget is created with the GRAPHICS LEVEL keyword set
equal to 2, the widget contains an instance of an IDLgrWindow object rather than an
IDL Direct Graphics drawable window. By default, the window object uses the RGB
color model; to use the indexed color model, set the COLOR_MODEL keyword to
WIDGET_DRAW equal to 1 (one).

Indexed Color Model in Object Graphics
In the Indexed color model, you have control over how colors are loaded into a color
lookup table. If the Indexed Color Model is used, a color value (or individual image

pixel) is expected to be an index into the pal ette associated with the destination
object. To load a particular color table, create a palette object, then set it as a property

Object Programming Color and Destination Objects

46

Chapter 2: Creating an Object Graphics Display

of the destination object in which the graphics are to be drawn (using the PALETTE
keyword in the SetProperty method of the destination object). If a palette is not
explicitly provided for a given destination object, agray scale ramp isloaded by
default.

When the contents of your destination object are rendered on the physical device
(that is, when you call the Draw method for the destination object), the RGB values
from the palette are either:

e passed directly through to the physical device (if it uses RGB values), or
« loaded into the physical device'slookup table (if it uses Indexed values).

Specify that a destination object should use the Indexed color model by setting the
COLOR_MODEL property of the object equal to 1 (one):

myWindow = OBJ_NEW('IDLgrWindow', COLOR MODEL = 1)
Specify a palette object by setting the PALETTE property equal to a pal ette object:

myWindow->SetProperty, PALETTE=myPalette

When you assign a color index to a visualization object that is drawn on the
destination device, the color index is used to look up an RGB value in the specified
palette. When you assigh an RGB value to an object that is drawn on the destination
device, the nearest match within the destination object’s palette is found and used to
represent that color.

See“How IDL Interprets Color Values’ on page 50 for information on how a color
assignment to a visualization object isinterpreted by a destination object using either
an RGB or Indexed color mode.

RGB Color Model in Object Graphics

In the RGB color model, IDL takes responsibility for filling the color lookup table on
the destination device (if necessary). When the contents of your destination object are
rendered on the physical device (that is, when you call the Draw method for the
destination object), the RGB values are either:

e passed directly through to the physical device (if it uses RGB values), or

¢ matched as nearly as possible with colors loaded in the physical device's
lookup table (if it uses Indexed values).

Specify that a destination object should use the RGB color model by setting the
COLOR_MODEL property of the object equal to 0 (zero). Thisis the default color
model value for newly created destination aobjects.

myWindow = OBJ_NEW ('IDLgrWindow', COLOR _MODEL = 0)

Color and Destination Objects Object Programming

Chapter 2: Creating an Object Graphics Display 47

Palette Objects

Objects of the IDLgrPalette class are used to create color lookup tables. Color lookup
tables assign individual numerical values to color values; this allows you to specify
the color of a graphic object with a single number (a color index) rather than
explicitly providing the red, green, and blue color values (an RGB triple). Palettesare
most useful when you want data values to correspond to color values—that is, if you
want a data value of 200, for example, to aways correspond to a single color. This
correspondence is one of the main uses of the Indexed Color Model.

Creating Palette Objects

Specify three vectors representing the red, green, and blue values for the pal ette when
you call the IDLgrPalette::Init method. The valuesin the red, green, and blue vectors
must be integers between zero and 255, and the length of each vector must not exceed
256 elements. For example, the following statements create a pal ette object that
reverses a standard grayscale ramp palette:

rval = (gval = (bval = REVERSE (INDGEN(256))))
myPalette = OBJ_NEW('IDLgrPalette', rval, gval, bval)

Using Palette Objects

Palettes can be associated either with graphics destination objects (windows or
printers) or with individual graphic visualization objects:

myWindow->SetProperty, PALETTE=myPalette

or
myImage->SetProperty, PALETTE=myPalette
Note
Pal ettes associated with graphic visualization objects are only used when the

destination object uses an RGB color model; if the destination object uses an
indexed color model, the destination object’s palette is always used.

See“IDLgrPalette::Init” in the IDL Reference Guide manual for details on creating
pal ette objects and compl ete examples.

Object Programming Palette Objects

48

Chapter 2: Creating an Object Graphics Display

Specifying Object Color

The color of most graphic objects are specified by the COLOR property of that
object. (The IDLgrimage object has a PALETTE property, not a COLOR property.
See“IDLgrPalette::Init” in the IDL Reference Guide manual for examples.) In IDL
Object Graphics, colors used for drawing visualization objects (such asan IDLgrText
object) are typically represented in one of two ways:

¢ Indexed - acolor isan index into a palette

* RGB - acalor isathree-element vector, [red, green, blug]. See “Color
Systems’ in Chapter 8 of the Using IDL manual for complete details.

You can set the color of an object either when the object is created or afterwards. For
example, the following statement creates a view object and setsits color value to the
RGB triple [60, 60, 60] (adark gray).

myView = OBJ NEW('IDLgrView', COLOR = [60, 60, 60])

The following statement changes the color value of an existing axis object to the
color value specified for entry 100 in the color palette associated with the axis object.

myAxis->SetProperty, COLOR=100

Theinterpretation of this color depends upon the color model associated with the
destination object, described in “ Color and Destination Objects’ on page 45.

Note
Remember that color palettes associated with individual graphic visualization
objects are only used when the destination object uses an RGB color modél. If the
destination object uses an Indexed color model, the destination object’s paletteis
always used.

Example Specifying RGB Values

RGB values are specified with RGB triples. An RGB triple is a three-element vector
of integer values, [r, g, b], generally ranging between 0 and 255. A value of zerois
the darkest possible value for each of the three channels—thus an RGB triple of

[0, O, O] represents black, [0, 255, Q] represents bright green, and [255, 255, 255]
represents white.

For example, suppose we create a plot line with the following statements:

myWindow = OBJ_ NEW ('IDLgrWindow')
myView = OBJ NEW('IDLgrView',6 VIEWPLANE RECT=[0, 0, 10, 10])
myModel = OBJ NEW ('IDLgrModel')

Specifying Object Color Object Programming

Chapter 2: Creating an Object Graphics Display 49

myPlot = OBJ NEW('IDLgrPlot', FINDGEN(10), THICK = 5)
myModel->Add, myPlot

myView->Add, myModel

myWindow->Draw, myView

Notice the following aspects of the above example:

1

3.

Try

The newly-created window (destination) object uses an RGB color mode (the
default).

The default color of the view object—the background against which the plot
lineis drawn—is white ([255, 255, 255]).

The default color of the plot object (and all objects, for that matter) is black.
changing the colors with the following statements:

myPlot->SetProperty, COLOR
myView->SetProperty, COLOR
myWindow->Draw, myView

[150, 0, 150]
[75, 250, 751

To destroy the window and remove the objects created from memory, use:

OBJ_DESTROY, [myWindow, myView]

Object Programming Specifying Object Color

50 Chapter 2: Creating an Object Graphics Display

How IDL Interprets Color Values

IDL determines colors to display differently based on whether the destination object
uses an Indexed or RGB color model, and on whether the physical destination device
supports an Indexed or RGB color model.

Indexed Color Model

If the destination object uses an Indexed color model, the color displayed is
calculated from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

» If the physical device usesan Indexed color model, the specified color index is
used as an index into the physical device's lookup table. (Remember that the
physical device's color lookup table isloaded viathe PALETTE keyword to

the destination object.)

¢ If the physical device uses an RGB color model, the specified color index is
used as an index into the destination object’s palette. The RGB triple stored at
the index’s location in the palette is used as the physical device's color value.

If an RGB Triple is Specified

e |f the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device's color lookup table.

e If the physical device uses an RGB color model, the RGB tripleis passed
directly to the device.

RGB Color Model

If the destination object uses an RGB color model, the color displayed is calculated
from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

If the graphic object for which the color is being determined has a pal ette associated
with it, the RGB triple at that palette’s color index is retrieved. Otherwise, the RGB
triple at the specified index in the destination object’s palette is retrieved.

e If the physical device uses an Indexed color model, the RGB triple retrieved is
mapped to the index of the nearest match in the device's color lookup table.

How IDL Interprets Color Values Object Programming

Chapter 2: Creating an Object Graphics Display 51

e If the physical device uses an RGB color model, the RGB tripleretrieved is
passed directly to the device.

If an RGB Triple is Specified

» If the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device's color lookup table.

« If the physical device uses an RGB color model, the RGB tripleis passed
directly to the device.

If the RGB color model is used, the palette associated with a destination object does
not necessarily have a one-to-one mapping to the hardware color lookup table for the
device. For instance, the destination object may have a grayscale ramp loaded as a
palette, but the hardware color lookup table for the device may be loaded with an
even sampling of colors from the RGB color cube. When a user requests that a
graphical object be rendered in a particular color, that object will appear in the
nearest approximation to that color that the device can supply.

Object Programming How IDL Interprets Color Values

52 Chapter 2: Creating an Object Graphics Display

Rendering Objects

In Object Graphics, rendering occurs when the Draw method of a destination object
iscaled. A scene, viewgroup, or view istypically provided as the argument to this
Draw method. This argument represents the root of a graphics hierarchy. When the
destination’s Draw method is called, the graphics hierarchy istraversed, starting at
the root, then proceeding to children in the order in which they were added to their
parent.

For example, suppose we have the following hierarchy:

oWindow = OBJ_NEW ('IDLgrWindow')
oView = OBJ_NEW (' IDLgrView')
oModel = OBJ NEW ('IDLgrModel')
oView->Add, oModel

oXAxis = OBJ NEW ('IDLgrAxis', 0)
oModel->Add, oXAxis

OYAXiS = OBJ_NEW(' IDLgrAXiS' , 1)
oModel->Add, oYAxis

To draw the view (and its contents) to the window, the Draw method of the window
is called with the view as its argument:

oWindow->Draw, oView

The window’s Draw method will perform any window-specific drawing setup, then
ask the view to draw itself. The view will then perform view-specific drawing (for
example, clearing arectangular areato a color), then calls the Draw method for each
of its children (in this case, thereis only one child, amodel). The model’s Draw
method will push its transformation matrix on a stack, then step through each of its
children (in the order in which they were added) and ask them to draw themselves. In
this example, oXAxiswill be asked to draw itself first; then oYAxiswill be asked to
draw itself. Once each of the model’s children is drawn, the transformation matrix
associated with the model is popped off of the stack.

Thus, for each object in the hierarchy, drawing essentially consists of three steps:
e Perform setup drawing for this object.
e Step through list of contained children and ask them to draw themselves.
e Perform follow-up drawing actions before returning control to parent.

The order in which objects are added to the hierarchy will have an impact on when
the objects are drawn. Drawing order can be changed by using the Move method of a
scene, viewgroup, view, or model to change the position of a specific object within
the hierarchy.

Rendering Objects Object Programming

Chapter 2: Creating an Object Graphics Display 53

Thefirst time avisualization object (such as an axis, plot line, or text) isdrawn to a
given destination, a device-specific encapsulation of its visual representation is
created and stored as a cache. Subsequent draws of this visualization object to the
same destination can then be drawn very efficiently. The cache is destroyed only
when necessary (for example, when the data associated with the visualization object
changes). Graphic attribute changes (such as color changes) typically do not cause
cache destruction. To gain maximum benefit from the caches, modification of object
graphic properties should be kept to bare minimum.

Note
See “Performance Tuning Object Graphics’ on page 63 for other performance

enhancing strategies.

Simple Plot Example

The following section shows the IDL code used to create a simple object tree. While
you are free to enter the commands shown at the IDL command line, remember that
the IDL Object Graphics API isdesigned as a programmer’s interface, and is not as
well suited for interactive, ad hoc work at the IDL command prompt as are IDL
Direct Graphics.

Thefollowing IDL commands construct asimple plot of an array versus the integer
indices of the array. Note that no axes, title, or other annotations are included; the
commands draw only the plot lineitself. (This exampleis purposefully simple; itis
meant to illustrate the skeleton of a graphics tree, not to produce a useful plot.)

; Create a view 2 units high by 100 units wide

; with its origin at (0,-1):

view = OBJ NEW('IDLgrView',6 VIEWPLANE RECT=[0,-1,100,2])
; Create a model:

model = OBJ NEW ('IDLgrModel')

; Create a plot line of a sine wave:

plot = OBJ_NEW('IDLgrPlot', SIN(FINDGEN (100) /10))

; Create a window into which the plot line will be drawn:
window = OBJ NEW ('IDLgrWindow')

; Add the plot line to the model object:

model->ADD, plot

; Add the model object to the view object:

view->ADD, model

; Render the contents of the view object in the window:
window->DRAW, view

To destroy the window and remove the objects created from memory, use the
following commands:

Object Programming Rendering Objects

54

I
7

7

Chapter 2: Creating an Object Graphics Display

Destroy the window and the view.
Destroying the view object destroys all
of the objects contained in the view:

OBJ DESTROY, [window, view]

Rendering Objects

Object Programming

Chapter 2: Creating an Object Graphics Display 55

Controlling the Depth of Objects in a View

In graphics rendering, the depth buffer is an array of depth values maintained by a
graphics device, one value per pixel, to record the depth of primitives rendered at
each pixel. It isusually used to prevent the drawing of objects located behind other
objects that have aready been drawn in order to generate a visually correct scene. In
IDL, smaller depth values are closer to the viewer.

Depth buffer properties provide more control over how Object Graphics primitives
are affected by the depth buffer. You can now control which primitives may be
rejected from rendering by the depth buffer, how the primitives are rejected, and
which primitives may update the depth buffer.

Control of the depth buffer is achieved through a test function or by completely
disabling the buffer. The depth test function isalogical comparison function used by
the graphics device to determineif a pixel should be drawn on the screen. This
decision is based on the depth value currently stored in the depth buffer and the depth
of the primitive at that pixel location.

Thetest function is applied to each pixel of an object. A pixel of the object isdrawn if
the object’s depth at that pixel passes the test function set for that object. If the pixel
passes the depth test, the depth buffer value for that pixel is aso updated to the
pixel’s depth value.

The possible test functions are;
¢ INHERIT - usethetest function set for the parent model or view.
* NEVER - never passes.

e LESS- passesif the depth of the object’s pixel is less than the depth buffer’s
value.

e EQUAL - passesif the depth of the object’s pixel is equal to the depth buffer’'s
value.

e LESSOR EQUAL - passesif the depth of the object’s pixel islessthan or
equal to the depth buffer’s value.

* GREATER - passesif the depth of the object’s pixel is greater than or equal to
the depth buffer’s value.

« NOT EQUAL - passesif the depth of the object’s pixel is not equal to the
depth buffer’s value.

¢ GREATER OR EQUAL - passesif the depth of the object’s pixel is greater
than or equal to the depth buffer’s value.

Object Programming Controlling the Depth of Objects in a View

56

Chapter 2: Creating an Object Graphics Display

« ALWAYS - dways passes

The IDL default is LESS. Commonly used values are LESS and LESS OR EQUAL,
which alow primitives closer to the viewer to be drawn.

Disabling the depth test function allows all primitives to be drawn on the screen

without testing their depth against the values in the depth buffer. When the depth test
is disabled, the graphics device effectively uses the painter’s algorithm to update the
screen. That is, the last item drawn at alocation isthe item that remainsvisible. The
depth test function of ALWAY S produces the same result as disabling the depth test.

Moreover, you can disable updating the depth buffer. Disabling depth buffer writing
prevents the updating of depth information as primitives are drawn to the frame
buffer. Such primitives are unprotected in the sense that any other primitive drawn
later at that location will draw over it asif it were not there.

Most visualization objects now have the following properties related to the depth
buffer:

« DEPTH_TEST_DISABLE
e DEPTH_TEST_FUNCTION
« DEPTH_WRITE_DISABLE

For more details on these properties, see each object’s property list in the IDL
Reference Guide.

Controlling the Depth of Objects in a View Object Programming

Chapter 2: Creating an Object Graphics Display 57

Controlling Object Transparency

IDL objects which support an alpha channel are:

» IDLgrAxis « |IDLgrContour
» IDLgrImage » IDLgrPlot

» IDLgrPolygon e IDLgrPolyline
e IDLgrROI e |IDLgrSurface
« IDLgrSymbol e |IDLgrText

* IDLgrVolume

Note
The transparency of an IDLgrlmage object can be defined using a band of data
defining the alpha values, and/or the ALPHA_CHANNEL property. Regardless of
which way the image transparency is defined, you also need to set
BLEND_FUNCTION property. See“Defining Transparency in Image Objects’ on
page 108 for details.

The apha channel has many uses. One of the most important is drawing primitives
semi-transparently, which can be used to enhance your object graphics scene. An
example might be atext label drawn semi-transparently to let other graphical details
“show through” the text label. Thiswould allow you to use alarger text font size,
rather than using asmall font size to squeeze text between details in a scene. Another
use for alpha channel might be to draw polygons and surfaces semi-transparently,
allowing you to see “inside” certain objects and structures.

Some of the most important uses for semi-transparent rendering are discussed in the
following sections.

e “Opacity and Transparency” on page 58
¢ “Blending Mathematics’ on page 58

¢ “Rendering Order” on page 59

e “Viewing and Rotation” on page 60

» “Depth Buffer Updating” on page 62

Object Programming Controlling Object Transparency

58 Chapter 2: Creating an Object Graphics Display

Opacity and Transparency

Opacity describes the degree to which an object blocks the appearance of other
objects. In IDL, the value used for the ALPHA_CHANNEL propertiesin IDLgr*
objectsis ameasure of the object's opacity. A value of 1.0 indicates compl ete opacity.
The object completely blocks the appearance of other objects. Conversely, an opacity
value of 0.0 indicates that the object does not block the appearance of objects at all.
Intermediate values indicate varying degrees of visibility for covered objects.

Transparency is essentially the opposite of opacity. Transparency indicates the
degree to which an object does not block the appearance of other objects. Complete
or full transparency isindicated by an opacity value of 0.0, while an object that is not
transparent at all has an opacity value of 1.0.

By default all IDLgr* graphic abjects use an ALPHA_CHANNEL value of 1.0,
indicating full opacity (zero transparency), matching the rendering behavior before
the addition of the ALPHA_CHANNEL property. To change the opacity of the
object, simply change the this property to a value between 0.0 (zero opacity or full
transparency) and 1.0.

Blending Mathematics

Blending is the drawing of semi-transparent objects on a screen already containing
objects. During rendering, the color of the pixels belonging to the primitive being
rendered are blended with the color of the pixelsthat are already on the screen,
producing the desired blending effect. This process is accomplished on a pixel-by-
pixel basis.

IDL uses this well-established blending equation:

newColor = oldColor * (1 - alpha) + primitiveColor * alpha

An example might suppose that you want to draw ared squarein an area of the screen
that is completely green. By default, the alphavalueis 1.0, so the result is:

[255, 0, 0] = [0, 255, 0] * (1.0 - 1.0) + [255, O, O] * 1.0

The green color is removed completely and replaced by red, the expected result of
conventional non-blended rendering.

If the alphavalue is changed to equal 0.5, the result is:
(127, 127, 0] = [0, 255, O] * (1.0-0.5) + [255, O, O] * 0.5

The resulting color isthe half of the red of the polygon combined with half of the
green of the background, a pale yellow.

Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 59

If you draw another red square in the same place with the same alpha, the red square
is blended with the now current contents of the screen:

[190, 63, 0] = [127, 127, 0] * (1.0-0.5) + [255, 0, O] * 0.5

Note
Large levels of semi-transparent rendering may reduce rendering performance. This
is because the graphics blending operation that is performed involves reading the
destination pixel from the frame buffer, combining it with the new color value and
then writing the result back to the frame buffer. Thisis more expensive than smply
overwriting the frame buffer contents with the new color value. The degree to
which your performance will be impacted depends heavily on the hardware and
software components of your graphics system.

Rendering Order

The colors of the pixels on the screen are important when drawing a blended
primitive. Similarly, the order in which the primitives are drawn is also very
important when drawing scenes with blended primitives.

In computer graphics, depth sorting presents a similar challenge. Without depth
sorting, a scene would have to be drawn from back to front to obtain a correct result.
IDL handles depth sorting by providing a"depth buffer" (also known asa"Z-buffer")
allowing you to draw the primitives in any order while alowing the primitives closer
to the viewer to still appear to be on top.

Thereisno similar feature for alpha-blended primitives. Be sure to draw the blended
primitives carefully so that all primitives behind a blended primitive are drawn before
the blended primitive.

If your scene consists of many primitives that are not blended and afew text labels
that are drawn with blending, it is a good idea to defer the drawing of the labels until
after everything elseis drawn. Thiswill alow usersto see through all labels and to
see the objects beneath. If a non-blended primitive is drawn on top of and after a
blended primitive, it will cover the blended primitive. If any primitiveis drawn
behind but after a blended primitive, the primitive drawn later will not appear where
the blended primitive coversit, due to depth buffering. In other words, it is not
possible to blend primitives unless all objects behind the blended primitive which are
to be blended are already drawn.

Object Programming Controlling Object Transparency

60 Chapter 2: Creating an Object Graphics Display

Note
If you have acomplex scene where many primitives are blended, it may be difficult
to determine the proper ordering.

Inter- and Intra-primitive Rendering Orders

Inter-primitive rendering order deals with the ordering of primitive objects within an
IDLgrModel. For primitives which do not intersect each other, it is straightforward to
order these in a back-to-front viewing order, particularly if your sceneisfixed so it
cannot be rotated by the user. Thisis done by arranging your primitives aong the Z
direction so that the objects farthest away appear first in the IDLgrModels, which
makes them draw first.

If primitives intersect, it may be necessary to divide the object so that the back parts
of each primitive are drawn first, and then the front parts. This can be a very difficult
issue.

Intra-primitive rendering order deals with the ordering of graphical itemswithin an
IDL graphics primitive. Some primitives, such as IDLgrSurface and IDLgrPolygon
actually consist of alarge number of individual polygons. They are not al drawn at
once, and the order in which they are drawn is aso important when drawing with
blending.

You can control the order in which the individual polygons are drawn in an
IDLgrPolygon object by ordering the vertices or specifying the order in the
POLY GONS property. Polygons specified first in the POLY GONS ist are drawn
first.

Viewing and Rotation
If you draw atypical height field with IDLgrSurface and invoke blending, the object
might look right from some viewing orientations.

For example, try the following:

XOBJVIEW, OBJ NEW('idlgrsurface',$
BESELJ (shift (dist (40),20,20)/2,0) * 20, STYLE=2,$
ALPHA CHANNEL=0. 5)

Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 61

£l Xobjview 10l =]

File Edit View

| | [5alels]

Figure 2-2: Viewing Alpha Channel in an Object

Notice in the previous figure that you can see-through the waves in the object to see
other waves, but only when you view the object from certain directions. From other
directions, all you see are the waves closer to you.

Solving this problem can be extremely difficult. A complete solution would generate
ascenefor every possible viewing angle, where the polygons are drawn back to front,
splitting them if necessary. There are several techniques available for accomplishing
this, one of them being the Binary Space Partition Tree, however thisis not supported
directly in IDL. If the objects are simple, it might be possible to construct afew
scenes that give correct or passable results.

For example, if you wanted to look at a semi-transparent sphere from al angles,
creating eight models might suffice. Each of the eight models contains the polygons
sorted in back-to-front order for a viewing direction corresponding to each of the
eight octants formed by the half spaces of the three principle axes. Asthe user rotates
the scene with atrackball, the program would select the appropriate model, based on
the current viewing direction. More complex scenes may require more models.

Object Programming Controlling Object Transparency

62 Chapter 2: Creating an Object Graphics Display

Depth Buffer Updating

For any value of the ALPHA_CHANNEL property, IDL updates the depth buffer
when the primitive is drawn, unlessthe DEPTH_WRITE_DISABLE property is set
to avalue that disables depth buffer updates. Thus, even if you draw a completely
transparent primitive, the depth buffer is updated as if there were avisible primitive
drawn there. This means that subsequent primitives drawn behind the transparent
object are not visible. Though potentially confusing, this can also be a useful way to
hide objectsin certain situations.

After drawing atransparent object, that there may be gapsin objects drawn later. For
example, suppose linesin aplot are drawn with ALPHA_CHANNEL=0
(transparent), and then symbols are drawn. Where the symbols and lines intersect,
there are gapsin the symbols. The gaps are caused by the invisible lines changing the
depth buffer, thus masking out the symbols that are drawn later. At times, the ability
to modify the depth buffer without changing the color buffer is a useful tool for
clever clipping operations. In other contexts, you may consider using invisible
polygons to mask out entire areas. However, if the partial or entire invisibility of
objects drawn after a transparent object is unintended use one of the following
options:

* Setthe DEPTH_TEST_FUNCTION=4, or disable depth testing entirely using
the DEPTH_WRITE_DISABLE property.

e SettheHIDE property to 1 if ALPHA_CHANNEL becomes 0.

Either of these options would erase the gaps in the symbol s caused by the transparent
plot lines as described in the previous situation.

Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 63

Performance Tuning Object Graphics

The Object Graphics subsystem is designed to provide arich set of graphical
functionality that can be displayed in reasonable time. This section offers suggestions
on how to utilize the object graphics in such away asto take full advantage of
performance enhancement benefits.

See the following topics for details:
* “Polygon Optimization” on page 200
e “Optimizing Light Object Use” on page 225

e “Improving Window Drawing Performance’ on page 262

Object Programming Performance Tuning Object Graphics

64 Chapter 2: Creating an Object Graphics Display

Performance Tuning Object Graphics Object Programming

Chapter 3

Positioning Objects in a

View

The following topics are covered in this chapter:

Positioning VisualizationsinaView 66
Viewport 67
Projection................... 69
EyePosition......................... 71
ViewVolume 73

Object Programming

Tranglating, Rotating and Scaling Objects . 87

Example: Centeringanimage 79
Example: Centeringanimage 79
Example: Transforming a Surface 82
Interactive 3D Transformations 90

65

66 Chapter 3: Positioning Objects in a View

Positioning Visualizations in a View

Unlike IDL Direct Graphics, the IDL Object Graphics system does not automatically
position and size the objects to be rendered. It is up to you, as a programmer, to
properly define how your graphic elements will be positioned when rendered.

There are three aspectsto this transformation from a generic depiction of your datato
arepresentation that can be rendered to an output device (a graphics destination
object, such asawindow or printer) with the perspective, size, and location you want.

Viewport

Thefirst aspect is the view of the graphics objects to be rendered: the size of the
viewing area (the viewport), the type of projection used, the position of the viewer's
eye asit looks at the graphics objects, and the particular view volumein three-
dimensional space that will be rendered to the viewing area. These elements of the
view of your graphics objects are, appropriately, controlled by properties of the
IDLgrView object being rendered. See “Viewport” on page 67.

Location

The second aspect of the transformation is the location and position of your graphics
objects with respect to the viewing area. Graphics objects can be trandated, rotated,
or scaled by setting the appropriate properties of the IDLgrModel object that contains
them. See “ Trandating, Rotating and Scaling Objects’ on page 87.

Note
The viewport and location of an object are independent: It is possible, for example,
to translate a graphic object so that it is no longer within the viewing areathat is
rendered in awindow or on a printer.

Coordinate Systems and Scaling

The third aspect of the transformation is the conversion between data, device, and
normalized coordinates. The IDL Object Graphics system gives you full control over
which data values are used, which are displayed, and which coordinate systems are
used. This means that you must explicitly ensure that the objects to be rendered and
the view object to which they belong use the same coordinate system and are scaled
appropriately. This chapter discusses the properties and methods used to size and
position both your viewing area and the graphics objects you wish to render. See
“Converting Datato Normal Coordinates’ on page 76.

Positioning Visualizations in a View Object Programming

Chapter 3: Positioning Objects in a View 67

Viewport

Several elements of an IDLgrView object control how objects appear when
displayed:

e “Location and Dimension” on page 67 — define the viewport within the
destination object

« “Projection” on page 69 — define either aparallel or perspective projection

« “EyePosition” on page 71 — define the distance of eye from the viewing
plane for perspective projections

¢ “View Volume’ on page 73 — define the view volume that is projected into
the viewport

Location and Dimension

One of the first stepsin determining how graphics objects will appear when rendered
on a graphics destination object isto select the location and dimensions of the
rectangular area—the viewport—on the destination in which the rendering will be
displayed. Set the location and dimensions of the viewport using the LOCATION and
DIMENSIONS keywords to the IDLgrView::Init method when creating the view
object (or after creation using the SetProperty method).

For example, the following statement creates a view object with aviewport that is
300 pixels by 200 pixels, with its lower left corner located 100 pixels up from the
bottom and 100 pixels to the right of the left edge of the destination object:

myView = OBJ NEW('IDLgrView',6 LOCATION=[100,100], $
DIMENSIONS=[300,200])

Object Programming Viewport

68

Viewport

Chapter 3: Positioning Objects in a View

DIMENSION][0]

Viewport

[TINOISNAWIA

LOCATION (x,y)

Origin (0,0)

Figure 3-1: Positioning a View on the Screen

Both the LOCATION and DIMENSIONS properties of the view object honor the
value of the UNITS property, which specifies the type of unitsin which
measurements are made. (Pixels are the default units, so no specification of the
UNITS keyword was necessary in the above example.)

The viewport of an existing view can be changed using the SetProperty method:
myView->SetProperty, LOCATION=[0,0], DIMENSIONS=[200,200]

changes the location of the viewport to have itslower |eft corner at (O, 0) and asize of
200 pixels by 200 pixels.

Note
The eyeis positioned in only one dimension (along the z-axis) and always pointsin
the —z direction.

Object Programming

Chapter 3: Positioning Objects in a View 69

Projection

When three-dimensional graphics are displayed on aflat computer screen or printed
on paper, they must be projected onto the viewing plane. A projection is away of
converting positionsin 3D space into locationsin the 2D viewing plane. IDL
supports two types of projections—parallel and perspective—for each view.

Parallel Projections

A parallel projection projects objectsin 3D space onto the 2D viewing plane along
parallel rays. The figure below shows a parallel projection; note that two objects that

are the same size but at different locations still appear to be the same size when
projected onto the viewplane.

<— +Zaxis Z=0 -Zaxis —>

Figure 3-2: In a Parallel Projection, Rays Do Not Converge at the Eye

View objects use a parallel projection by default. To explicitly set aview object to
use a parallel projection, set the PROJECTION keyword to the IDLgrView::Init

method equal to 1 (or use the SetProperty method to set the projection for an exiting
view abject):

myView->SetProperty, PROJECTION = 1

Object Programming Projection

70 Chapter 3: Positioning Objects in a View

Perspective Projections

A perspective projection projects objectsin 3D space onto the 2D viewing plane
along rays that converge at the eye position. The figure below shows a perspective
projection; note that objects that are farther from the eye appear smaller when
projected onto the viewplane.

Bye

€— +Zaxis Z=0 -Zazis —>

Figure 3-3: In a Perspective Projection, Rays Converge at the Eye

Set the PROJECTION keyword to the IDLgrView::Init method equal to 2 (or use the
SetProperty method to set the projection for an exiting view object) to use a
perspective projection:

myView->SetProperty, PROJECTION = 2

Projection Object Programming

Chapter 3: Positioning Objects in a View 71

Eye Position

The eye position isthe position along the z-axis from which a set of objects contained
in aview object are seen. Use the EY E keyword to the IDLgrView::Init method to
specify the distance from the eye position to the viewing plane (or use the
SetProperty method to ater the eye position of an existing view object). The eye
position must be az value larger than the z value of the near clipping plane (see “Near
and Far Clipping Planes’ on page 73) or zero, whichever is greater. That is, the eye
must always be located at a positive z value, and must be outside the volume bounded
by the near and far clipping planes.

For example, the following moves the eye positionto z=5:
myView->SetProperty, EYE=5

The eyeisaways positioned directly in front of the center of the viewplane rectangle.
That is, if the VIEWPLANE_RECT property isset equal to [-1, -1, 2, 2], the eye will
be located at X=0, Y=0.

Changing the position of the eye has no effect when you are using a parallel
projection. Changing the eye position when you are using a perspective projection
has a somewhat counter-intuitive affect: moving the eye closer to the near clipping
plane causes objects in the volume being rendered to appear smaller rather than
larger. To understand why this should be true, consider the following diagram.

<— +Zaxis Z=0 -Zaxis —>

Figure 3-4: Moving the Eye Closer to the Viewplane
Causes Objects to Appear Smaller

Object Programming Eye Position

72

Eye Position

Chapter 3: Positioning Objects in a View

In a perspective projection, rays from the graphic objects in the view volume
converge at the eye position. When the eye is close to the viewing plane, the
projected rays cross the viewing plane (where rendering actually occurs) ina
relatively small area. When the eye moves farther from the viewing plane, the
projected rays become more nearly parallel and occupy alarger area on the viewing
plane when rendered.

Object Programming

Chapter 3: Positioning Objects in a View 73

View Volume

The view volume defines the three-dimensional volume in space that, once projected,
isto fit within the viewport. There are two parts to the view volume: the viewplane
rectangle and the near and far clipping planes.

Viewplane Rectangle

The viewplane rectangle defines the bounds in the X and Y directions that will be
mapped into the viewport. Objects (or portions of objects) that lie outside the
viewplane rectangle will not be rendered. The viewplane rectangle is always located
at Z=0.

Usethe VIEWPLANE_RECT keyword to the IDLgrView::Init method (or use the
SetProperty method if you have already created the view object) to set the location
and extent of the viewplane rectangle. Set the keyword equal to afour-element
floating-point vector; the first two elements specify the X and Y location of the lower
left corner of the rectangle, and the second two elements specify the width and height.
The default rectangle is located at (-1.0, -1.0) and is two units wide and two units
high ([-1.0, -1.0, 2.0, 2.0]). For example, the following command changes the
viewplane rectangle to be located at (0.0, 0.0) and to be one unit square:

myView->SetProperty, VIEWPLANE RECT = [0.0, 0.0, 1.0, 1.0]

Note
See " Panning in Object Graphics’ on page 104 for an example that modifies the
VIEWPLANE_RECT to control what portion of an image is displayed in aview.

Near and Far Clipping Planes

The near and far clipping planes define the bounds in the Z direction that will be
mapped into the viewport. Objects (or portions of objects) that lie nearer to the eye
than the near clipping plane or farther from the eye than the far clipping plane will not
be rendered. The figure below shows near and far clipping planes.

Use the ZCLIP keyword to the IDLgrView::Init method (or use the SetProperty
method if you have already created the view object) to set the near and far clipping
planes. Set the keyword equal to a two-element floating-point vector that defines the
positions of the two clipping planes: [near, far]. The default clipping planes are at

Object Programming View Volume

74

Fi

Chapter 3: Positioning Objects in a View

Z=10and Z=-1.0([1.0,-1.0]). For example, the following command changes the
near and far clipping planesto be located at Z = 2.0 and Z = —3.0, respectively.

myView->SetProperty, ZCLIP = [2.0, -3.0]

he B T
1 I
1 1
1 I -
| et
1 Lt 1
1 R 1
1 : 1
21 { : Yoo
S 1
I TR
RO ° |
< Wy ST
N 1
Eye . | :
[R > B
g [
v B < [AR
5.0 = 58
Hefi=s o] or=y
|:v—g_] 2 ':"D
=e. ’p__..d l*uE'
=3 E =
= - =
= o =
=
- !
- o = -
€<— +Zagls Z=0 -Zaxis —>

gure 3-5: Near and Far Clipping Planes. Object 2 is not rendered, because it
does not lie between the near and far clipping planes.

Finding an Appropriate View Volume

View Volume

Finding an appropriate view volume for a given object treeis relatively simplein
theory. To find the appropriate viewplane rectangle, you must find the overall X and
Y range of the object (usually amodel or scene object) that contains the items drawn
in the object tree, accounting for any transformations of objects contained in the tree.
Similarly, to find the appropriate near and far clipping planes, you can find the Z
range of the object that contains the items drawn in the object tree. In practice,
however, finding, adding, and transforming the ranges for alarge object tree can be
complicated.

Example Code
Two routines contained in the IDL distribution provide an example of how the view
volume can be computed in many cases. These routines are defined in the files
set view.pro and get bounds.pro, located in the
examples/doc/utilities subdirectory of the IDL distribution. To view either

Object Programming

RSI_PROCODE/examples/doc/utilities/set_view.pro
RSI_PROCODE/examples/doc/utilities/get_bounds.pro

Chapter 3: Positioning Objects in a View 75

fileinan IDL Editor window, enter . COMPILE set view.pro Of .COMPILE
get bounds.pro.

The SET_VIEW procedure accepts as arguments the object references of aview
object and a destination object, computes an appropriate view volume for the view
object, and setsthe VIEWPLANE_RECT property of the view object accordingly.
The SET_VIEW procedure calls the GET_BOUNDS procedure to compute the X, Y,
and Z ranges of the objects contained in the view object.

The SET_VIEW and GET_BOUNDS routines are used in the examplesin this
volume, and are available for your use when creating and displaying object
hierarchies. They are, however, example code, and are not truly generic in the
situations they address. When you encounter a situation for which these routines do
not produce the desired result, we encourage you to copy and alter the code to suit
your own needs.

Inspect the SET_VIEW.PRO and GET BOUNDS . PRO filesfor further details.

Object Programming View Volume

76 Chapter 3: Positioning Objects in a View

Converting Data to Normal Coordinates

Most transformations are handled by the transformation matrix of amodel object. For
convenience, however, visualization objects may also have asimplified
transformation applied to them. Coordinate transformations applied to individual
graphic visualization objects allow you to change only the trand ation (position) and
scale; thisis useful when converting from one coordinate system to another.

For example, you may build your view object using normalized coordinates, so that
values range between zero and one. If you create a graphic object—a surface object,
say—based on the range of data values, you would need to convert your surface
object (built with a data coordinate system) to match the view object (built with a
normal coordinate system). To do this, use the [XYZ]COORD_CONV keywords to
the graphic object in question. The [XY Z]COORD_CONV keywords take as their
argument a two-element vector that specifies the trandlation and scale factor for each
dimension.

Suppose you have a surface object whose datais specified in arange from [0, O,
ZMin] to [xMax, yMax, zMax]. If you wanted to work with this surface asif it werein
anormalized [-1, -1, 1] to[1, 1, 1] space, you could use the following coordinate
conversions:

; Create some data:

myZdata = DIST(60)

; Use SIZE to determine size of each dimension of myZdata:
sz = SIZE (myZdata)

; Create a scale factor for the X dimension:

xs = 2.0/ (sz[1]-1)

; Create a scale factor for the Y dimension:

ys = 2.0/ (sz[2]-1)

; Create a scale factor for the Z dimension:

zs = 2.0/MAX (myZdata)

Now, use the [XY Z]COORD_CONYV keywords to the IDLgrSurface::Init method to
trangdlate the surface by minus one unit in each direction, and to scale the surface by
the scale factors:

'IDLgrSurface', myZdata, $
xs], YCOORD CONV = [-1, ys], $

mySurface = OBJ NEW
[-
[- zs])

XCOORD_CONV =

(
1
ZCOORD_CONV 1

Remember that using the [XYZ]COORD_CONV keywordsissimply a
convenience—the above example could aso have been written as follows:

; Create some data:
myZdata = DIST(60)
; Use SIZE to determine the size of each dimension of myZdata:

Converting Data to Normal Coordinates Object Programming

Chapter 3: Positioning Objects in a View 77

sz = SIZE (myZdata)

; Create a scale factor for the X dimension:
xs = 2.0/ (sz(1)-1)

; Create a scale factor for the Y dimension:
ys = 2.0/ (sz(2)-1)

; Create a scale factor for the Z dimension:
zs = 2.0/ (MAX (myZdata)

; Create a model object:

myModel = OBJ NEW ('IDLgrModel')

; Apply scale factors:

myModel->Scale, xs, ys, zs

; Translate:

myModel ->Translate, -1, -1, -1

; Create surface object:

mySurface = OBJ NEW('IDLgrSurface', myZdata)
; Add surface object to model object:
myModel->Add, mySurface

A Function for Coordinate Conversion

Often, it is convenient to convert minimum and maximum data values so that they fit
in the range from 0.0 to 1.0 (that is, so they are normalized). Rather than adding the
code to make this coordinate conversion to your code in each placeit is required, you
may wish to define a coordinate conversion function.

For example, the following function definition accepts a two-element array
representing minimum and maximum values returned by the XY ZRANGE keyword
to the GetProperty method, and returns two-element array of scaling parameters
suitable for the XY ZCOORD_CONV keywords:

FUNCTION NORM COORD, range
scale = [-range([0]/(range[l]-range([0]), 1/(rangel[l]-range[0])]
RETURN, scale

END

If you define afunction like thisin your code, you can then call it whenever you need
to scale your data ranges into normalized coordinates. The following statements
create a plot object from the variable data, retrieve the values of the X and Y ranges
for the plot, and the use the XY COORD_CONV keywordsto the SetProperty method
and the NORM_COORD function to set the coordinate conversion.

plot = OBJ _NEW ('IDLgrPlot', data)

plot->GetProperty, XRANGE=xr, YRANGE=yr

plot->SetProperty, XCOORD CONV=NORM COORD (xr), $
YCOORD_CONV=NORM_COORD (yr)

Object Programming Converting Data to Normal Coordinates

78 Chapter 3: Positioning Objects in a View

Example Code
The function NORM_COORD is defined in the file norm_coord.pro inthe
examples/doc/utilities subdirectory of the IDL distribution. Enter
.COMPILE norm coord.pro a thelDL command lineto open thefileinand
IDL Editor window.

Converting Data to Normal Coordinates Object Programming

RSI_PROCODE/examples/doc/utilities/norm_coord.pro

Chapter 3: Positioning Objects in a View 79

Example: Centering an Image

The following example steps through the process of creating an image object and
provides two options for centering it within a window.

The first method establishes a viewplane rectangle within aview object. The image
object isadded to amodel object. The model object isthen transglated to the center of
the window object.

The second method does not establish a viewplane rectangle. Instead coordinate
conversions are calculated and applied to the image object to center it within the
model. This method works within the normalized coordinate system of the model.

You can aso position an image in aview using the LOCATION property of the
image object. For additional information and examples, see “Positioning Image
Objectsin aView” on page 99.

This example uses the image from the worldelv. dat filefoundinthe
examples/data directory.

PRO CenteringAnImage

; Determine path to file.
worldelvFile = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'l])

; Initialize image parameters.
worldelvSize = [360, 360]
worldelvImage = BYTARR (worldelvSize[0], worldelvSize[1l])

; Open file, read in image, and close file.
OPENR, unit, worldelvFile, /GET_ LUN

READU, unit, worldelvImage

FREE_LUN, unit

; Initialize window parameters.
windowSize = [400, 460]
windowMargin = (windowSize - worldelvSize) /2

; First Method: Defining the Viewplane and
; Translating the Model.

; Initialize objects required for an Object Graphics

; display.

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = windowSize, $

Object Programming Example: Centering an Image

80

Chapter 3: Positioning Objects in a View

TITLE = 'World Elevation: First Method')
oView = OBJ NEW('IDLgrView', $
VIEWPLANE RECT = [0., 0., windowSize])

oModel = OBJ NEW ('IDLgrModel')

; Initialize palette with STD GAMMA-II color table and

; use it to initialize the image object.
oPalette = OBJ NEW('IDLgrPalette')
oPalette->LOADCT, 5

oImage = OBJ NEW('IDLgrImage', worldelvImage,

; Add image to model, which is added to view.

PALETTE = oPalette)

Model

; 1s translated to center the image within the window.

; Then view is displayed in window.
oModel->Add, oImage
oView->Add, oModel

oModel->Translate, windowMargin[0], windowMargin[1], O.

oWindow->Draw, oView

; Clean-up object references.
OBJ DESTROY, [oView, oPalette]

; Second Method: Using Coordinate Conversions.

; Initialize objects required for an Object Graphics

; display.
oWindow = OBJ NEW('IDLgrWindow', RETAIN = 2,
DIMENSIONS = windowSize, $
TITLE = 'World Elevation: Second Method')
oView = OBJ_NEW('IDLngiew')
oModel = OBJ NEW ('IDLgrModel')

; Initialize palette with STD GAMMA-II color table and

; use it to initialize the image object.

oPalette = OBJ NEW('IDLgrPalette')

oPalette->LOADCT, 5

oImage = OBJ NEW('IDLgrImage', worldelvImage,
PALETTE = oPalette)

; Obtain initial coordinate conversions of image object.

oImage->GetProperty, XCOORD CONV = xConv, $

YCOORD CONV = yConv, XRANGE = xRange, YRANGE

; Output initial coordinate conversions.
PRINT, 'Initial xConv: ', xConv
PRINT, 'Initial yConv: ', yConv

; Applying margins to coordinate conversions.

Example: Centering an Image

yRange

Object Programming

Chapter 3: Positioning Objects in a View 81

xTranslation = (2.*FLOAT (windowMargin[0])/windowSize[0]) - 1.
xScale = (-2.*xTranslation) /worldelvSize[0]

xConv = [xTranslation, xScale]

yTranslation = (2.*FLOAT (windowMargin[1])/windowSize[1]) - 1.
yScale = (-2.*yTranslation)/worldelvSize[1]

yConv = [yTranslation, yScale]

; Output resulting coordinate conversions.
PRINT, 'Resulting xConv: ', xConv
PRINT, 'Resulting yConv: ', yConv

; Apply resulting conversions to the image object.
oImage->SetProperty, XCOORD CONV = xConv, $
YCOORD CONV = yConv

; Add image to model, which is added to view. Display
; the view in the window.

oModel->Add, oImage

oView->Add, oModel

oWindow->Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oView, oPalette]

END

Object Programming Example: Centering an Image

82 Chapter 3: Positioning Objects in a View

Example: Transforming a Surface

The following example steps through the process of creating a surface object and all
of the supporting objects necessary to display it.

Example Code
Theprocedurefiletest surface.pro,locatedinthe examples/doc/objects
subdirectory of the IDL distribution, contains this example's code. You can run the
example procedure by entering test _surface at the IDL command prompt or
view thefilein an IDL Editor window by entering . COMPILE
test surface.pro.

When creating this procedure, we allow the user to specify keywords that will return
object references to the view, model, surface, and window objects. This allows usto
mani pul ate the objects directly from the IDL command line after the procedure has
been run.

Play with the example to learn how object transformations work and interact. Try the
following commands at the IDL prompt to observe what they do:

First, compile test _surface.pro:
.RUN test surface.pro

Now, execute the procedure. The variables you supply viathe SURFACE, MODEL,
VIEW, and WINDOW keyword will contain object references you can manipulate
from the command line;

test surface, VIEW=myview, MODEL=mymodel, $
SURFACE=mysurf, WINDOW=mywin

Thiswill create awindow object and display the surface. Now try the following to
tranglate the object to the right:

mymodel ->Translate, 0.2, 0, O

The model transformation changes as soon as you issue this command. The window
object, however, will not be updated to reflect the new position until you issue a
Draw command:

mywin-s>Draw, myview
Try arotation in they direction:

mymodel - >Rotate, [0,1,0], 45
mywin->Draw, myview

Repeat the commands several times and observe what happens.

Example: Transforming a Surface Object Programming

RSI_PROCODE/examples/doc/objects/test_surface.pro

Chapter 3: Positioning Objects in a View 83

Try some of the following. Remember to issue a Draw command after each changein
order to see what you have done.

mymodel->Scale, 0.5, 0.5, 0.5
mymodel->Scale, 1, 0.5, 1

mymodel->Scale, 1, 2, 1

mymodel ->Rotate, [0,0,1], 45
mysurf->SetProperty, COLOR = [0, 255, 0]
myview->SetProperty, PROJECTION = 2, EYE = 2
myview->SetProperty, EYE = 1.1
myview->SetProperty, EYE = 6

Object Programming Example: Transforming a Surface

84 Chapter 3: Positioning Objects in a View

Zooming within an Object Display

Enlarging a specific section of an image is known as zooming. How zooming is
performed within IDL depends on the graphics system. In Direct Graphics, you can
use the ZOOM procedure to zoom in on a specific section of an image. If you are
working with RGB images, you can use the ZOOM _24 procedure.

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. Using this method, the entireimage is till contained within the image object,
while the view is changed to only show specific areas of the image object. See the
following section for more information.

Zooming in on an Object Graphics Image Display

The following example imports a grayscale image from the convec . dat binary file.
This grayscal e image shows the convection of the Earth’s mantle. The image contains
byte data values and is 248 pixels by 248 pixels. The VIEWPLANE_RECT keyword
to the view object is updated to zoom in on the lower left corner of the image.

Example Code
See zooming object.pro inthe examples/doc/objects subdirectory of the
IDL installation directory for code that duplicates this example.

1. Determine the path to the convec.dat file:

file = FILEPATH('convec.dat',K $
SUBDIRECTORY = ['examples',6 'data'])

2. Initialize the image size parameter:

imageSize = [248, 248]
3. Import the image from thefile:

image = READ_BINARY(file, DATA DIMS = imageSize)
4. Initialize the display objects:

oWindow = OBJ NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $

TITLE = 'A Grayscale Image')
oView = OBJ NEW('IDLgrView',6 $
VIEWPLANE RECT = [0., 0., imageSize])

oModel = OBJ NEW ('IDLgrModel')
5. Initialize the image object:

oImage = OBJ NEW('IDLgrImage',K image, /GREYSCALE)

Zooming within an Object Display Object Programming

RSI_PROCODE/examples/doc/objects/zooming_object.pro

Chapter 3: Positioning Objects in a View 85

6. Add the image object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale image display.

Figure 3-6: A Grayscale Image in Object Graphics

7. Initialize another window:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'Zoomed Image')

8. Change the view to enlarge the lower left quarter of the image:

oView -> SetProperty, $
VIEWPLANE RECT = [0., 0., imageSize/2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) is reduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

9. Display the updated view in the new window:
oWindow -> Draw, oView

The following figure shows the resulting zoomed image.

Object Programming Zooming within an Object Display

86 Chapter 3: Positioning Objects in a View

Figure 3-7: Enlarged Image Area in Object Graphics

10. Clean up the object references. When working with objects aways remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the ather objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object.

OBJ_DESTROY, oView

Zooming within an Object Display Object Programming

Chapter 3: Positioning Objects in a View 87

Translating, Rotating and Scaling Objects

An|DLgrModel object isa container for any visualization objects that are to be
rotated, translated, or scaled. Each IDLgrModel object has a transformation property
(set viathe TRANSFORM keyword to the IDLgrModel::Init or SetProperty method),
which isa4 x 4 floating-point matrix. For ageneral discussion of transformation
matrices and three-dimensional graphics, see “Coordinates of 3-D Graphics’ in
Chapter 8 of the Using IDL manual.

Note
A model object’s transformation matrix is akin to the transformation matrix used by
IDL Direct Graphics and stored in the !PT system variable field. Transformation
matrices associated with a model abject do not use the value of 'P.T, however, and
are not affected by the T3D procedure used in Direct Graphics.

By default, amodel object’s transformation matrix is set equal to a4-by-4 identity
matrix:

1.0 0.0 0.0 0.0
0.0100.000
0.00.01.000
0.00.00.010

Figure 3-8:
You can change the transformation matrix of amodel object directly, using the
TRANSFORM keyword to the IDLgrModel::Init or SetProperty method:

myModel = OBJ NEW ('IDLgrModel', TRANSFORM = tmatrix)

where tmatrix is a4-by-4 transformation matrix. Alternatively, you can use the
Trandlate, Rotate, and Scale methods to the IDLgrModel object to alter the model’s
transformation matrix.

Translation

The IDLgrModel:: Trans ate method takes three arguments specifying the amount to
tranglate the model object and its contentsin the X, Y, and Z directions. For example,
to trandlate amodel and its contents by 1 unit in the X-direction, you could use the
following statements:

Object Programming Translating, Rotating and Scaling Objects

88

Chapter 3: Positioning Objects in a View

dx =1 &dy =0 &dz =0
myModel ->Translate, dx, dy, dz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define translation values:
dx =1 &dy =0 &dz =0
; Get existing transformation matrix:
myModel - >GetProperty, TRANSFORM = oldT
; Provide a transformation matrix that performs the translation:
transT = [[1.0, 0.0, 0.0, dx], $
[0.0, 1.0, 0.0, dyl, $
[0.0, 0.0, 1.0, dzl, S
[0.0, 0.0, 0.0, 1.0]]
; Multiply the existing transformation matrix by
; the matrix that performs the translation:
newT = oldT # transT
; Apply the new transformation matrix to the model object:
myModel - >SetProperty, TRANSFORM = newT

Rotation

The IDLgrModel::Rotate method takes two arguments specifying the axis about
which to rotate and the number of degreesto rotate the model object and its contents.
For example, to rotate amodel and its contents by 90 degrees around the y-axis, you
could use the following statements:

axis = [0,1,0] & angle = 90
myModel->Rotate, axis, angle

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define rotation values:
axis = [0,1,0] & angle = 90
; Get existing transformation matrix:
myModel ->GetProperty, TRANSFORM = oldT
; Define sine and cosine of angle:
cosa = COS(!DTOR*angle)
sina = SIN(!DTOR*angle)
; Provide a transformation matrix that performs the rotation:
rotT = [[cosa, 0.0, sina, 0.0], $
[0.0, 1.0, 0.0, 0.0], $
[-sina, 0.0, cosa, 0.0], $
[0.0, 0.0, 0.0, 1.0]]
; Multiply the existing transformation matrix
; by the matrix that performs the rotation.
newT = oldT # rotT

Translating, Rotating and Scaling Objects Object Programming

Chapter 3: Positioning Objects in a View 89

; Apply the new transformation matrix to the model object:
myModel - >SetProperty, TRANSFORM = newT

Scaling

The IDLgrModel:: Scale method takes three arguments specifying the amount to scale
the model object and its contentsin the x, y, and z directions. For example, to scalea
model and its contents by 2 unitsin the y direction, you could use the following
statements:

sXx =1 & sy = 2 & sz =1
myModel->Scale, sx, sy, Sz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define scaling values:
sXx =1 & sy = 2 & sz =1
; Get existing transformation matrix:
myModel ->GetProperty, TRANSFORM = oldT
; Provide a transformation matrix that performs the scaling:
scaleT = [[sx, 0.0, 0.0, 0.0], S
[0.0, sy, 0.0, 0.0], $
[0.0, 0.0, sz, 0.0], S
[0.0, 0.0, 0.0, 1.0]]
; Multiply the existing transformation matrix
; by the matrix that performs the scaling.
newT = oldT # scaleT
; Apply the new transformation matrix to the model object:
myModel - >SetProperty, TRANSFORM = newT

Combining Transformations

Note that model transformations are cumulative. That is, amodel object contained in
another model is subject to both its own transformation and to that of its container.
All transformation matrices that apply to agiven model object are multiplied together
when the object is rendered. For example, consider amodel that contains another
model:

modell = OBJ NEW ('IDLgrModel', TRANSFORM transl)

model2 = OBJ NEW('IDLgrModel', TRANSFORM = trans2)
model2->Add, modell

The model 1 object is now subject to both its own transformation matrix (trans1)
and to that of its container (transz2). The result isthat when model1 isrendered, it
will be rendered with atransformation matrix = trans1 # trans?2.

Object Programming Translating, Rotating and Scaling Objects

90 Chapter 3: Positioning Objects in a View

Interactive 3D Transformations

To create truly interactive object graphics, you must alow the user to transform the
position or orientation of objects using the mouse. One way to do thisisto provide a
virtual trackball that lets the user manipulate objects interactively on the screen.

Note
TheiTools provide extensive interactivity for all types of object datadisplayedin an
iTool. Thisinteractivity isautomatically available when suitable datais displayed in
aniTool. See theiTool User’s Guide for complete details.

The procedurefile trackball define.pro, foundinthe 1ib directory of the
IDL distribution, contains the object definition procedure for avirtual trackball
object. Thistrackball object is used in several of the examples presented in this
volume, and is also used by other example and demonstration code included with
IDL. Thetrackball object has three methods: Init, Update, and Reset. These methods
allow you to retrieve mouse movement events and alter your model transformations
accordingly.

The trackball object behaves asif there were an invisible trackball, centered at a
position you specify, overlaid on a draw widget. The widget application’s event
handler uses the widget event information to update both the trackball’s state and the
model transformation of the objects displayed in the draw widget’s window object.
When the user clicks and dragsin the draw widget, objectsin the draw widget rotate
asif the user were manipulating them with a physical trackball.

See“TrackBall” in the IDL Reference Guide manual for details on creating and using
trackball objects. Several of the other example files located in the
examples/doc/objects subdirectory of the IDL distribution include trackball
objects, and may be studied for further insight into the mechanics of transforming
object hierarchies based on user inpuit.

Note
The XOBJVIEW procedure is a utility used to quickly and easily view and
manipulate IDL Object Graphics on screen. Pre-built functionality allows you to
select, rotate, pan and zoom objects contained within the model(s) passed to the
procedure. See “XOBJVIEW” inthe IDL Reference Guide manual for details.

Interactive 3D Transformations Object Programming

Chapter 4

Working with Image

Objects

The following topics are covered in this chapter:

Overview of ImageObjects 92
Creating ImageObjects 94
Positioning Image ObjectsinaView 99
Panning in Object Graphics............ 104

Defining Transparency in Image Objects . 108

Object Programming

Warping Image Objects 114
Mapping an Image onto a Sphere.. 125
ImageTilingo.... 129
Adding Tiling to Your Application 133
Example: JPEG2000 Filesfor Tiling 143

91

92 Chapter 4: Working with Image Objects

Overview of Image Objects

An object of the IDLgrImage class (see “IDLgrImage”’ in the IDL Reference Guide
manual) represents a two-dimensional array of pixel values, rendered on the plane
z= 0. The image object stores image data using the byte data type, and can take any
of the following forms:

* Anarray with dimensions [n, m]. Each pixel isinterpreted as an index into a
palette, or as an explicit gray scale value (if the GREY SCALE keyword is set).

e Anarray withdimensions[2, n, m] or [n, 2, m] or [n, m, 2]. Each pixel consists
of agray scale value and an associated alpha channel value (alphais used for
transparency effects).

e Anarray withdimensions[3, n, m] or [n, 3, m] or [n, m, 3]. Each pixel consists
of an RGB triple.

e Anarray with dimensions[4, n, m] or [n, 4, m] or [n, m, 4]. Each pixel consists
of an RGB triple and an associated al pha channel value.

Theindex or RGB triplefor each pixel isinterpreted according to the color model set
for the destination object in which it isto be drawn. The Alpha channel, if present,
determines the transparency of the pixel.

Note
The position of the color bandsin an RGB image array is know asinterleaving. See
“RGB Image Interleaving” in Chapter 8 of the Using IDL manual for details. The
INTERLEAVE property of the image object describes this arrangement.

Defining Image Palettes

If your image array contains indexed color data (that is, if it isan m-by-n array), you
can specify a palette object to control the conversion between the image data and the
palette used by an RGB-mode destination object. (See “How IDL Interprets Color
Values’ on page 50 for adiscussion of the interaction between indexed color objects
and RGB color destinations.) Set the PALETTE property of the image object equal to
an instance of an IDLgrPalette object:

myimage->SetProperty, PALETTE = mypalette

To specify that an image be drawn in greyscale mode rather than through an existing
color palette, set the GREY SCALE property equal to 1 (one). The GREY SCALE
property isonly used if the image datais a single channel (an m-by-n array).

Overview of Image Objects Object Programming

Chapter 4: Working with Image Objects 93

Note
A 2-by-mrby-n array is considered to be a greyscale image with an Alpha channel.
An image containing indexed color data cannot have an alpha channel.

For examples, see “Displaying Indexed Images with Object Graphics’ in the
Examples section of “IDLgrPalette” in the IDL Reference Guide manual.

Configuring Common Object Properties

IDLgrImage properties allow you to configure how image objects are displayed. You
can ater the trangparency (using the ALPHA_CHANNEL keyword), or the color
(using the PALETTE keyword for indexed images, or the INTERLEAV E keyword for
RGB images). You may want to fit one image to another using warping or create a
texture map by mapping an image onto a geometric shape. See the following sections
for more information.

e “Creating Image Objects’ on page 94 provides examples and resources for
creating image objects containing avariety of data

e “Positioning Image Objectsin aView” on page 99

« “Defining Transparency in Image Objects’ on page 108
e “Warping Image Objects’ on page 114

* “Mapping an Image onto a Sphere” on page 125

If you want to display very large images, you can do so with imagetiling. See“Image
Tiling” on page 129 for information.

Object Programming Overview of Image Objects

94 Chapter 4: Working with Image Objects

Creating Image Objects

To create an image object, supply an array of pixel values to the IDLgrImage::Init
method. If the image has more than one channel, be sure to set the INTERLEAVE
property of theimage object to the appropriate value. (See* RGB Image Interleaving”
in Chapter 8 of the Using IDL manual for details and an example showing how to
determine the interleaving within an image array.) See“IDLgrImage” in the IDL
Reference Guide manual for details on object properties and methods.

Note
IDLgrImage does not treat NaN data as missing. If the image dataincludes NaNs, it
is recommended that the BY TSCL function be used to appropriately handle those
values. For example:

oImage->SetProperty, DATA = BYTSCL (myData, /NaN, MIN=0,
MAX=255)

In Object Graphics, binary, grayscale, indexed, and RGB images are contained in
image objects. For display, the image object is contained within an object hierarchy,
which includes amodel object and a view object. The view object isthen drawn to a
window object. Some types of images must be scaled with the BY TSCL function

prior to display.
For more information, refer to the following examples:
e “Displaying Binary Images with Object Graphics’ below
« “Displaying Grayscale Images with Object Graphics’ on page 96

» “Displaying Indexed Images with Object Graphics’ in the Examples section of
“IDLgrPalette” in the IDL Reference Guide manual.

e “RGB Image Interleaving” in Chapter 8 of the Using IDL manual
Displaying Binary Images with Object Graphics

Binary images are composed of pixels having one of two values, usualy zero or one.
With most color tables, pixels having values of zero and one are displayed with
almost the same color, such as with the default grayscale color table. Thus, a binary
image is usually scaled to display the zeros as black and the ones as white.

The following example imports a binary image of the world from the
continent mask.dat binary file. Inthisimage, the oceans are zeros (black) and
the continents are ones (white). This type of image can be used to mask out (omit)

Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 95

data over the oceans. The image contains byte data values and is 360 pixels by 360
pixels.

Example Code
Seedisplaybinaryimage object.pro inthe examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determinethe path tothe continent mask.dat file:

file = FILEPATH('continent mask.dat',6 $
SUBDIRECTORY = ['examples', 'data'l)

2. Initidlize theimage size parameter:

imageSize = [360, 360]
3. Use READ_BINARY to import the image from thefile:

image = READ BINARY (file, DATA DIMS = imageSize)
4. Initialize the display objects:

oWindow = OBJ_NEW('IDLngindow', RETAIN = 2, $
DIMENSIONS = imageSize, $

TITLE = 'A Binary Image, Not Scaled')
oView = OBJ NEW('IDLgrView',6 $
VIEWPLANE RECT = [0., 0., imageSize])

oModel = OBJ NEW ('IDLgrModel')
5. [Initialize the image object:
oImage = OBJ NEW('IDLgrImage', image)

6. Addtheimage object to the model, which is added to the view, then display the
view in the window:

oModel -> Add, olImage
oView -> Add, oModel
oWindow -> Draw, oView

The resulting window should be all black (blank). The binary image contains
zeros and ones, which are almost the same color (black). A binary image
should be scaled prior to displaying in order to show the ones as white.

7. Initialize another window:

oWindow = OBJ_ NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
TITLE = 'A Binary Image, Scaled')

8. Update the image object with a scaled version of the image:

oImage -> SetProperty, DATA = BYTSCL(image)

Object Programming Creating Image Objects

RSI_PROCODE/examples/doc/objects/displaybinaryimage_object.pro

96 Chapter 4: Working with Image Objects

9. Display the view in the window:

oWindow -> Draw, oView

The following figure shows the results of scaling this display.

Figure 4-1: Binary Image in Object Graphics

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_ DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTRQOY on the view object.

OBJ_DESTROY, oView

Displaying Grayscale Images with Object Graphics

Since grayscale images are composed of pixels of varying intensities, they are best
displayed with color tables that progress linearly from black to white. IDL provides

several such pre-defined color tables, but the default grayscale color tableis generaly
suitable.

The following example imports a grayscale image from the convec . dat binary file.
This grayscal e image shows the convection of the Earth’s mantle. The image contains
byte data values and is 248 pixels by 248 pixels. Since the datatype is byte, this
image does not need to be scaled before display. If the datawas of any type other than
byte and the data values were not within the range of 0 up to 255, the display would

Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 97

need to scale the image in order to show itsintensities. Complete the following steps
for a detailed description of the process.

Example Code

Seedisplaygrayscaleimage object.pro intheexamples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determinethe path to the convec. dat file:

file = FILEPATH('convec.dat',K $
SUBDIRECTORY = ['examples',6 'data'l)
Initialize the image size parameter:

imageSize = [248, 248]

Using READ_BINARY/, import the image from thefile:

image = READ BINARY (file, DATA DIMS

Initialize the display objects:

oWindow = OBJ_ NEW('IDLgrWindow', RETAIN

DIMENSIONS = imageSize, $
TITLE =

'A Grayscale Image')
oView = OBJ NEW('IDLgrView',6 $
VIEWPLANE RECT
oModel =

= imageSize)
=2/$

= [0., 0., imageSize]l)
OBJ_NEW('IDLngodel')

Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

Add the image object to the model, which is added to the view, then display the
view in the window:

oModel -> Add, olImage
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale image display.

Object Programming

Creating Image Objects

RSI_PROCODE/examples/doc/objects/displaygrayscaleimage_object.pro

98 Chapter 4: Working with Image Objects

Figure 4-2: Grayscale Image in Object Graphics

7. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the ather objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object.

OBJ_DESTROY, oView

Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 99

Positioning Image Objects in a View

By default, IDLgrImage objects are drawn at Z=0 and are positioned and sized with

respect to two points:
pl = [LOCATION(O0), LOCATION(1l), O]
p2 = [LOCATION(0) + DIMENSION(0), LOCATION(1) + DIMENSION (1), O].

where LOCATION and DIMENSION are properties of the image object. These two
points are transformed in three dimensions, and then projected onto the screen to
form the opposite corners of a 2-D rectangle resulting in screen space points
designated asp1' andp2':

[[p1'[0], p1'([1]], [[p2'[0], p1'I([1]],
[[p2'[0], p2'[1]1], [[p1'[0], p2'[1]] 1

The image datais drawn on the display as a 2-D image within this 2-D rectangle
whose sides are parallel to the screen sides. The image datais scaled in two
dimensions (not rotated) to fit into this projected rectangle and then drawn with Z
buffering disabled.

To draw an image with the current full 3D transformation (the same way other
objects such as polygons are transformed), set the IDLgrImage
TRANSFORM_MODE property to 1. See the IDLgrimage TRANSFORM_MODE
property in the IDL Reference Guide for details.

Objects are drawn to adestination device in the order that they are added (viathe Add
method) to the model, view, or scene that contains them. By default, image objects do
not take into account the depth locations of other objects that may be included in the
view object unless you enable depth testing (see“DEPTH_TEST _DISABLE” in the
IDL Reference Guide manual for details).

This means that objects that are drawn to the destination object (window or printer)
after the image is drawn will appear to bein front of the image, even if they are
located behind the image object. And this also means that objects drawn after the
image is drawn will appear to bein front of the image even if they are located behind
theimage. Since the image is drawn by default with depth testing disabled, you can
think of the image primitive as ‘painting’ the image onto the screen without regard
for other objects that might already have been drawn there.

This behavior can be changed by enabling depth testing to make the image primitive
behave like ather primitives such as polygons when they are drawn with depth testing
enabled.

Object Programming Positioning Image Objects in a View

100 Chapter 4: Working with Image Objects

The following example uses the LOCATION keyword to control image position. For
information on other ways to define the position of an image object in aview, see
“Example: Centering an Image” on page 79.

Displaying Multiple Images in Object Graphics

The following example imports an RGB image from the rose . jpg imagefile. This
RGB image is a close-up photograph of ared rose and is pixel interleaved. This
example extracts the three color channels of thisimage, and displays them as
grayscale imagesin various locations within the same window. Complete the
following steps for a detailed description of the process.

Example Code
Seedisplaymultiples object.pro intheexamples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determinethe path to the rose. jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples',6 'data'])

2. Use QUERY_IMAGE to query thefile to determine image parameters:
queryStatus = QUERY IMAGE(file, imageInfo)

3. Set the image size parameter from the query information:
imageSize = imageInfo.dimensions

4. Use READ_IMAGE to import the image from thefile:
image = READ IMAGE (file)

5. Extract the channels (as images) from the pixel interleaved RGB image:

redChannel = REFORM (image [0, *, *])
greenChannel = REFORM(image[1l, *, *])
blueChannel = REFORM(image[2, *, *])

The LOCATION keyword to the Init method of theimage object can be used to
position an image within awindow. The LOCATION keyword uses data
coordinates, which are the same as device coordinates for images. Before
initializing the image objects, you should initialize the display objects. The
following steps display multiple images horizontally, vertically, and
diagonally.

6. Initialize the display objects:

oWindow = OBJ NEW ('IDLgrWindow', RETAIN = 2, $

Positioning Image Objects in a View Object Programming

RSI_PROCODE/examples/doc/objects/displaymultiples_object.pro

Chapter 4: Working with Image Objects 101

DIMENSIONS = imageSize*[3, 1], $

TITLE = 'The Channels of an RGB Image')
oView = OBJ NEW('IDLgrView',6 $
VIEWPLANE RECT = [0., 0., imageSize]l*[0, O, 3, 11])

oModel = OBJ NEW ('IDLgrModel')

7. Now initialize the image objects and arrange them with the LOCATION
keyword, see IDLgrlmage for more information:

oRedChannel = OBJ NEW('IDLgrImage', redChannel)
oGreenChannel = OBJ NEW ('IDLgrImage', greenChannel, $

LOCATION = [imageSize[0], 0])
oBlueChannel = OBJ NEW('IDLgrImage', blueChannel, $
LOCATION = [2*imageSize[0], 01)

8. Add the image objects to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oRedChannel
oModel -> Add, oGreenChannel
oModel -> Add, oBlueChannel
oView -> Add, oModel

oWindow -> Draw, oView

The following figure shows the resulting grayscale images.

Figure 4-3: Horizontal Display of RGB Channels in Object Graphics

These images can be displayed vertically in another window by first
initializing another window and then updating the view and images with
different location information.

9. Initialize another window object:

oWindow = OBJ NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[1, 3], $
TITLE = 'The Channels of an RGB Image')

Object Programming Positioning Image Objects in a View

102 Chapter 4: Working with Image Objects

10. Change the view from horizontal to vertical:

oView -> SetProperty, $
VIEWPLANE RECT = [0., 0., imageSize]*[0, 0, 1, 3]

11. Change the locations of the channels:

oGreenChannel -> SetProperty, LOCATION = [0, imageSize[1l]]
oBlueChannel -> SetProperty, LOCATION = [0, 2*imageSize[1]]

12. Display the updated view within the new window:
oWindow -> Draw, oView

The following figure shows the resulting grayscal e images.

Figure 4-4: Vertical Display of RGB Channels in Object Graphics

These images can also be displayed diagonally in another window by first
initializing the other window and then updating the view and images with
different location information. The LOCATION can also be used to create a
display overlapping images. When overlapping images in Object Graphics,
you must remember the last image added to the model will be in front of the
previous images.

Positioning Image Objects in a View Object Programming

Chapter 4: Working with Image Objects 103

13. Initialize another window object:

oWindow = OBJ_ NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[2, 2], $
TITLE = 'The Channels of an RGB Image')

14. Change the view to prepare for adiagonal display:

oView -> SetProperty, $
VIEWPLANE RECT = [0., 0., imageSize]*[0, 0, 2, 2]

15. Change the locations of the channels:

oGreenChannel -> SetProperty, $

LOCATION = [imageSize[0]/2, imageSize[1l]/2]
oBlueChannel -> SetProperty, $
LOCATION = [imageSize[0], imageSize[1l]]

16. Display the updated view within the new window:
oWindow -> Draw, oView

The following figure shows the resulting grayscal e images.

Figure 4-5: Diagonal Display of RGB Channels in Object Graphics

17. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTRQOY on the view object.

OBJ_DESTROY, oView

Object Programming Positioning Image Objects in a View

104 Chapter 4: Working with Image Objects

Panning in Object Graphics

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. The entire image is still contained within the image object, but the view is
changed to pan over specific areas of the image object.

The following example imports a grayscale image from the nyny . dat binary file.
This grayscale imageis an aerial view of New York City. The image contains byte
data values and is 768 pixels by 512 pixels. The VIEWPLANE_RECT keyword to
the view object is updated to zoom in on the lower left corner of the image. Then the
VIEWPLANE_RECT keyword is used to pan over the bottom edge of the image.
Complete the following steps for a detailed description of the process.

Example Code
Seepanning object.pro intheexamples/doc/objects subdirectory of the
IDL installation directory for code that duplicates this example.

1. Determinethe path to the nyny . dat file:

file = FILEPATH('nyny.dat',6 $
SUBDIRECTORY = ['examples',6 'data'])

2. Initidlize the image size parameter:

imageSize = [768, 512]
3. Import the image from thefile:

image = READ_BINARY(file, DATA DIMS = imageSize)
4. Resizethislargeimageto entirely display it on the screen:

imageSize = [256, 256]
image = CONGRID (image, imageSize[0], imageSize[1l])

5. [Initialize the display objects:

oWindow = OBJ_NEW('IDLngindow', RETAIN = 2, $
DIMENSIONS = imageSize, $

TITLE = 'A Grayscale Image')
oView = OBJ NEW('IDLgrView',6 $
VIEWPLANE RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLngodel')
6. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

Panning in Object Graphics Object Programming

RSI_PROCODE/examples/doc/objects/panning_object.pro

Chapter 4: Working with Image Objects 105

7. Addtheimage object to the model, which is added to the view, then display the
view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale image display.

Figure 4-6: A Grayscale Image Of New York in Object Graphics

8. Initialize another window:

oWindow = OBJ NEW('IDLgrWindow',6 RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'Panning Enlarged Image')

9. Change the view to zoom into the lower left quarter of the image:

viewplane = [0., 0., imageSize/2]
oView -> SetProperty, $
VIEWPLANE RECT = [0., 0., imageSize/2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) is reduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

10. Display the updated view in the new window:
oWindow -> Draw, oView

The following figure shows the resulting enlarged image area.

Object Programming Panning in Object Graphics

106 Chapter 4: Working with Image Objects

Figure 4-7: Enlarged Image Area of New York in Object Graphics

11. Pan the view from the left side of the image to the right side of the image:

FOR i = 0, ((imageSize[0]/2) - 1) DO BEGIN & S
viewplane = viewplane + [1., 0., 0., 0.] & $
oView -> SetProperty, VIEWPLANE RECT = viewplane & $
oWindow -> Draw, oView & $
ENDFOR
Note
The & after BEGIN and the s allow you to use the FOR/DO loop at the IDL
command line. These & and s symbols are not required when the FOR/DO
loop in placed in an IDL program as shown in Panning Object.pro in
the examples/doc/objects subdirectory of the IDL installation directory.

The following figure shows the resulting enlarged image area panned to the
right side.

Panning in Object Graphics Object Programming

Chapter 4: Working with Image Objects 107

Figure 4-8: Enlarged New York Image Area Panned to the Right in Object
Graphics

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object.

OBJ_DESTROY, oView

Object Programming Panning in Object Graphics

108 Chapter 4: Working with Image Objects

Defining Transparency in Image Objects

In Object Graphics, atransparent image can be created by adding an alpha channel to
theimage array or by setting the ALPHA_CHANNEL property. The alpha channel is
used to define the level of transparency in an image object. If you have an image
containing both alpha channel data and a value for the ALPHA_CHANNEL
property, the alpha values are combined by multiplying each image pixel alphavalue
by the ALPHA_CHANNEL property value.

If your image data includes an alpha channel, or if you set the ALPHA_CHANNEL
property, use the BLEND FUNCTION property of the image object to control how
the alpha channel values will be interpreted. (See BLEND_FUNCTION property of
IDLgrImage for details on how the blending is calculated.) This is known as alpha
blending. For example, setting BLEND_FUNCTION = [3, 4] creates an image in
which you can see through the foreground image to the background to the extent
defined by the alpha channel values of the foreground image.

Transparency and Image Warping

Creating atransparent image is useful in the warping process when you want to
overlay atransparency of the warped image onto the reference image (theimagein
which Xo, Yo control points were selected). See “Warping Image Objects’ on

page 114 for an example that uses transparent image objects.

For background information on warping images and selecting control points, see
“Overview of Warping Images’ in Chapter 5 of the Image Processing in IDL manual.

Image Transparency Examples

See the following topics for examples of creating transparent image objects.

« “Example: Applying a Transparent Image Overlay” on page 109 — layerstwo
medical scan images of the brain. The opacity of the top imageis controlled
using the IDLgrimage ALPHA_CHANNEL property.

e “Example: Cumulative AlphaBlending” on page 111 — adds an a phachannel
to an RGB image, masks out values, and then usesthe ALPHA_CHANNEL
property to control the image transparency.

Defining Transparency in Image Objects Object Programming

Chapter 4: Working with Image Objects 109

Example: Applying a Transparent Image Overlay

The following example reads in two medical images, a computed tomography (CT)
file that contains structural information, and a PET (positron emission tomography)
file that contains metabolic data. A color table is applied to the PET file, and the
transparency is set using the ALPHA_CHANNEL property. The PET image object is
then overlaid on top of the base CT image. Thisis done by adding the transparent
PET imageto the model after (and therefore displayed in front of) the base CT image.

Example Code
See alphaimage obj doc.pro inthe examples/doc/objects subdirectory
of the IDL installation directory for code that duplicates this example.

To replicate this example, create anew . pro file and complete the following steps:
1. Load CT and PET images and get the image dimensions.

file pt = FILEPATH('head pt.dcm', $

SUBDIRECTORY=['examples', 'data'l)
file ct = FILEPATH('head ct.dcm', $
SUBDIRECTORY=['examples', 'data'l)

img_pt = READ _DICOM(file_pt)
img_ct = READ_DICOM(file_ct)
dims_ct = SIZE(img ct, /DIMENSIONS)
dims_pt = SIZE(img_pt, /DIMENSIONS)

2. Check for dimension equality and resize if different.

IF dims_pt[0] NE dims_ct [0] THEN BEGIN
x = dims_ct[0] /dims_pt [0]
img pt = REBIN(img pt, dims pt[0]*x, dims pt[1]*x)
dims_pt = x*dims_pt
If dims pt[0] NE dims_ct[0] THEN BEGIN
status = DIALOG_MESSAGE ('Incompatible images', /ERROR)
ENDIF
ENDIF

3. Changethe datato byte type before creating the base CT image.

img ct = BYTSCL(img ct)
oImageCT = OBJ NEW('IDLgrImage', img ct)

4. Create display objects and display the CT image.

oWindow = OBJ NEW('IDLgrWindow', RETAIN=2, $
DIMENSIONS=[dims ct[0], dims ct[1]], TITLE='CT Image')

oView = OBJ NEW ('IDLgrView', VIEWPLANE RECT=[0., 0., $
dims ct[0], dims ct[1]])

oModel = OBJ NEW ('IDLgrModel')

Object Programming Defining Transparency in Image Objects

RSI_PROCODE/examples/doc/objects/alphaimage_obj_doc.pro

110

Chapter 4: Working with Image Objects

oModel->Add, oImageCT
oView->Add, oModel
oWindow->Draw, oView

Create a palette object and load the red-temperature table.

oPalette = OBJ NEW('IDLgrPalette')
oPalette->Loadct, 3

Change the data type to byte and create the PET image object. Set the
BLEND_FUNCTION and ALPHA_CHANNEL properties to support image
transparency.
img pt = BYTSCL(img pt)
oImagePT = OBJ NEW('IDLgrImage',K img pt, $
PALETTE=oPalette, BLEND FUNCTION=[3,4], $
ALPHA_CHANNEL=0.50)

Create a second window, add the semi-transparent image to the model
containing the origina image and display the overlay.
oWindow2 = OBJ NEW('IDLgrWindow',6 RETAIN=2, $
DIMENSIONS=[dims_pt [0], dims_pt[1]], $
LOCATION=[dims_ct[0]+10, O], TITLE='CT/PET Transparency')

oModel -> Add, oImagePT
oWindow2 -> Draw, oView

Clean-up object references.

OBJ_DESTROY, [oView, oImageCT, oImagePT]

The results of this example are shown in the following figure.

Figure 4-9: CT Image (Left) and CT with Semi-transparent PET Overlay (Right)

Defining Transparency in Image Objects Object Programming

Chapter 4: Working with Image Objects 111

Example: Cumulative Alpha Blending

The following exampl e shows the additive effects of displaying an image object with
alpha channel data and an image with an ALPHA_CHANNEL property setting. In
this example, the alpha channel is used to mask out values, and the
ALPHA_CHANNEL property is used to control the object transparency. However, it
is easy to modify the code and investigate the relationship between setting image
transparency using the alpha channel dataand ALPHA_CHANNEL property. For
example, defining 50% transparency for each resultsin 25% opacity overall.

Thetwo initial images are displayed in the following figure. The black portion of the
land classification image (left) will be removed and this image will then be overlaid
on top of the map image.

Figure 4-10: Original Land and Map Images

Example Code
See alphacomposite image doc.prointheexamples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.

To replicate this example, create anew . pro file complete the following steps:
1. Open the palitical map, the base image.

mapFile = FILEPATH('afrpolitsm.png', $
SUBDIRECTORY = ['examples', 'data'l])
mapImg = READ PNG(mapFile, mapR, mapG, mapB)

2. Assign the color table of the map image to a palette object.

mapPalette = OBJ NEW('IDLgrPalette', mapR, mapG, mapB)

Object Programming Defining Transparency in Image Objects

RSI_PROCODE/examples/doc/objects/alphacomposite_image_doc.pro

112 Chapter 4: Working with Image Objects

3. Create an image object containing the map data.

oMapImg = OBJ NEW('IDLgrImage',6 mapImg, $
DIMENSIONS=[600, 600], PALETTE=mapPalette)

4. Open the land cover characteristics image.

landFile = FILEPATH('africavlc.png', $
SUBDIRECTORY = ['examples', 'data'])

landImg = READ PNG(landFile, landR, landG, landB)

landImgDims = SIZE(landImg, /DIMENSIONS)

5. To mask out the black values of the land classification image, create a4
channel array for the red, green, blue, and apha data.

alphaland = BYTARR(4, landImgDims[0], landImgDims([1])

6. Get thered, green and blue values used by the image and assign them to the
first three channels of the alphaimage array.
alphaland[0, *, *] = landR[landImg]

alphalLand[1, *, *] landG[landImg]
alphalLand[2, *, *] landB [landImg]

7. Mask out the black pixels with avalue of 0. Multiply the mask value by 255
for complete opacity. You could set thisto a value between 0 (completely
transparent) and 255 (opaque) to control the transparency. Any value set here
will be combined with any value set for the ALPHA_CHANNEL property on
the image object.

mask = (landImg GT 0)
alphaland [3, *, *] = mask*255B

8. Create the semi-transparent image object. ALPHA CHANNEL values can
range from 0.0 (transparent) to 1.0 (opague). The image will appear semi-
transparent when the BLEND_FUNCTION property is set to [3,4].

oAlphaland = OBJ _NEW('IDLgrImage', alphaLand, $
DIMENSIONS=[600, 600], BLEND FUNCTION=[3,4], $
ALPHA CHANNEL=0.35)

9. Createthe display objects.

oWindow = OBJ_NEW('IDLgrWindow', $

DIMENSIONS=[600, 600], RETAIN=2, $

TITLE='Overlay of Land Cover Transparency')
viewRect = [0, 0, 600, 600]
oView = OBJ_NEW('IDLngiew', VIEWPLANE_RECT:ViewReCt)
oModel = OBJ_NEW('IDLngodel')

Defining Transparency in Image Objects Object Programming

Chapter 4: Working with Image Objects 113

10. Add the semi-transparent image to the model after the base image.

oModel->Add, oMapImg
oModel->Add, oAlphaLand
oView->Add, oModel
oWindow->Draw, oView

11. Clean up objects.
OBJ_DESTROY, [oView, oMapImg, oAlphaland, mapPalette]

The results appear in the following figure.

CHAD Khartoum
e . SUDA ‘\ g‘
by Ty [y N Djamena !]
MIGERIA , : S
ik \\ *Almp S bgundon o F* -'f ﬂﬂl‘-&.
s 'lm : TENTRAL AFRICAN “5 th e st 89#1-\1 1A
; i A
e ey feitnoon | ganguy T [:

_';" A i‘“ DTN A
aABON Gonogt EASIN o s \/
. REF. dutarw : y :

P Kt Fonmg E ,.,,,.,,%
h | N 'IM'ZMIA ar es
s . AN Slai
\I . Lubainhashi b '"‘
o ANGOLR® 3y ; ;‘““* i |
o

onghel, | cuae |

W de Nacalpy

e .I-ur'v o
F 3

MOZATBIQUE

Figure 4-11: Land Image (35% Opaque) Overlaid the Map Image

Note
You can use control points to warp the images and properly align the transparent
image over the map image. See “Warping Image Objects’ on page 114 for details.

Object Programming Defining Transparency in Image Objects

114 Chapter 4: Working with Image Objects
Warping Image Objects

Object Graphics allows precise control over the color palettes used to display image
objects. By initializing a palette object, both the reference image object and the
transparent, warped image object can be displayed using individual color palettes.

The following example warps an African land-cover characteristicsimageto a
political map of the continent. After displaying the images and selecting control
points in each image using the XROI utility, the resulting warped image is atered to
include an alpha channel, enabling transparency. |mage objects are then created and
displayed in an IDL Object Graphics display. Complete the following steps for a
detailed description of the process.

Example Code
See transparentwarping object.pro intheexamples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.

Note
For background information on warping images and selecting control points, see
“Overview of Warping Images’ in Chapter 5 of the Image Processingin IDL
manual.

1. Select the political map image. Thisisthe reference image to which the land
cover image will be warped:

mapFile= FILEPATH('afrpolitsm.png', $
Subdirectory = ['examples',6 'data'])

2. Use READ_PNG routineto read in the file. Specify mapR, mapG, mapB to
read in the image's associated color table:

mapImg = READ PNG(mapFile, mapR, mapG, mapB)

3. Using IDLgrPalette::Init, assign the image's color table to a pal ette object,
which will be applied to an image object in alater step:

mapPalette = OBJ NEW('IDLgrPalette', mapR, mapG, mapB)
4. Select and open the land cover input image, which will be warped to the map:

landFile = FILEPATH('africavlc.png', $
Subdirectory = ['examples',6 'data'l])
landImg = READ PNG (landFile, landR, landG, landB)

Warping Image Objects Object Programming

RSI_PROCODE/examples/doc/objects/transparentwarping_object.pro

Chapter 4: Working with Image Objects 115

Selecting Control Points for Image Object Warping

This section describes using the XROI utility to select corresponding control points
in the two images. The arrays of control pointsin the input image, (Xi, M), will be
mapped to the array of points selected in the reference image, (Xo, Yo).

Note
The Xi and Yi vectors and the Xo and Yo vectors must be the same length, meaning
that you must select the same number of control pointsin the reference image as
you select in the input image. The control points must also be selected in the same
order since the point Xil, Yil will be warped to Xol, Yol.

The following figure shows the points to be selected in the input image.

CP7 CP8 CP9 CP10
(%i7, yi7) (xi8, yi8) (%9i, yi9) (xi10, yi10)

. /CP'H .
; (xi11,yi11)

CP 6
{is yie) cri2
T /{x|12,y|12)
CP5 cPis
(xi5, yi5) (xi13, yi13)
CP 4.
(xid, yid)
iy oP 14
{xi3, yi3) (xi14,yi14)
CP2. -
(xi2, yi2) \
CP1 “~.CP186 P15
(xi1, yi1) (Xi16, yi16) &HS,\MS)

Figure 4-12: Selecting Control Points in the Input Image

Object Programming Warping Image Objects

116 Chapter 4: Working with Image Objects

Reasonably precise warping of the land classification image to the political map
requires selecting numerous control points because of the irregularity of the
continent’s border. Select the control pointsin the land classification image as
described in the following steps.

1. Load theimage and its associated color table into the XROI utility, specifying
the REGIONS_OUT keyword to save the region defined by the control points
in the landROI out object:

XROI, landImg, landR, landG, landB, $
REGIONS OUT = landROIout, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar shown in the
following figure. Position the crosshairs symbol over CP1, shown in the
previous figure, and click the left mouse button. Repeat this action for each
successive control point. After selecting the sixteenth control point, position
the crosshairs over the first point selected and click the right mouse button to
close theregion. Your display should appear similar to the following figure.

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 117

Draw Polygon
#lROI 1=l B3

File Edit

CINEEIMED

w 479w 406 z 0 [Dutside]

Figure 4-13: Selecting Control Points Using XROI

Note
It is of no concern that portions of the continent lie outside the polygonal

boundary. The EXTRAPOLATE keyword to WARP_TRI enables warping of
the image areas lying outside of the boundary of control points. However,
images requiring more aggressive warp models may not have good results
outside of the extent of the control points when WARP_TRI is used with the

IEXTRAPOLATE keyword.

2. Closethe XROI window and assign the landROIl out object datato the Xi and Vi
control point vectors:
landROIout -> GetProperty, DATA = landROIdata

Xi = landROIdatalO0, *]
Yi = landROIdatall, *]

Object Programming Warping Image Objects

118 Chapter 4: Working with Image Objects

The following figure displays the corresponding control points to be selected
in the reference image of the political map. These control points will make up
the Xo and Yo arrays required by the IDL warping routines.

CP 7 cPg CPO CP 10
(xo7, yoT7) {xo8B, yo8) {x09, yo9) {x010, yo10)

CP 11
{xo11, yo11)

CP &

5

{XDG yDG] .w:.:zll::'.\nu CP 12

. (xo12, yo12)

x {1

"“I.-....’.....\}__‘ r::v
CP6. % =
X05, yo5) " CP 13
{x05, yob)

'y {(x013, yo13)

CP 4

(xo4, yod)

CP 3
(x03, yos)

op (xo14, yo14)
(x02,"yo2) i

| AFRIC

CcP 1/ \CP 16 CP 15

(xol1, yo1) {(x018, yo186) {xo15, yo15)

Figure 4-14: Control Points to be Selected in the Reference Image

3. Load theimage of the political map and its associated color table into the
XROI utility, specifying the REGIONS_OUT keyword to save the selected
region in the mapROI out object:

XROI, mapImg, mapR, mapG, mapB, $
REGIONS OUT=mapROIout, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar. Position the
crosshairs symbol over CP1, shown in the previous figure, and click the left

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 119

mouse button. Repeat this action for each successive control point. After
selecting the sixteenth control point, position the crosshairs over the first point
selected and click the right mouse button to close the region. Your display
should appear similar to the following figure.

Figure 4-15: Selecting Control Points Using XROI

4. Close the XROI window and assign the mapROIl out object data to the Xo and
Yo control point vectors:
mapROIout -> GetProperty, DATA=mapROIdata

Xo = mapROIdatal0, *]
Yo = mapROIdatall, *]

Warping and Displaying a Transparent Image Object

The following section describes warping the land cover image to the political map
and creating image objects. The resulting warped image will then be madeinto a
transparency by creating an alpha channel for the image. Finally, the transparent
object will be displayed as an overlay to the original political map.

Object Programming Warping Image Objects

120 Chapter 4: Working with Image Objects

1. Warp the input image, landlmg, onto the reference image using WARP_TRI.
Thisfunction usesthe irregular grid of the reference image, defined by Xo, Yo,
as abasis for triangulation, defining the surfaces associated with (Xo, Yo, Xi)
and (Xo, Yo, Yi). Each pixel in the input image is then transferred to the
appropriate position in the resulting output image as designated by
interpolation. Using the WARP_TRI syntax,

Result = WARP_TRI(Xo, Yo, Xi, Yi, Image
[, OUTPUT_SIZE:vector][, /QUINTIC] [, /EXTRAPOLATE])

set the OUTPUT_SIZE equal to the reference image dimensions since this
image forms the basis of the warped, output image. Use the EXTRAPOLATE
keyword to display the portions of the image which fall outside of the
boundary of selected control points:

warpImg = WARP_TRI (Xo, Yo, Xi, Yi, landImg, $
OUTPUT_SIZE=[600, 600], /EXTRAPOLATE)

2. Whilenot required, you can quickly check the precision of thewarp in aDirect
Graphics display before proceeding with creating a transparency by entering
the following lines:

DEVICE, DECOMPOSED = 0

TVLCT, landR, landG, landB

WINDOW, 3, XSIZE = 600, YSIZE = 600, $
TITLE = 'Image Warped with WARP TRI'

TV, warpImg

Precise control point selection results in accurate warping. If thereislittle
distortion, asin the following figure, control points were successfully selected
in nearly corresponding positionsin both images.

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 121

Figure 4-16: Resulting Warped Image

3. A transparent image object must be a grayscale or an RGB (24-bit) image
containing an alpha channel. The alpha channel controls the transparency of
the pixels. See IDLgrImage::Init for more information.

The following lines convert the warped image and its associated color table
into aRGB image containing four channels (red, green, blue, and alpha). First,
get the dimensions of the warped image and then use BY TARR to create
alphaWarp, a 4-channel by xdim by ydim array, where (xdim, ydim) are the
dimensions of the warped image:

warpImgDims = SIZE (warpImg, /Dimensions)
alphaWarp = BYTARR (4, warpImgDims[0], warpImgDims[1])

4. Loadthered, green and blue channels of the warped land characteristicsimage
into the first three channels of the alphaWarp array:

alphaWarp [0, *, *]
alphaWarp[1l, *, *]
alphaWarp[2, *, *]

landR [warpImg]
1landG [warpImg]
landB [warpImg]

Object Programming Warping Image Objects

122 Chapter 4: Working with Image Objects

5. Define the transparency of the alpha channel. First, create an array, masking
out the black background of the warped image (where pixel values equal 0) by
retaining only pixels with values greater than O:

mask = (warpImg GT 0)

Apply the resulting mask to the alpha channel, the fourth channel of the array.
This channel creates a 50% transparency of the pixels of the first three
channels (red, green, blue) of the alphaWearp by multiplying the mask by 128B
(byte). Alpha channel values range from 0 (completely transparent) to 255
(completely opaque):

alphaWarp [3, *, *] = mask*128B

Note
You can set the transparency of an entire image. To set the transparency of
all pixelsat 50% in this example, your could replace the two previous steps
with the following two lines:

mask = BYTARR(s[0], s[1]) + 128
alphaWarp [3, *, *] = mask

6. Initialize the transparent image object using IDLgrImage::Init. Specify the
BLEND_FUNCTION property of the image object to control how the alpha
channel isinterpreted. Setting the BLEND_FUNCTION to [3, 4] alowsyou to
see through the foreground image to the background. The foreground opacity
is defined by the alpha channel value, specified in the previous step:

oAlphaWarp = OBJ NEW('IDLgrImage', alphaWarp, $
DIMENSIONS = [600, 600], BLEND FUNCTION = [3, 4])

7. Initiaize the reference image object, applying the pa ette created earlier:

oMapImg = OBJ NEW('IDLgrImage',6 mapImg, $
DIMENSIONS = [600,600], PALETTE = mapPalette)

8. Using IDLgrWindow::Init, initialize a window object in which to display the
images:

oWindow = OBJ_NEW('IDLgrWindow', DIMENSIONS = [600, 600], $
RETAIN = 2, TITLE = 'Overlay of Land Cover Transparency')

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 123

0.

10.

11.

Create aview object using IDLgrView::Init. The VIEWPLANE_RECT
keyword controls the image display in the Object Graphics window. First
create an array, viewRect, which specifies the x-placement, y-placement, width,
and height of the view surface. The values o, o placethe (O, 0) coordinate of
viewing surface in the lower-left corner of the Object Graphics window:

viewRect = [0, 0, 600, 600]
oView = OBJ NEW('IDLgrView',6 VIEWPLANE RECT = viewRect)

Using IDLgrModel::Init, initialize a model object to which the images will be
applied. Add the base image and the transparent al phaimage to the mode!:

oModel = OBJ NEW ('IDLgrModel')
oModel -> Add, oMapImg
oModel -> Add, oAlphaWarp

Note
Image objects appear in the Object Graphics window in the order in which
they are added to the model. If atransparent object is added to the model
before an opague object, it will not be visible.

Add the model, containing the images, to the view and draw the view in the
window:

oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the warped image transparency overlaid onto the
origina reference image, the political map.

Object Programming Warping Image Objects

124 Chapter 4: Working with Image Objects

Figure 4-17: Object Graphics Display of the Political Map with a Transparent
Land Cover Overlay

12. Use OBJ DESTROY to clean up unneeded object references including the
region objects:

OBJ_DESTROY, [oView, oMapImg, oAlphaWarp, $
mapPalette, landROIout, mapROIout]

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 125

Mapping an Image onto a Sphere

Mapping an Image onto a Sphere Using Object
Graphics

This example maps an image containing world elevation data onto the surface of a
sphere and displays the result using the XOBJVIEW utility. Thisutility automatically
creates the window object and the view object. Therefore, this example creates an
object based on IDLgrModel that contains the sphere, the image and the image
palette, as shown in the conceptual representation in the following figure.

4«— oModel - an IDLgrModel object
containing the sphere, image, and
palette

oPolygon - an object defining the sphere,
containing the image and palette

4_

ol mage - an object containing the image
oPalette - an object defining the color table

Figure 4-18: Conceptualization of XOBJVIEW Object Graphics Example

Complete the following steps for a detailed description of the process.

Example Code

Seemaponsphere object.pro intheexamples/doc/objects subdirectory
of the IDL installation directory for code that duplicates this example.

1. Select the world elevation image. Define the array, read in the data and close

thefile.
file = FILEPATH('worldelv.dat',6 $
SUBDIRECTORY = ['examples', 'data'l)
image = READ BINARY (file, DATA DIMS = [360, 360])

Object Programming Mapping an Image onto a Sphere

RSI_PROCODE/examples/doc/objects/maponsphere_object.pro

126

Chapter 4: Working with Image Objects

2. Usethe MESH_OBJprocedureto create a sphere onto which the image will be

mapped. The following invocation of MESH_OBJ uses avalue of 4, which
represents a spherical mesh:

MESH OBJ, 4, vertices, polygons, REPLICATE(0.25, 101, 101)

When the MESH_OBJ procedure compl etes, the vertices and polygons
variables contain the mesh vertices and polygonal mesh connectivity
information, respectively. Although our image is 360 by 360, we can texture
map the image to a mesh that has fewer vertices. IDL interpolates the image
data across the mesh, retaining al the image detail between polygon vertices.
The number of mesh vertices determines how close to perfectly round the
sphere will be. Fewer vertices produce a sphere with larger facets, while more
vertices make a sphere with smaller facets and more closely approximates a
perfect sphere. A large number of mesh verticeswill increase the time required
to draw the sphere. In this example, MESH_OBJ produces a 101 by 101 array
of verticesthat are located in a sphere shape with aradius of 0.25.

Initialize the display objects. In this example, it is necessary to define a model
object that will contain the sphere, the image and the color table palette. Using
the syntax, oNewObject = OBJ NEW ('Class Name'), Create the model,
pal ette and image objects:

oModel = OBJ NEW ('IDLgrModel')

oPalette = OBJ NEW('IDLgrPalette')

oPalette -> LOADCT, 33

oPalette -> SetRGB, 255, 255, 255, 255

oImage = OBJ NEW('IDLgrImage',6 image, PALETTE = oPalette)

The previous lines initialize the oPalette object with the color table and then
set the final index value of the red, green and blue bandsto 255 (white) in order
to use white (instead of black) to designate the highest areas of elevation. The
palette object is created before the image object so that the palette can be
applied when initializing the image object. For more information, see
IDLgrModel::Init, IDLgrPalette::Init and IDLgrlmage::Init.

Create texture coordinates that define how the texture map is applied to the
mesh. A texture coordinate is associated with each vertex in the mesh. The
value of the texture coordinate at a vertex determines what part of the texture
will be mapped to the mesh at that vertex. Texture coordinates run from 0.0 to
1.0 across a texture, so a texture coordinate of [0.5, 0.5] at a vertex specifies
that the image pixel at the exact center of the image is mapped to the mesh at
that vertex.

In this example, we want to do a simple linear mapping of the texture around
the sphere, so we create a convenience vector that describes the mapping in

Mapping an Image onto a Sphere Object Programming

Chapter 4: Working with Image Objects 127

each of the texture’s x- and y-directions, and then create these texture
coordinates:

vector = FINDGEN(101)/100.

texure coordinates = FLTARR(2, 101, 101)

texure coordinates [0, *, *] vector # REPLICATE(1., 101)
texure coordinates([1l, *, *] REPLICATE (1., 101) # wvector

The code above copies the convenience vector through the array in each
direction.

5. Enter thefollowing lineto initialize a polygon object with the image and
geometry data using the IDLgrPolygon::Init function. Set suapING = 1 for
gouraud (smoother) shading. Set the paTa keyword equal to the sphere defined
with the MESH_OBJ function. Set coLor to draw awhite sphere onto which
the image will be mapped. Set TEXTURE COORD equal to the texture
coordinates created in the previous steps. Assign the image object to the
polygon object using the TEXTURE_MaP keyword and force bilinear
interpolation:

oPolygons = OBJ NEW('IDLgrPolygon', SHADING = 1, $
DATA = vertices, POLYGONS = polygons, $
COLOR = [255, 255, 2551, $
TEXTURE COORD = texure coordinates, $
TEXTURE _MAP = oImage, /TEXTURE INTERP)

Note
When mapping an image onto an IDLgrPolygon object, you must specify
both TEXTURE_MAP and TEXTURE_COORD keywords.

6. Add the polygon containing the image and the pal ette to the model object:
oModel -> ADD, oPolygons
7. Rotate the model -90° along the x-axis and y-axis:

oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], -90

8. Display theresults using XOBJVIEW, an interactive utility allowing you to
rotate and resize objects:

XOBJVIEW, oModel, /BLOCK

Object Programming Mapping an Image onto a Sphere

128

Chapter 4: Working with Image Objects

&l Xobjview M= E3
File Edit “iew

(] o] [#[A]

Figure 4-19: Magnified View of World Elevation Object

After displaying the object, you can rotate the sphere by clicking in the display
window and dragging your mouse. Select the magnify button and click near the
middle of the sphere. Drag your mouse away from the center of the display to
magnify the image or toward the center of the display to shrink the image.
Select the left-most button on the XOBJVIEW toolbar to reset the display. The

previous figure shows a rotated and magnified view of the world elevation
object.

9. After closing the XOBJVIEW display, remove unneeded object references:

OBJ_DESTROY, [oModel, oImage, oPalette]

Mapping an Image onto a Sphere Object Programming

Chapter 4: Working with Image Objects 129
Image Tiling

The IDLgrImage object supports tiling, which lets you display images that are too
large to be read entirely into memory. For example, some satellite images can be over
agigabytein size, which isimpossible to fit into memory and display as a single unit
on atypical computer. However, it can be displayed by segmenting it into smaller,
more manageable image tiles.

When tiling is enabled for an IDLgrlmage object, theimageisinitially created
without any data. The image pixels are only loaded when atile section comesinto
view through panning. Also, you can create an image pyramid to support level-of-
detail (LOD) rendering for large images. This changes the resolution of an image
when you zoom in or out within an image display. As you zoom out, successively
smaller, less detailed images can be displayed. This quickly provides afull view of
the larger image, lets you choose an area of interest, and zoom in on that area. Asyou
zoom in, progressively detailed image layers can be loaded. The IDLgrlmage object
isaware of the LOD required and will communicate that to the application when the
application requests the tile visibility information. See the following sections for
more tiling information:

* “Image Pyramids’ on page 130 and “Image Tiles’ on page 132
* “Adding Tiling to Your Application” on page 133
e “Example: JPEG2000 Filesfor Tiling” on page 143

Object Programming Image Tiling

130 Chapter 4: Working with Image Objects

Image Pyramids

The use of image tiling and image pyramids supports the display of high-resolution
images with ahigh level of performance. Animage pyramid consists of abase image
and a series of successively smaller sub-images, each at half the resolution of the
previous image. The following figure shows the base image and successively smaller
sub-images. The sub-images corresponds to lower resolution levels.

Figure 4-20: Image Pyramid

Creating Image Pyramids

You have two options if your image file does not already contain an image pyramid:

¢ Create an IDLffJPEG2000 object from your image data. You can define the
number of levels, the size of the tiles and other properties when you create the
image. Thetiles and image levels are then automatically created for you.

e Create the image pyramid manually by creating a series of images, each with
half the resolution of the previous image. You can use Gaussian or Laplacian
filtering in combination with the subsampling if desired.

Image Tiling Object Programming

Chapter 4: Working with Image Objects 131

For example, taking a 4096 by 4096 base image (level 0), you could create the
pyramid as follows:

Level Resolution
0 4096 by 4096 pixels
1 2048 by 2048 pixels
2 1024 by 1024 pixels

Table 4-1: Sample Resolutions of Image Pyramid Levels

The resolution of level n+1 should be half that of level n. If level nisnot
wholly divisible by two, then level n+1 should be rounded down as shown in
the following table.

Level and Resolution Comment
Level 0: 20105 by 20005 Base image. Divide by 2.
Level 1: 10052 by 10002 Rounded down 20005/2 to 10002
Level 2: 5026 by 5001 Divided Level 1 by 2.
Level 3: 2513 by 2500 Rounded down 5001/2 to 2500

Table 4-2: Rounding Down Resolutions of Image Pyramid Levels

Note
See “Zooming Tiled Images’ on page 136 for information on which IDLgrImage
properties are typically set to take full advantage of an image pyramid, and for
information on how to calculate exactly how many image levels you need based on
the image and tile size.

Object Programming Image Tiling

132

Image Tiling

Chapter 4: Working with Image Objects

Image Tiles

Tiling an image segmentsit into a number of smaller rectangular areas caled tiles. If
you are using a JPEG2000 image, thetile size is defined in theimage, and you should
use this value when creating the IDLgrImage object. If you are creating your own

image pyramid, which does not have an inherent tile size defined, it is recommended
that you accept the default tile size of the IDLgrimage object (1024 by 1024 pixels).

The size of the drawing area, the tile size, and the image level all play apart in the
display of atiled image. With alarge, full-resolution image, only a portion of it
appearsin the view, so only asubset of theimagetiles are displayed. In the following
figure, the full-resolution, level 0 imageis shown on theleft. Only two of the 1024 by
1024 tiles are loaded to support what is shown in the 800 by 800 pixel drawing area,
indicated by the dotted box.

3500
-4 >
1024 1024 1024 428
1750
1024 726
875
[[[I T i
| | I | I]
| | ! | | |
| I ! I | |
e Lo o
Level 0 Levell Level 2

Figure 4-21: Dotted Box Showing Size of Drawing Area and Visible Tiles

If you zoom out to a zoom level of 50% or less, IDL can show the level 1 image
(which is half the resolution of the level 0 image). Only asingletileisrequired to fill
the drawing area. If you reduce the zoom level by another 50%, the level 2 image can
be displayed, and the entireimage is visible in the drawing area.

Object Programming

Chapter 4: Working with Image Objects 133

Adding Tiling to Your Application

Large image tiling results from the interaction between an IDLgrlmage object, an
IDLgrView object, and a destination object (IDLgrWindow, IDLgrClipboard,
IDLgrBuffer, or IDLgrPrinter). The destination and view objects are key in
determining what data the image object should contain. Each destination object hasa
QueryRequiredTiles method that determines the visible data based on the view and
zoom level, and returns information about the visible image tiles. Thisinformation
and image data are then passed to the image object SetTileData method. Initialy,
however, an image that supportstiling does not contain data.

To create an image that supports tiling, you must minimally set two IDLgrimage
object properties:

e TILING =1 enablestiling

e« TILED_IMAGE DIMENSIONS = [width, height] in pixelsisthe size of the
image
You can aso define how tiles from image levels in an image pyramid are accessed
usingthe TILE_LEVEL_MODE mode property. Set it to 1 (automatic mode) to have
IDL automatically request the proper tilelevel based on the zoom level. Thisisuseful
when you have an image pyramid and want to use lower resolution images when
zooming out.

Note
You should not set TILE LEVEL_MODE to automatic unless you have an image
pyramid. Otherwise IDL will request non-existent lower-resolution data.

Thedefault TILE_LEVEL _MODE valueis zero (manua mode), meaning your
application must specify which level should be used (where

TILE CURRENT _LEVEL definesthat tile level). QueryRequiredTiles will always
request tiles at thislevel and the image will aways render using thislevel. Thisis
useful if you will be panning the image without zooming. If your application does
allow zooming, it is best to create an image pyramid so that you can take advantage
of the memory savings afforded by displaying lower resolution images when the
view is zoomed out.

Even after you have set the necessary image properties that enable tiling, the image
till does not contain data. If you attempt to draw the image at this point, it will be the
color of the TILE_COLOR property. You must call the QueryRequiredTiles method
on the destination object (awindow, printer, buffer, or clipboard object) to determine
what portion of the image needs to be drawn.

Object Programming Adding Tiling to Your Application

134 Chapter 4: Working with Image Objects

Note
The following sections provide general information and code examples using tiling
elementsin IDL. For a complete, working example, see “ Example: JPEG2000 Files
for Tiling” on page 143.

Querying Required Tiles

The QueryRequiredTiles method requires references to a view object and an image
object. It returns an array of structures (one for each required tile) that contains
information about the tile data needed to fill the view. Once thisinformation has been
passed to the IDLgrimage object SetTileData method, call the destination object’s
Draw method to display the tiled image data.

For example, suppose your application displays aregion of alarge image (20,000 by
20,000 pixels at full resolution, where one image pixel mapsto one screen pixel).
Your application window is 800 by 800 pixels, which means that only this much of
the image isvisible at any one time. To enable tiling in thisinstance, create the
IDLgrwWindow object and then create the IDLgrlmage object that supportstiling as
follows:

oImage = OBJ NEW('IDLgrImage',6 TILING=1, $

TILED IMAGE DIMENSIONS=[20000,20000], $
TILE LEVEL MODE=0)

Setting TILING=1 denotes this image will contain tile data, and
TILED_IMAGE_DIMENSIONS defines the size of the full resolution image. The
TILE LEVEL_MODE=0 indicates manual level control (by default, the full
resolution, level 0 image is always displayed). Not setting the TILE_DIMENSIONS
accepts the default tile size, 1024 by 1024 pixels.

Initialize the IDLgrView object so the lower-left corner of the image is displayed.
WherewindowbDims = [800,800], configure the viewplane rectangle as follows:
oView = OBJ NEW('IDLgrView',6 VIEWPLANE RECT=[0,0,$
windowDims [0] ,windowDims [1]])
Create alDLgrModel object and add the image. After you add this model to the view,
you can call QueryRequiredTiles to determine which tiles are visible in the view and
need data as follows:
ReqgTiles = oWindow->QueryRequiredTiles (oView, oImage, $
COUNT=nTiles)
ReqTiles iSannTiles element array of named structures describing the tiles

required. See “IDLgrWindow::QueryRequiredTiles’ in the IDL Reference Guide
manual for information on the fields in this structure. The destination objects that

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 135

support tiling share this method and named structure. Your application will need to
iterate through this array, extracting the tile data from the image data and passing it to
IDLgrImage::SetTileData.

For aTIFFimage (largeimage.tif), you can usethe READ_TIFF routine's
SUB_RECT keyword to extract the tile data from the image as follows:

FOR 1 = 0, nTiles - 1 DO BEGIN
SubRect = [ReqTiles[i].X, ReqTiles[i].Y, $
ReqgTiles[i] .Width, ReqTiles[i] .Height]
TileData = READ_TIFF('largeimage.tif', SUB_RECT=SubRect)
TileData = BYTSCL(TileData, MIN=0, MAX=1024)
oImage->SetTileData, ReqgTiles[i], TileData
ENDFOR

For a JPEG2000 image (oJp2File) with the same subrect variable as that defined
in the previous example, you can use the IDLffJPEG2000::GetData method's
REGION keyword to extract the data as follows:

; Load the data.
TileData = oJP2File->GetData (REGION=SubRect)
oImage->SetTileData, ReqTiles[i], TileData

When the destination object’s Draw method is called, the display will contain the
correct portion of the image since the data associated with the visible tiles has been
loaded.

Note
You do not need to pass only asingletileto SetTileData. You can pass arow of
tiles or load tiles without a prior call to QueryRequiredTiles (tile caching). See
“Preloading Tiles” on page 140 for details.

Panning Tiled Images

To pan an image, you can query and assign the tile data without regard for image
level as shown in the previous section, “ Querying Required Tiles’ on page 134.
Panning is accomplished by changing the x and y elements of the view object’s
VIEWPLANE_RECT property, where [x, y, width, height] describe the visible view
area. After changing the VIEWPLANE_RECT, call the window object’s
QueryRequiredTiles method to determine if new datais required. If so, load the data
as before. The following code shows an example of modifying the viewplane for
panning:

oView->GetProperty, VIEWPLANE RECT=vp

; Panning. This is done by changing the position of the

Object Programming Adding Tiling to Your Application

136 Chapter 4: Working with Image Objects

; VIEWPLANE RECT (vp) which is described by [x,y,width,height]
; where x and y are the lower-left corner. How far to move it
; 1s computed from the distance of the mouse from the center of
; the window (xDelta,yDelta) and the 'zoom factor',

(vp[2] / windowDims[0]), which is the viewplane
; width divided by the window x dimension. The farther
; the cursor is from the center of the window, the faster the
; view pans.
factor = (vp[2] / windowDims[0])
vp[0] += xDelta * factor
vpl[l] += yDelta * factor
(*pState) .oView->SetProperty, VIEWPLANE RECT=vp

See “Example: JPEG2000 Filesfor Tiling” on page 143 for information on where to
locate the full tiling example.

Zooming Tiled Images

As with panning, you can use the view object’'s VIEWPLANE_RECT to zoom (by
changing the width and height elements). However, care must be taken when
zooming out as many tiles of high-resolution data may need to be loaded, which
could exhaust the tile cache. It is best to enable zooming for very large images only
when you have an image pyramid of lower resolution images.

When you zoom out to view more of animage, multiple image pixels are mapped to a
single pixel on the screen. When dealing with large tiled images, you can take
advantage of this situation by displaying a series of lower resolution images (an
image pyramid), which uses memory more efficiently. Thereisno need to use the full
resolution image. For example, say you have an image that is 20,000 by 20,000 pixels
and over 300 MB. Without an image pyramid, if you zoom out so that the entire
image isvisiblein an 800 by 800 pixel view, the entire image (381 MB) will be
loaded into memory. While this might be possible, it isn't efficient. With an image
pyramid, you could easily display alower resolution image that fit the window size.
Thisimage would likely be less than one MB in size, would easily fit into memory,
and would still be of a sufficient resolution for identifying general areas of interest.

Note
Unless the image file format automatically includes an image pyramid (such as
JPEG2000 files), you will need to either create a JPEG2000 file that contains your
image data or create an image pyramid manually. See “Image Pyramids’ on
page 130 for details.

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 137

Thefollowing code shows how to maodify the viewplane rectangl e associated with the
view object to support zooming:

; Zooming. This is done by changing the position and dimensions
; of the VIEWPLANE RECT (vp), is described by [x,y,width,height]
; where x and y are the lower-left corner. When zooming in, a
; smaller portion of the total image is displayed in the viewplane
; rectangle, which is reflected in smaller vp width and height
; values. The rectangle size is computed from:
; factor - the vp width divided by the window x dimension.
; delta - yDelta (the absolute vertical change from the

; center of the image times the factor. The

; further the mouse cursor is from the center,

; the faster the zoom.

; aspect - the window y dimension divided by the x dimension.
factor = (vp[2] / windowDims[0])

delta = yDelta * factor

aspect = float (windowDims[1]) / windowDims [0]

vp[0] += delta/2

vpl[l] += delta * aspect /2

vpl[2] -= delta

vp[3] -= delta * aspect

oView->SetProperty, VIEWPLANE RECT=vp
zoom = windowDims [0] / vp[2]

See “Example: JPEG2000 Filesfor Tiling” on page 143 for information on where to
locate the full tiling example. See “Using Image LEVEL When Zooming” on
page 138 for information on how to request tile data based on zoom level.

Calculating the Number of Image Pyramid Levels

When you have an image pyramid, you will want to set the IDLgrImage

TILE LEVEL_MODE property to 1 (automatic). Doing so causes

TILE_ NUM_LEVELSto automatically calculate the number of levels needed unless
you set a different value. IDL requests levelsup to TILE NUM_LEVELS- 1. This
property is based on the original (level 0) image size and the tile size such that the
lowest resolution image isjust slightly smaller than thetile size. See
“TILE_NUM_LEVELS’ inthe IDL Reference Guide manual for an example.

To figure out how many levels are needed, create an image object with dimensions
equal to the dimensions of your image, the tile mode to automatic, and tiling equal to
1. For example, for the 20,000 by 20,000 image, with the default tile size (1024 by
1024 pixels), create an image object as follows:
oImage = OBJ NEW('IDLgrImage', $
TILED_IMAGE_DIMENSIONS:[20000,20000], S
TILING=1, TILE LEVEL MODE=1)

Object Programming Adding Tiling to Your Application

138

Chapter 4: Working with Image Objects

Here TILE_ LEVEL MODE isset to 1 (automatic) so the level requested by the
destination object’s QueryRequiredTiles method is calculated automatically from the
view information. Return the number of levels that are needed in an image pyramid
asfollows:

oImage->GetProperty, TILE NUM LEVELS=nLevels

ThenLevels variable contains the number of levels IDL will request. You will need
nLevels - 1 levelsinyour pyramid since level Oisthe full resolution image.

Using Image LEVEL When Zooming

In an application that has an image pyramid and supports zooming, you will use
information returned by QueryRequiredTiles to load different resolution image tiles.
Asin the basic query example (“ Querying Required Tiles’ on page 134), create and
initialize the view so the lower-left corner of the image isinitially displayed:

oView = OBJ NEW('IDLgrView',6 VIEWPLANE RECT=[0, 0, 800, 800])

Again, create an IDLgrModel, and add the image. Once the model has been added to
the view (not shown), call QueryRequiredTiles to determine which tiles are visible
and need data.

RegTiles = oWindow->QueryRequiredTiles (oView, oImage, $
COUNT=nTiles)

Rather than reading from the original, full-resolution image, determine which image
to use based on the LEVEL field of the returned structure contained in ReqTiles. If
you have created an image pyramid for TIFF images, consider using the following
naming scheme to return the correct resolution image based on the LEVEL field:

filenames = strarr(6)

filenames[0] = 'largeimage.tif' ; Full-resolution image
filenames[1] = 'largeimagel.tif' Half-resolution image
filenames[2] = 'largeimage2.tif' ; Quarter-resolution image

filenames [4] 'largeimage4 .tif' ; 1/16-resolution image
filenames[5] = 'largeimage5.tif' ; 1/32-resolution image

filenames[3] = 'largeimage3.tif' ; Eighth-resolution image

You can then request the correct image level (1evel) and set tile data as follows:

FOR 1 = 0, nTiles - 1 DO BEGIN

SubRect = [ReqTiles[i] .X, ReqTiles[i].Y, $
ReqgTiles [i] .Width, ReqTiles[i] .Height]

level = ReqTiles[i] .Level
TileData = READ TIFF (filenames[Level], SUB RECT=SubRect)
TileData = BYTSCL(TileData, MIN=0, MAX=1024)
oImage->SetTileData, ReqgTiles[i], TileData

ENDFOR

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 139

For a JPEG2000 image (ogp2File), you can use the I DLffJPEG2000::GetData
method’'s DISCARD_LEVELS keyword to return the correct image level as follows:

FOR 1 = 0, nTiles - 1 DO BEGIN
SubRect = [ReqTiles[i] .x, ReqTiles[i].y, $
ReqTiles[i] .width, ReqTiles[i] .height]

; Convert to JPEG2000 canvas coords.
level = ReqTiles[i].level

Scale = ISHFT (1, level)

SubRect = SubRect * Scale

; Load the data.
TileData = oJP2File->GetData (REGION=SubRect, $
DISCARD LEVELS=level, ORDER=1)
oImage->SetTileData, RegTiles[i], TileData
ENDFOR

Animage that supports TILE LEVEL MODE=1 (automatic) can be panned and
zoomed using VIEWPLANE_RECT and the above QueryRequiredTiles and
SetTileData combination. This determinestile visibility and loads the appropriate
data. Asthe image iszoomed out, lower resolution data will be automatically
regquested to ensure physical memory does not run out.

Note
See " Example: JPEG2000 Filesfor Tiling” on page 143 for the complete
JPEG2000 tiling example.

Copying and Printing a Tiled Image

The IDLgrClipboard and IDLgrPrinter objects have a QueryRequiredTiles method
just like IDLgrWindow. Return the visible tiles using QueryRequiredTiles, set the
data on the image object, and use the Draw method of the printer or clipboard object
to output the portion of thetilesthat are visiblein the view. Thisisal that is required
for aclipboard object. For a printer object, you need to take the view dimensionsinto
account when printing. The following code excerpt shows this for the object,
oPrinter:

; Set the dimensions of the view so the aspect ratio is
; correct when printed.

windowAspect = FLOAT (windowDims [0]) / windowDims[1])
oPrinter->GetProperty, DIMENSIONS = pageSize
pageSize[l] = pageSize[0] / windowAspect
oView->SetProperty, DIMENSIONS=pageSize

Object Programming Adding Tiling to Your Application

140 Chapter 4: Working with Image Objects

Call QueryRequiredTiles on the printer object and set the tile data using SetTileData
on the image object (as described in “ Querying Required Tiles’” on page 134). It is
then simple to print the output:

;...PRINT!...
oPrinter->Draw, oView, VECTOR=0
oPrinter->NewDocument
Note
Clipboard and printer vector output (VECTOR=1) is not supported for tiled images.

An examplein the IDL distribution provides working examples of copying and
printing atiled image. See “ Example: JPEG2000 Filesfor Tiling” on page 143 for
information on where to locate the full tiling example.

Preloading Tiles

You can load more tiles of data than what are currently visiblein aview in acouple
of ways:

e Passarow of tile datato SetTileData based on aninitial query (see“Loading a
Row of Tiles’ on page 140 below)

e Passdatato SetTileData without a query (see “Caching Non-Visible Tiles” on
page 141)

Loading a Row of Tiles

SetTileData can accept more than asingle tile's worth of datain one call. In some
cases, it can be more efficient to read an entire row of tiles rather than extract single
tilesfrom that row. In general, raw binary image formats (such as TIFF) that are not
stored on disk in a blocked manner can be tiled more efficiently by passing rows of
data. Thefollowing code shows how to |oad entire scanlines at once when using these
image formats.

Asin the example shown in “Querying Required Tiles’ on page 134, which creates
view and image objects, call the destination object’s QueryRequiredTiles method to
determine what tile dataisinitialy visible in the viewport as follows:

; Return structure information for visible tiles.
RegTiles = oWindow->QueryRequiredTiles (oView, oImage, $
COUNT=nTiles)

; While there are tiles, determine the width of the information to
; be requested by dividing the width of the original image by the
; current level.

WHILE (nTiles gt 0) DO BEGIN

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 141

TileInfo = ReqTiles[0]
level TileInfo.Level
width imageDims [0] / (2

A

level)

; Set the area to be read (equal to image width) to the SubRect
; variable.
SubRect = [0, TileInfo.Y, width, TileInfo.Height]

; Insert code here to read the tile data, passing SubRect to the
; correct data access procedure for your file type.

; Update the tile structure.
TileInfo.X = 0L
TileInfo.Width = width

; Set the row of tile data to the image.
oImage->SetTileData, TileInfo, TileData

ReqTiles = oWindow->QueryRequiredTiles (oView, oImage, $
COUNT=nTiles)
ENDWHILE

SubRect is set such that the entire width of the image is read at the requested level
for the given vertical position and height. The tile structure is updated to reflect the
fact that the information being passed to SetTileData starts at x=0 and isthe entire
width of theimage. Notice that rather than iterate through the entire ReqgTiles array
the code calls QueryRequiredTiles again after calling SetTileData since the
remaining tilesin the array can now be loaded.

Caching Non-Visible Tiles

You do not need to call QueryRequiredTiles before passing data to the SetTileData
method. The QueryRequiredTiles call just limits the requested data to those tiles that
arevisible in the view. Setting tile data without first requesting it has a couple of
important uses: loading an entire level and predictive tile caching.

When an application starts, it can automatically load an entire level of low-resolution
tile data. If higher resolution data is requested but not currently available, the lower
resolution tiles are used. For example, if level 3 tile data has been |oaded, but you
attempt to zoom in so that the level 0 datais needed, level 3 datawill continue to be
displayed until the higher resolution data can be loaded. Thisresultsin ablurred or
blocky version of the image, which can still be used until the required level has been
loaded.

To load an entire level (assumed to be level 3, 2500 by 2500 pixelsin this example),
you first need to request that level of datafrom your image pyramid. How you access

Object Programming Adding Tiling to Your Application

142 Chapter 4: Working with Image Objects

this data depends on the file type. For example, if you have created a series of TIFF
files, access the image data using the file name:

TileData = READ_TIFF('largeimage3.tif')

If you have created a JPEG2000 image, access the image data using the GetData
method where level should be set to the level of data you want to return (e.g., 3):

TileData = oJP2File->GetData (DISCARD LEVELS=level)

Create atile structure that encompasses the entire level and pass the datato
SetTileData:

tile = { IDLIMAGETILE, X:0, Y:0, Width:2500, Height:2500, $
Level:3, Dest:oWindow }
oImage->SetTileData, tile, TileData

The second use for preloading tilesis predictive tile loading. For example, if the user
is panning right, but tilesto the right of the view that are not yet visible, these tiles
can be preloaded if there is any idle time. Then when the view reaches those tiles,
there will be no interruption as the tiles have already been loaded.

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 143

Example: JPEG2000 Files for Tiling

Thetiling example provided in the IDL distribution takes a 5000 by 5000 pixel JPEG
file containing an aerial photograph of Chicago’s O'Hare International Airport and
creates a JPEG2000 file from the data. Thisfile type provides inherent support for
image tiles.

Example Code
Seetilingjp2 doc.pro intheexamples/doc/objects subdirectory of the
IDL installation directory for the tiling application code.

Note
Thefirst time you run this application, it generates the JPEG2000 file. This might
take a noticeable amount of time, depending on your system speed. However, once
the JPEG2000 image is created, this file will be used instead of being recreated.

The following figure shows the O’ Hare image. When the application opens, the view
is positioned in the upper-left corner of the full-resolution image.

Figure 4-22: O’Hare Image

Object Programming Example: JPEG2000 Files for Tiling

RSI_PROCODE/examples/doc/objects/tilingjp2_doc.pro

144 Chapter 4: Working with Image Objects

Example: JPEG2000 Files for Tiling Object Programming

Chapter 5
Working with Plots and
Graphs

This chapter describes the use of contour, polygon, polyline, and plot objects to create plots and
graphs. The following topics are covered in this chapter:

Contour Objects 146 Symbol Objects 168
PlotObjectscoiiiiat, 149 A PlottingRoutine 172
AXisObjects, 154

Object Programming 145

146 Chapter 5: Working with Plots and Graphs

Contour Objects

Contour objects create a set of contour lines from data stored in arectangular array or
in aset of unstructured points. Contour objects can consist either of lines or of filled
regions.

Creating Contour Objects

To create a contour object, provide a vector or two-dimensional array containing the
valuesto be contoured to the IDLgrContour::1nit method. For example, the following
statement creates a contour from atwo-dimensional array returned by the IDL DIST
function:

mycontour = OBJ NEW('IDLgrContour', DIST(20))

See “IDLgrContour” in the IDL Reference Guide manual for details on creating
contour objects.

Using Contour Objects

Contour objects have a number of properties that determine how they are rendered.
See “IDLgrContour Properties’ in the IDL Reference Guide manual for a complete
listing. The following code displays the contour object created above in the X-Y
plane.

Note
In order to display the contour as on the plane (rather than as athree-dimensional
image), you must set the PLANAR property of the contour abject equal to one and
explicitly set the GEOMZ property equal to zero.

mywindow = OBJ_ NEW ('IDLgrWindow')

myview = OBJ NEW('IDLgrView', VIEWPLANE RECT=[0,0,19,19])

mymodel = OBJ NEW ('IDLgrModel')

data = DIST(20)

mycontour = OBJ_NEW('IDLgrContour', data, COLOR=[100,150,200], $
C_LINESTYLE=[0,2,4], /PLANAR, GEOMZ=0, C_VALUE=INDGEN (20))

myview->Add, mymodel

mymodel ->Add, mycontour
mywindow->Draw, myview

Contour Objects Object Programming

Chapter 5: Working with Plots and Graphs 147

This results in the following figure.

Figure 5-1: Contour Object

Object Programming Contour Objects

148 Chapter 5: Working with Plots and Graphs

A more complex example using a contour object is shown in the contour demo. To
start the demos, type demo at the IDL command prompt. Both the terrain elevation
and vehicle tire data sets are displayed using the contour object.

Figure 5-2: Complex Contour Object

Contour Objects Object Programming

Chapter 5: Working with Plots and Graphs 149

Plot Objects

Plot objects maps a set of abscissa valuesto a set of ordinate values and creates a
polyline connecting the points. Note that plot objects do not automatically create axes
for the plot lines they create.

Creating Plot Objects

Create aplot line by providing a vector of Y values, and, optionally, a vector of X
values. If no X values are provided, the Y values are plotted against the element
indices of the Y vector.

The following statement creates a plot object plotting the values[2, 9, 4, 4, 6, 2, §]
against their own indices:

myplot = OBJ NEW('IDLgrPlot',6 [2,9,4,4,6,2,8])
The following statements plot the same data versus a series of primes:

datay [2,9,4,4,6,2,8]
datax [0,1,2,5,7,11,13]
myplot = OBJ NEW('IDLgrPlot', datax, datay)

See“IDLgrPIot” inthe IDL Reference Guide manual for details on creating plot
objects.

Using Plot Objects

Plot objects can be configured to draw regular X vs. Y, histogram, or polar plots. Set
the HISTOGRAM property to create a histogram plot, or the POLAR property to
create a polar plot. The following example uses the same data set to create a standard
plot, a histogram plot, and a standard plot using a boxcar filter. All three plots are
displayed in the same view.

mywindow = OBJ NEW ('IDLgrWindow')
myview = OBJ NEW('IDLgrView',6 VIEWPLANE RECT=[-10,-10,20,20])
mymodel = OBJ NEW ('IDLgrModel')

x
Y

(FINDGEN (21) / 10.0 - 1.0) * 10.0

[3.0, -2.0, 0.5, 4.5, 3.0, 9.5, 9.0, 4.0, 1.0, -8.0, S

-6.5, -7.0, -2.0, 5.0, -1.0, -2.0, -6.0, 3.0, 5.5, 2.5, -3.0]
myplotl = OBJ NEW('IDLgrPlot', x, y, COLOR=[120, 120, 120])
myplot2 = OBJ NEW('IDLgrPlot', x, y, /HISTOGRAM, LINESTYLE=4)

y2 = SMOOTH (y, 5)

myplot3 = OBJ_NEW('IDLgrPlot', x, y2, LINESTYLE=2)

Object Programming Plot Objects

150 Chapter 5: Working with Plots and Graphs

myview->Add, mymodel

mymodel->Add, myplotl
mymodel ->Add, myplot2
mymodel->Add, myplot3

mywindow->Draw, myview

A
]
o\
)
[
) \\i\‘ i &
" - Mt \
N \‘\I '!E‘; 21N
o \\ I T
\ !"J'_ [\!1. !', \ :'f H/ '\!
b \ | N i -
. \. o ,]
W { X ! .J// i !
\p f. I =N ! "
L i} -4 N A
. \ ﬂ
i 1! v L
} \ 7 !
) b
i 1 \:
| f X
! [
AT N
A

Figure 5-3: Plot Object

Minimum and Maximum Values

You can control the minimum and maximum values of data plotted by a plot object.
Set the MAX_VALUE property of the plot object to disregard data val ues higher than
a specified value. Set the MIN_VALUE property to disregard data values |ower than
a specified value. Floating-point Not-a-Number (NaN) values are also treated as
missing data and are not plotted.

For example, the following statement changes the minimum and maximum values of
the histogram plot, and re-draws the view object:

myplot2->SetProperty, MAX VALUE=8, MIN VALUE=2

Plot Objects Object Programming

151

Chapter 5: Working with Plots and Graphs

mywindow->Draw, myview
Using Plotting Symbols
Set the SYMBOL property of aplot object equal to the object reference of a symbol
object to display that symbol at each data point. For example, to use atriangle symbol
at each data point, create the following symbol object, set the plot object’s SYMBOL

property, and re-draw:

OBJ_NEW ('IDLgrSymbol',
SYMBOL=mySymbol

5, SIZE=[.3,.3])

mySymbol =
myplotl->SetProperty,

mywindow->Draw, myview

ﬁ.‘ \r:‘X
.’ '\
rl l\
/ \
a 1J “. fis 9’ \
/ o\
o / \i J%\ / : AR
] / \ [: | 4
Vg » po S
Vo | |
w \ I » : \
v/ 'l f AN I i
- i /s %, \
T \ !
' / v)'
l\ -'f \/
\ / h
A
v,
ty

Figure 5-4: Plotting Symbols

Averaging Points
Use the NSUM property of the plot object to average the values of a group of data
points before plotting. If there are m data points, M/NSUM data points are plotted.

Plot Objects

Object Programming

152 Chapter 5: Working with Plots and Graphs

For example, the following statement causes IDL to average pairs of data points
when plotting the line for the histogram plot:

Plot Objects Object Programming

Chapter 5: Working with Plots and Graphs 153

myplot2->SetProperty, NSUM=2
mywindow->Draw, myview

Polar Plots

To create apolar plot, provide a vector of radius values, a vector of theta values, and
set the POLAR property to anonzero value. The following example creates asimple
polar plot:

mywindow = OBJ_ NEW ('IDLgrWindow')

myview = OBJ NEW('IDLgrView',6 VIEWPLANE RECT=[-100,-100,200,200])
mymodel = OBJ NEW ('IDLgrModel')

r = FINDGEN(100)

theta = r/5

mypolarplot = OBJ NEW('IDLgrPlot', r, theta, /POLAR)

myview->Add, mymodel

mymodel->Add, mypolarplot

mywindow->Draw, myview

Figure 5-5: Polar Plot

Object Programming Plot Objects

154 Chapter 5: Working with Plots and Graphs

Axis Objects

AXis objects provide a visual notation of data valuesin two- and three-dimensional
plots and graphs. Each axis is represented by an individual axis object; that is, if you
haveaplot in X and Y, you will need to create an x-axis object and a y-axis object.

Note
Axis objects do not take their range values from data values or other objects, asyou
might expect if you are familiar with IDL Direct Graphics. Instead, axis objects
have a default range of 0.0 to 1.0; you must explicitly set the range of values
covered by the axis object using the RANGE property.

Creating Axis Objects

To create an axis object, specify an integer argument to the IDLgrAXxis::Init method
when calling OBJ_NEW. Specify 0 (zero) to create an x-axis object, 1 (one) to create
ay-axisobject, or 2 to create a z-axis object:

xaxis
yaxis
zaxis

OBJ NEW ('IDLgrAxis', O0)
OBJ NEW ('IDLgrAxis', 1)
OBJ_NEW ('IDLgrAxis', 2)

The various keywords to the Init method allow you to control the number of major
and minor ticks, thetick length and direction, the data range, and other attributes. For
example, to create an x-axis object whose data range is between -5 and 5, with the
tick marks below the axis line, use the following command:

xaxis = OBJ NEW('IDLgrAxis', 0, RANGE=[-5.0, 5.0], TICKDIR=1)
To suppress minor tick marks:
xaxis->SetProperty, MINOR=0

See“IDLgrAXxis” in the IDL Reference Guide manual for details on creating axis
objects.

Using Axis Objects

Suppose you wish to create an X-Y plot of some data and wish to include both x- and
y-axes.

Example Code
The following example codeisincluded in aprocedurefile named obj axis.pro,
located in the examples/doc/objects subdirectory of the IDL distribution. You

Axis Objects Object Programming

RSI_PROCODE/examples/doc/objects/obj_axis.pro

Chapter 5: Working with Plots and Graphs

155

can run the example code by entering obj _axis at the IDL prompt. You can also
examinethe .pro fileinan IDL Editor window for examples of some of the topics
discussed in this section by entering . COMPILE obj axis.pro at thelDL
prompt.

First, we create some data to plot, the plot object, and the axis objects:

data = FINDGEN(100)

myplot = OBJ NEW('IDLgrPlot',6 data)
xaxis = OBJ NEW('IDLgrAxis', 0)
yaxis = OBJ NEW('IDLgrAxis', 1)

Next, we retrieve the data range from the plot object and set the x- and y-axis objects
RANGE properly so that the axes will match the data when displayed:

myplot->GetProperty,

xaxis->SetProperty,
yaxis->SetProperty,

XRANGE=xr,
RANGE=xr
RANGE=yr

YRANGE=yTr

By default, mgjor tickmarks are 0.2 data unitsin length. Since the datarange in this
example is 0 to 99, we set the tick length to 2% of the data range instead:

xtl = 0.02 * (xr[1]
ytl = 0.02 * (yrl[1]
xaxis->SetProperty,
yaxis->SetProperty,

- xr[0])
- yr[o0])
TICKLEN=xt1l
TICKLEN=ytl

Object Programming

Create model and view objects to contain the object tree, and a window object to
display it:

mymodel = OBJ NEW ('IDLgrModel')
myview = OBJ NEW('IDLgrView')
mywindow = OBJ_ NEW ('IDLgrWindow')

mymodel ->Add, myplot
mymodel->Add, xaxis
mymodel->Add, yaxis
myview->Add, mymodel

Usethe SET_VIEW procedure to add an appropriate viewplane rectangle to the view
object. (See " Finding an Appropriate View Volume” on page 74 for information on
SET_VIEW).

SET VIEW, myview, mywindow
Now, display the plot:

mywindow->Draw, myview

Axis Objects

156 Chapter 5: Working with Plots and Graphs

100

80

60 |

40

20

%0 20 40 60 80 100

Figure 5-6: Axis Object
Logarithmic Axes

Creating aplot of logarithmic data requires that you create alogarithmic axis aswell.
The example referenced here first creates alinear plot, then takes alogarithm of the
same data and creates alog-linear plot.

Example Code
The example code for logarithmic axesisincluded in a procedure file named
obj logaxis.pro, located inthe examples/doc/objects subdirectory of the
IDL distribution. You can run the example code by entering obj logaxis at the
IDL prompt. You can also examine the . pro filein an IDL Editor window by
entering .COMPILE obj logaxis.pro atthelDL prompt.

Axis Objects Object Programming

RSI_PROCODE/examples/doc/objects/obj_logaxis.pro

Chapter 5: Working with Plots and Graphs 157

When you run this exampl e, notice that you need to position your mouse cursor at the
IDL command prompt and hit you Enter key to step through the program and arrive
at the following output.

1000

[] IIIII||

100

Logarithmic Y Axis

10 0 10 20 30 40 50
Linear X Axis

Figure 5-7: Logarithmic Axes

Object Programming Axis Objects

158 Chapter 5: Working with Plots and Graphs

Displaying Date/Time Data on Axis Objects

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data). For information on Julian dates and times, the Precision of
Date/Time data, and information on how to generate Date/Time data, see “ Date/Time
Data’ in Chapter 13 of the Building IDL Applications manual.

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (X, y or z).
The date/time data is stored as Julian dates, but the LABEL_DATE routine and axis
keywords allow you to display this data as calendar dates. The following examples
show how to display one-dimensional and two-dimensional date/time data:

» “Displaying Date/Time Data on a Plot Display” below
« “Displaying Date/Time Data on a Contour Display” on page 162

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after theinitial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

number samples = 37

date_time = TIMEGEN (number_samples, UNITS = 'Seconds', $

START = JULDAY (3, 30, 2000, 14, 59, 30))

displacement = SIN(10.*!DTOR*FINDGEN (number samples))
Normally, this type of data would be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import datafrom afile; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional datawith the IDLgrPlot object, the format of
the date/time values is specified through the LABEL_DATE routine:

date_label = LABEL_DATE (DATE FORMAT = ['%$I:%S'])
where %l represents minutes and %S represents seconds.

Before applying the results from LABEL_DATE, we must first create (initialize) our
display objects:

oPlotWindow = OBJ NEW ('IDLgrWindow', RETAIN = 2, $

Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 159

DIMENSIONS = [800, 600])

oPlotView = OBJ NEW('IDLgrView', /DOUBLE)

oPlotModel = OBJ NEW('IDLgrModel')

oPlot = OBJ NEW('IDLgrPlot',6 date time, displacement, $
/DOUBLE)

The oPlotModel object will contain the IDLgrPlot and IDLgrAXxis objects. The
oPlotView abject contains the oPlotModel object with the DOUBLE keyword. The
DOUBLE keyword is set for the oPlotView and oPlot objects because the date/time
data is made up of double-precision floating-point values.

Although the date/time part of the datawill actually be contained and displayed
through the IDLgrAXxis object, the oPlot object is created first to provide a display
region for the axes:

oPlot->GetProperty, XRANGE = xr, YRANGE = yr
xs = NORM_COORD (xr)

xs[0] = xs[0] - 0.5
ys = NORM_COORD (yr)
ys[0] = ys[0] - 0.5

oPlot->SetProperty, XCOORD CONV = xs, YCOORD CONV = ys

The NORM_COORD routineis used to create a normalized (0 to 1) display
coordinate system. This coordinate system will also apply to the IDLgrAXxis objects:

; X-axis title.

oTextXAxis = OBJ NEW('IDLgrText',6 'Time (seconds)"')

; X-axis (date/time axis).

oPlotXAxis = OBJ NEW('IDLgrAxis', 0, /EXACT, RANGE = xr, $
XCOORD _CONV = xs, YCOORD_CONV = ys, TITLE = oTextXAxis, $

LOCATION = [xr[0], yr[0]], TICKDIR = 0, $
TICKLEN = (0.02*(yr[1] - yrl[0l)), $
TICKFORMAT = ['LABEL DATE'], TICKINTERVAL = 5, $
TICKUNITS = ['Time'])
; Y-axis title.
oTextYAxis = OBJ NEW('IDLgrText',6 'Displacement (inches) ')
; Y-axis.

oPlotYAxis = OBJ_NEW('IDLgrAxis', 1, /EXACT, RANGE = yr, $
XCOORD CONV = xs, YCOORD CONV = ys, TITLE = oTextYAxis, $

LOCATION = [xr[0], yr[0]], TICKDIR = 0, $
TICKLEN = (0.02* (xr[1] - xr[0])))
; Plot title.
oPlotText = OBJ NEW('IDLgrText',6 'Measured Signal', $
LOCATIONS = [(xr[0] + xr[1])/2., $
(yrl[1] + (0.02* (yr[0] + yr[1])))]1, s

XCOORD_CONV = xs, YCOORD CONV = ys, $
ALIGNMENT = 0.5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the X-
axis as a date/time axis.

Object Programming Displaying Date/Time Data on Axis Objects

160 Chapter 5: Working with Plots and Graphs

These objects are now added to the oPlotModel object and this model is added to the
oPlotView object:

oPlotModel->Add, oPlot
oPlotModel->Add, oPlotXAxis
oPlotModel->Add, oPlotYAxis
oPlotModel->Add, oPlotText
oPlotView->Add, oPlotModel

Now the oPlotView abject, which contains all of these objects, can be viewed in the
oPlotWindow object:

oPlotWindow->Draw, oPlotView

The Draw method to the oPlotWindow object produces the following results:

Measured Signal

1.0

Displacement (inches)

-. PRI S T T T T T S T N T T S T NS S S | P IR
5335 59:40 5345 59:50 59:55 00:00 00:05
Time (seconds)

Figure 5-8: Displaying Date/Time data with IDLgrPlot

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
also includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levelsto draw and the units used at each level with the TICKUNITS keyword. You
can specify the formatting for these levels by changing the DATE_ FORMAT
keyword setting to the LABEL_DATE routine:

date label = LABEL DATE (DATE FORMAT = $
['$T:%S', '$H', '$D %M, S$Y'])

Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 161

where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three-element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, thefirst level (closest to the axis) will contain minute and second
values separated by a colon (%l :%S). The second level (just below thefirst level) will
contain the hour values (%H). The third level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y). For more information,
see LABEL_DATE in the IDL Reference Guide.

Besides the above change to the LABEL _DATE routine, we must also change the
settings of the IDLgrAXxis properties to specify amultiple level axis:
oPlotXAxis->SetProperty, $
TICKFORMAT = ['LABEL DATE', 'LABEL DATE', 'LABEL DATE'], $
TICKUNITS = ['Time', 'Hour',6 'Day'l]
The TICKFORMAT is now set to a string array containing an element for each level
of the axis. The TICKUNITS keyword is set to note the unit of each level. These
property settings produce the following results:

Measured Signal

Displacement (inches)

PRI T T TR T S S A T NS R S N S S | P IR
59:35 59:40 59:45 59:50 59:55 00:00 00:05
15

Mar 30, 2000
Time (seconds)

Figure 5-9: Displaying Three Levels of Date/Time data with IDLgrPlot

Object Programming Displaying Date/Time Data on Axis Objects

162 Chapter 5: Working with Plots and Graphs

Notice the three levels of the X-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL’'s memory, the object references for oPlotView, oTextXAxis, and
oTextYAXxis should be destroyed. Therefore, after the display is drawn, the
OBJ _DESTROQY routine should be called:

OBJ _DESTROY, [oPlotView, oTextXAxis, oTextYAxis]

The display will remain until closed, but the object references are now freed from
IDL's memory.

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of asingle circle on a sphere recorded at every second for 37 seconds
after theinitial recording of 59 minutes and 30 seconds after 2 o’ clock pm (14
hundred hours) on the 30th day of March in the year 2000:

number samples = 37

date time = TIMEGEN (number samples, UNITS = 'Seconds', $
START = JULDAY (3, 30, 2000, 14, 59, 30))

angle = 10.*FINDGEN (number samples)

temperature = BYTSCL(SIN(10.*!DTOR* $
FINDGEN (number_ samples)) # COS(!DTOR*angle))

As with the one-dimensional case, the format of the date/time values is specified
through the LABEL_DATE routine as follows:

date_label = LABEL DATE (DATE_FORMAT = $
['$I:%8', 'S$H', '%D %M, 3%Y'])

where %l represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

Thefirst level (closest to the axis) will contain minute and second val ues separated
by acolon (%I:%S). The second level (just below thefirst level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year val ue separated from the day and
month values by a comma (%D %M, %Y).

Since the final contour display will befilled, we should define a color palette:

oContourPalette = OBJ NEW('IDLgrPalette')
oContourPalette->LoadCT, 5

Asin the one-dimensional example, the display must be initialized:

oContourWindow = OBJ_ NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [800, 600])

Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 163

oContourView = OBJ NEW('IDLgrView', /DOUBLE)

oContourModel = OBJ NEW ('IDLgrModel')

oContour = OBJ NEW('IDLgrContour', temperature, $
GEOMX = angle, GEOMY = date time, GEOMZ = 0., $
/PLANAR, /FILL, PALETTE = oContourPalette, $
/DOUBLE_GEOM, C_VALUE = BYTSCL (INDGEN(8)), $
C_COLOR = BYTSCL (INDGEN(8)))

; Applying contour lines over the original contour display.

oContourLines = OBJ NEW('IDLgrContour', temperature, $
GEOMX = angle, GEOMY = date_time, GEOMZ = 0.001, s
/PLANAR, /DOUBLE_GEOM, C_VALUE = BYTSCL (INDGEN(8)))

The oContourModel object will contain the IDLgrContour and IDLgrAXis objects.
The oContourView object contains the oContourM odel with the DOUBLE keyword.
The DOUBLE and DOUBLE_GEOM keywords are set for the oContourView and
oContour objects because date/time data is made up of double-precision floating-
point values.

Although the date/time part of the datawill actually be contained and displayed
through the IDLgrAXis object, the oContour object is created first to provide a
display region for the axes:

oContour->GetProperty, XRANGE = xr, YRANGE = yr, ZRange = zZr
xs = NORM_COORD (xr)

xs[0] = xs[0] - 0.5
ys = NORM_COORD (yr)
ys[0] = ys[0] - 0.5

oContour->SetProperty, XCOORD_CONV = xs, YCOORD CONV = ys
oContourLines->SetProperty, XCOORD CONV = xs, YCOORD CONV = ys

The oContourLines abject is created to display contour lines over the filled contours.
Note these lines have a GEOMZ difference of 0.001 from the filled contours. This
differenceis provided to display the lines over thefilled contours and not in the same
view plane. The NORM_COORD routineis used to create anormalized (0 to 1)
display coordinate system. This coordinate system will aso apply to the IDLgrAXxis

objects:
; X-axis title.
oTextXAxis = OBJ _NEW('IDLgrText',6 'Angle (degrees)')
; X-axis.

oContourXAxis = OBJ NEW('IDLgrAxis', 0, /EXACT, RANGE = xr, $
XCOORD_CONV = xs, YCOORD_CONV ys, TITLE = oTextXAxis, $

LOCATION = [xr[0], yr([0], zr[0] + 0.001], TICKDIR = 0, $
)))

TICKLEN = (0.02*(yr[1] - yr([0]))
; Y-axis title.
oTextYAxis = OBJ NEW('IDLgrText', 'Time (seconds)')

; Y-axis (date/time axis).
oContourYAxis = OBJ NEW('IDLgrAxis', 1, /EXACT, RANGE = yr, $
XCOORD_CONV = xs, YCOORD_CONV = ysg, TITLE = oTextYAxis, $

Object Programming Displaying Date/Time Data on Axis Objects

164 Chapter 5: Working with Plots and Graphs
LOCATION = [xr[0], yr[0], zr[0] + 0.001], TICKDIR = 0, S
TICKLEN = (0.02*(xr[1] - xr[0])), $
TICKFORMAT = ['LABEL DATE', 'LABEL DATE', 'LABEL DATE'], $
TICKUNITS = ['Time', 'Hour', 'Day'l, $
TICKLAYOUT = 2)

oContourText = OBJ_NEW('IDLgrText',6 $
'Measured Temperature (degrees Celsius)', $
LOCATIONS = [(xr[0] + xr[1l)/2., $
(yrl[1]l + (0.02*(yr[0] + yr[11)))1, S
XCOORD _CONV = xs, YCOORD CONV = ys, $
ALIGNMENT = 0.5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the Y-
axis as a date/time axis, which contains three levels related to the formats presented
inthe call to the LABEL_DATE routine. This example also contains the
TICKLAYOUT keyword. By default, this keyword is set to 0, which provides the
date/time layout shown in the plot example. In thisexample, TICKLAYOUT is set to

2, which rotates and boxes the tick labels.

These objects are now added to the oContourModel object and this model is added to

the oContourView object:

oContour
oContourLines
oContourXAxis

oContourModel - >Add,
oContourModel->Add,
oContourModel->Add,
oContourModel->Add, oContourYAxis
oContourModel - >Add, oContourText
oContourView->Add, oContourModel

Now the oContourView object, which contains all of these objects, can be viewed in

the oContourWindow object:

oContourWindow->Draw, oContourView

Displaying Date/Time Data on Axis Objects

Object Programming

Chapter 5: Working with Plots and Graphs 165

The Draw method to oContourWindow produces the following results:

Measured Temperature (degrees Celsius)

o

15

Mar 30, 2000

Time (seconds)

(N

0 100 200 300
Angle {degrees)

Figure 5-10: Displaying Date/Time data with IDLgrContour

Notice the three levels of the Y-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL's memory, the object references for oContourView,
oContourPalette, oTextX Axis, and oTextYAXis should be destroyed. Therefore, after
the display is drawn, the OBJ DESTROY routine should be called:

OBJ DESTROY, [oContourView, oContourPalette, $
oTextXAxis, oTextYAxis]

The display will remain until closed, but the object references are now freed from
IDL's memory.

Object Programming Displaying Date/Time Data on Axis Objects

166 Chapter 5: Working with Plots and Graphs

Axis Titles and Tickmark Text

You can supply an axistitle for an axis by setting the TITLE property equal to the
object reference of an IDLgrText object. Text objects connected to axis objects via
the TITLE property are automatically centered under or next to the axis they belong
with.

Note
Titles and tickmark text inherit the color specified for the IDLgrAXis object itself,
even if the COLOR property is specified for the IDLgrText object specified, unless
the USE_ TEXT_COLOR property for the axis is nonzero.

By default, mgjor tick marks are labelled with the data values. You can supply a set
of tickmark text values by setting the TICKTEXT property equal to either asingle
instance of an IDLgrText object containing a vector of text strings or to a vector of
IDLgrText objects, each of which contains a single text string.

Note
Make sure that you have the same number of tick label strings as there are major
tick marks for the axis.

Reverse Axis Plotting

IDL aso alowsyou to plot datain Object Graphics by reversing the order of axistick
values. Thisis known as reverse axis plotting.

When using Object Graphics, each core object is a building block. Any number of
building blocks may be combined together in a hierarchical tree to create an overall
scene. Anindividual object is not aware of the other objectsin the hierarchy;
therefore, the designer of the hierarchy must control all interactions between the
objects. For example, to properly display areverse axis plot in Object Graphics, the
designer must appropriately set the properties on the X axis, the Y axis, and the plot
line, each of which contribute to the overall displayed results.

Example Code
You can run this example by entering EX REVERSE PLOT at the IDL command
line. You can view the source for this example, ex_reverse plot.pro,inthe
examples/doc/objects directory. Alternately, enter COMPILE
ex_reverse plot.pro a thelDL command lineto open thefilein an Editor
window.

Axis Titles and Tickmark Text Object Programming

RSI_PROCODE/examples/doc/objects/ex_reverse_plot.pro

Chapter 5: Working with Plots and Graphs 167

The following figure demonstrates how you can reverse the order of axistick values
using Object Graphics.

40 |
60 |

80 |

19020720 60 80 100

Figure 5-11: Reverse Axis Plotting Example

Object Programming Axis Titles and Tickmark Text

168 Chapter 5: Working with Plots and Graphs

Symbol Objects

Objects of the IDLgrSymbol class are used to display individual data points, either in
an IDLgrPlot object or an IDLgrPolyline object. You can create symbol objects that
display one of seven pre-defined symbols, any visualization object, or any model
object.

Creating Symbol Objects

Specify the type of symbol to use when you call the IDLgrSymbol::Init method.
To Use a Pre-defined Symbol

Specify one of the following values for the symbol type:

1 Plus sign (the default)
2 Asterisk

3 Period

4 Diamond

5 Triangle

6 Square

7 X

For example, to create a symbol object using ared triangle for the symbol, use the
following statement:

mySymbol = OBJ NEW('IDLgrSymbol', 5, COLOR=[255,0,0])
To Use a Graphic Object as a Symbol

You can use an visualization object or amodel object as a symbol. For best results,
create an object that fillsthe domain between —1 and 1 in all directions. For example,
the following statements create a polygon object in the shape of a pentagon and
define a symbol object to use the polygon:

Symbol Objects Object Programming

Chapter 5: Working with Plots and Graphs 169

pentagon=0BJ_NEW ('IDLgrPolygon', [-0.8,0.0,0.8,0.4,-0.4], s
[0.2,0.8,0.2,-0.8,-0.8], COLOR=[0,0,255])
mySymbol = OBJ NEW('IDLgrSymbol', pentagon)

Note that we create the pentagon to fit in the plane between —1 and 1 in both the X
and Y directions. We could also have created the pentagon to fit in a unit square and
then scaled it to fit the domain between —1 and 1.

For example:

pentagon=0BJ_ NEW ('IDLgrPolygon', [0.1,0.5,0.9,0.7,0.3]1, $
[0.6,0.9,0.6,0.1,0.1], COLOR=[0,0,255])

symModel = OBJ_NEW ('IDLgrModel')

symModel ->Add, pentagon

symModel->Scale, 2, 2, 1

symModel->Translate, -1, -1, 0

mySymbol = OBJ NEW ('IDLgrSymbol', symModel)

Note
We create the symbol object to use the model object rather than the polygon object.
Using amodel object as a symbol alows you to apply transformations to the
symbol even after it has been created.

Setting Size

By default, symbols extend one unit to each side of the data point they represent. Set
the SIZE property of the symbol object to a two-element vector that describes the
scaling factor in X and Y to apply to the symbol to change the size of the symbolsthat
are rendered. For example, to scale a symbol so that it extends one tenth of a unit to
each side of the data point, use the statement:

mySymbol ->SetProperty, SIZE=[0.1, 0.1]
Setting Color

If you are using a pre-defined symbol, you can set its color using the COLOR
property of the symbol object. If you are using a graphic object as a symbol, the
symbol’s color is determined by the color of the graphic object and the setting of the
COLOR property of the symbol object itself isignored. For example, the following
statements create a symbol object that uses ared triangle:

mySymbol = OBJ NEW ('IDLgrSymbol', 5, COLOR=[255,0,0])

See “IDLgrSymbol” in the IDL Reference Guide manual for details on creating
symbol objects.

Object Programming Symbol Objects

170 Chapter 5: Working with Plots and Graphs

Using Symbol Objects

To use asymbol, set the SYMBOL property of an IDLgrPlot or IDLgrPolyline object
equal to the symbol object reference:

myPlot->SetProperty, SYMBOL=mySymbol

Suppose you wish to create a symbol object using the pentagon we created above.
Suppose also that you wish to be able to use the pentagon code in more than one
instance, and would like to be able to make changes to the pentagon object’s color,
size, and orientation. You might create a procedure to define a pentagon object
contained in amodel object, and return the object references.

Example Code
Seefilepenta.pro, located in the examples/doc/objects subdirectory of the
IDL distribution to view the source code for this example. Enter . COMPILE
penta.pro a the IDL command line to open the file in the IDL Editor window.

Once you have compiled the penta procedure, cal it with the SYMBOL and MODEL
keywords set equal to named variables that will contain the object references of the
model and polygon objects:

PENTA, SYMBOL=sym, MODEL=symmodel
Next, create a symbol object using the pentagon:

mySymbol = OBJ NEW ('IDLgrSymbol', symmodel)
Now, create a plot object using the pentagon as the plot symbol:

myPlot = OBJ NEW('IDLgrPlot', FINDGEN(10), SYMBOL=mySymbol)
Next, display the plot:

myView = OBJ NEW('IDLgrView', VIEWPLANE RECT=[0,0,10,10])
myModel = OBJ NEW ('IDLgrModel')

myView->Add, myModel

myModel->Add, myPlot

myWindow = OBJ_ NEW ('IDLgrWindow')

myWindow->Draw, myView

Note that the plotting symbols are larger than you might wish. Try making them
smaller:

mySymbol->SetProperty, SIZE=[0.2,0.2]
myWindow->Draw, myView

Or, create the following procedure to spin the pentagons around the z-axis (enter
.RUN at the command prompt, followed by these statements):

Symbol Objects Object Programming

RSI_PROCODE/examples/doc/objects/penta.pro

Chapter 5: Working with Plots and Graphs 171

PRO SPIN, model, view, window, steps

FOR i = 0, steps do begin
model->Rotate, [0,0,1], 10
window->Draw, view

END

END

After compiling the SPIN procedure, cal it from the command line and watch the
pentagons spin:

SPIN, symmodel, myView, myWindow, 100

Whileitisunlikely that you will wish to create spinning plot symbols, this example
demonstrates one of the key advantages of IDL Object Graphics over IDL Direct
Graphics—once created, graphics objects can be easily manipulated in avariety of
ways without the need to recreate the entire graph or image after each change.

Object Programming Symbol Objects

172 Chapter 5: Working with Plots and Graphs

A Plotting Routine

This section devel ops a plotting routine that uses many of the object graphics features
discussed here and in previous chapters.

Example Code
The code for this example is contained in thefile obj plot.pro, located in the
examples/doc/objects subdirectory of the IDL distribution. Enter . COMPILE
obj plot.pro atthelDL command lineto openthefileinthe IDL Editor window
or enter obj_plot to runthe example.

The OBJ_PLOT routine will create awindow object, and display within it aview of a
single model object, which will contain a plot object, x- and y-axis objects, and an x-
axistitle object. It will use the Times Roman font for the axistitle.

In creating the procedure, we allow the user to specify the data to be plotted, and we
define keyword variables which can return the object references for the view, model,
window, axis, and plot objects. This allows the user to manipulate the object tree after
it has been created. We also specify the_EXTRA keyword, which allows the user to
include other keyword parametersin the call. OBJ_PLOT itself passes any extra
keyword parameters only to the plot object, but a more complex program could pass
keyword parameters to any of the objects created. The following lines begin the
procedure.

Note
See “A Function for Coordinate Conversion” on page 77 for adiscussion of the
NORM_COORD function used in this example. Also, SET_VIEW isdiscussed in
“Finding an Appropriate View Volume” on page 74. (Thefilesset view.pro and
norm_coord.pro areincluded in the examples/doc/utilities subdirectory
of the IDL distribution. NORM_COORD is also defined in the obj plot.pro
file))

Now, the OBJ_PLOT routine can be called with only the data parameter, if you
choose. For example, the statement

OBJ PLOT, FINDGEN(10)

creates and displays the object hierarchy with a simple plot line. However, if you do
not retrieve the window, view, and other object references via the keywords, thereis
no way you can interactively modify the plot. A better way to call OBJ PLOT would
be:

A Plotting Routine Object Programming

RSI_PROCODE/examples/doc/objects/obj_plot.pro

Chapter 5: Working with Plots and Graphs 173

OBJ_PLOT, FINDGEN(10), WINDOW=win, VIEW=view, PLOT=plot,
CONTAINER=cont

This statement creates the same object hierarchy, but returns the object references for
the window, view, and plot objects in named variables. Having access the object
references allows you to do things like change the color of the plot:

plot->SetProperty, COLOR=[255,255,255]
window->Draw, view

enlarge the viewplane rectangle by 10 percent:

view->GetProperty, VIEWPLANE RECT=vr
vr2 = [vr[0]-(vr[0]*0.1), vr[l]l-(vr([1l]*0.1), S
vr[2]+(vr[2]*0.1), vr[2]+(vr[2]1*0.1)]
view->SetProperty, VIEWPLANE RECT = vr2
window->Draw, view
or just clean it up:
OBJ_DESTROY, cont

Note that when using the OBJ DESTROY procedure, any object added to the
specified object (using the Add method) are also destroyed, recursively. We use a
container object to collect al of the objects, including attribute objects and text object
that are not explicitly added to the object tree, which alows you to destroy the entire
collection with asingle call to OBJ DESTROY.

Improvements to the OBJ_PLOT Routine
A number of improvements to the OBJ_PLOT routine are left as exercises for the
programmer:

e Provide error checking on the input arguments.

« Provide away to set properties of the axis and text objects when calling
obj plot.

e Provideagraphical user interface to using IDL widgets.

* Do the object cleanup (destroying the objects created by obj plot) when the
user isfinished with the routine. (Thisis easily accomplished if the routine has
awidget interface.)

« Provide away to retrieve data val ues once the data has been plotted, using the
mouse to select data points.

Object Programming A Plotting Routine

174 Chapter 5: Working with Plots and Graphs

A Plotting Routine Object Programming

Chapter 6
Working with Surface
Objects

This chapter describes the use of surface and light objects. The following topics are covered in this
chapter:

SurfaceObjects 176 Anlnteractive Surface Example........ 181

Object Programming 175

176 Chapter 6: Working with Surface Objects

Surface Objects

Surface objects create a representation of functions of two variables. Surfaces are
presented as three-dimensional objectsin three-dimensional space, and thus are good
candidates for interactive rotation, and scaling. Examplesin this chapter discuss
interactive manipulation of surface objects.

Note
Also see “Mapping an Image onto Elevation Data’ in Chapter 3 of the Image
Processing in IDL manual for additional examples using the surface object.

Creating Surface Objects

To create a surface object, provide atwo-dimensional array of surface values (Z
values) to the IDLgrSurface::Init method. Optionally, you can supply two vectors or
arrays X and Y that specify the locationsin the XY plane of the Z values provided. If
X andY arenot provided, the surface is generated as afunction of the array indices of
each element of the Z array.

For example, the following statements create a surface object from the two-
dimensional array created by the IDL command DIST, as a function of the Z data
array indices:

zdata = DIST (40)
mysurf = OBJ NEW('IDLgrSurface',6 zdata)

Surface Objects Object Programming

Chapter 6: Working with Surface Objects 177

Figure 6-1: Surface Object

Similarly, if xdata and ydata are either 40-element vectors or 40x40 element arrays
specifying the X and Y values which, when evaluated by some function, result in the
zdata array, you would create the surface object with the following statement:

mysurf = OBJ NEW('IDLgrSurface',6 zdata, xdata, ydata)

See"IDLgrSurface” in the IDL Reference Guide manual for details on creating
surface objects.

Using Surface Objects

Surface objects have numerous properties controlling how they are rendered. You
can set these properties when creating the surface object, or use the SetProperty
method to the surface object to change these properties after creation.

Style

Set the STY LE property to an integer value that controls how the surfaceis rendered.
Set the STY LE property equal to one of the following integer values:

0 = Display asingle pixel for each data point.
1 = Display the surface as awire mesh. (Thisisthe default.)

Object Programming Surface Objects

178

Chapter 6: Working with Surface Objects

2 = Display the surface as a solid.

3 = Display the surface using only lines drawn parallel to the x-axis.

4 = Display the surface using only lines drawn parallel to the y-axis.

5 = Display awire mesh lego-type surface (similar to a histogram plot).
6 = Display a solid lego-type surface (similar to a histogram plot).

For example, the following statement changes the surface object to display the
surface as awire mesh, with the lines drawn in blue:

mysurf->SetProperty, STYLE=1l, COLOR=[0,0,255]
The following statement draws the surface as a solid lego-type surface in green:

mysurf->SetProperty, STYLE=6, COLOR=[0,255,0]

Vertex Colors

You can supply avector of vertex colorsviathe VERT_COLORS property. The
colorsin the vector will be applied to each vertex in turn. If there are more vertices
than colors supplied for the VERT_COLORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting line
one of four colors:

vcolors =[[0,100,200], [200,150,200], [150,200,250], [250,0,100]]
mysurf->SetProperty, STYLE=1, VERT COLORS=vcolors

Shading

IDL provides two types of shading for surfaces. In Flat shading, the color of the first
vertex in the surface is used to define the color for the entire surface. The color has a
constant intensity. In Gouraud shading, the colors along each line are interpol ated
between vertex colors, and then along scanlines from each of the edge intensities.

Note
By default, only ambient lighting is provided for surfaces. If you do not supply a
light source for your object hierarchy, solid surface objects will appear flat with
either Flat or Gouraud shading. See “Light Objects’ on page 223 for details on
creating and using light objects.

Set the SHADING property of the surface object equal to 0 (zero) to use flat shading
(thisisthe default), or equal to 1 (one) to use Gouraud shading. In the above example
using vertex colors, adding the following statement:

mysurf->SetProperty, STYLE=2, SHADING=1

Surface Objects Object Programming

Chapter 6: Working with Surface Objects 179

creates a surface in which the color values are interpol ated between the vertex colors.

Figure 6-2: Surface Object Shading

Skirts

You can draw a skirt around the bottom edge of your surface object by setting the
SHOW_SKIRT property of the surface object to 1. The skirt extends from the edge of
the surface to a Z value specified by the SKIRT property. For example, the following
statements draw the surface in wire mesh mode, with a skirt extending from the
bottom of the surface to the valuez=0.1:

mysurf->SetProperty, STYLE=1, /SHOW_SKIRT, SKIRT=0.1

Hidden Line Removal

Set the HIDDEN_LINES property to the surface object equal to one to remove lines
that are behind the visible parts of the surface from the rendering. By default, hidden
lines are drawn. The following statement alters the surface to remove the hidden
lines:

mysurf->SetProperty, /HIDDEN LINES

Warning
Hidden line removal can be time-consuming.

Object Programming Surface Objects

180 Chapter 6: Working with Surface Objects

Figure 6-3: Surface Object Hidden Lines

Texture Mapping

You can map an image onto a surface object by specifying an 1pLgrImage object to
the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individual data points within the image data are mapped to the surface’s vertices. If
the TEXTURE_COORD property is not specified, the surface object will map the
texture onto the entire data space (the region between 0.0 and 1.0 in normalized
coordinates). See Chapter 3, “Mapping an Image onto Geometry” in the Image
Processing in IDL manual for examples.

Surface Objects Object Programming

Chapter 6: Working with Surface Objects 181

An Interactive Surface Example

With alittle programming, we can create an application that allows the user to
display a surface object and transform its model tree interactively using the mouse.

Example Code
Example codeislocated in surf track.pro intheexamples/doc/objects
subdirectory of the IDL distribution. Enter . COMPILE surf track.pro &t the
IDL command line to open the filein an IDL Editor window.

This example uses IDL widgets to create a graphical user interface to an object tree.
The SURF_TRACK procedure creates a surface object from user-specified data (or
from default data, if none is specified), and places the surface object in an IDL draw
widget. The SURF_TRACK interface allows the user to specify several attributes of
the object hierarchy via pull-down menus. Finally, the SURF_TRACK procedure
uses the exampl e trackball object (see “Interactive 3D Transformations’ on page 90
for details) to alow the user to rotate the surface in three dimensions.

Call the SURF_TRACK procedure without an argument to use the default surface (a
Bessdl function) or with atwo-dimensional array asits argument:

; Make up some data:
zdata = DIST (40)
SURF_TRACK, zdata

We encourage you to inspect the code in surf track.pro for hints on how to
create a widget application around a draw widget that uses Object Graphics. Note
especially that the SURF_TRACK procedure is well-behaved when it exits,

Object Programming An Interactive Surface Example

RSI_PROCODE/examples/doc/objects/surf_track.pro

182 Chapter 6: Working with Surface Objects

destroying all of the objectsit creates so as not to tie up memory with leftover objects
for which aobject references are no longer available.

Figure 6-4: STYLE=3 (Ruled xz), HIDDEN_LINES=1 (hidden lines removed)

Figure 6-5: SHADING=1 (Gouraud), STYLE=2 (Solid)

An Interactive Surface Example Object Programming

Chapter 6: Working with Surface Objects 183

Figure 6-6: SKIRT=-0.402645

Object Programming An Interactive Surface Example

184 Chapter 6: Working with Surface Objects

An Interactive Surface Example Object Programming

Chapter 7
Creating Volume
Objects

This chapter describes the process of creating and displaying volume objects. The following topics
are covered in this chapter:

Creating aVolume Object 186 Setting Volume Object Attributes. 188

Object Programming 185

186 Chapter 7: Creating Volume Objects

Creating a Volume Object

A volume object contains a three dimensional data array of voxel values and a set of
rendering attributes. The voxel array is mapped to colors and opacity values through
a set of lookup tables in the volume object. Several rendering methods are provided
to draw the volume to a destination.

To create a volume object, create a three dimensional array of voxels and pass them
to the IDLgrVolume::Init method. Voxel arrays must be of BY TE type. For example,
the following will create a simple volume data set and create a volume object which

usesit:
data = BYTARR(64,64,64)
FOR 1=0,63 DO datal*,i,0:1i] = i*2
data[5:15, 5:15, 5:55] = 128
data[45:55, 45:55, 5:15] = 255

myvolume = OBJ NEW('IDLgrVolume', data)

The volume contains a shaded prism along with two brighter cubes (one located
within the prism).

See “IDLgrVolume’ in the IDL Reference Guide manual for details on creating
volume objects.

Example Code
The example code discussed in the following sections is contained in the procedure
fileobj vol.pro, located in the examples/doc/objects subdirectory of the
IDL distribution. Enter . COMPILE obj vol.pro todisplay thefilein the IDL
Editor window. You can run the example procedure by entering OBJ VOL at the
IDL command prompt. The procedure file stops after each operation (roughly
corresponding to each section below) and requests that you press return before
continuing.

Using Volume Objects

A volume object has spatial dimensions equal to the size of the datain the volume. In
the example, the volume object occupies the range 0-63 in the x-, y-, and z-axes. To
make the volume easier to manipulate, we use the XCOORD_CONV,

Creating a Volume Object Object Programming

RSI_PROCODE/examples/doc/objects/obj_vol.pro

Chapter 7: Creating Volume Objects 187

YCOORD_CONV, and ZCOORD_CONYV properties of the volume abject to center
the volume at 0,0,0 and scale it to fit in a unit cube.

Figure 7-1: Volume Object

Object Programming Creating a Volume Object

188 Chapter 7: Creating Volume Objects

Setting Volume Object Attributes

Volume objects have numerous properties controlling how they are rendered. These
properties can be set when the object is created or set using the SetProperty method.

Example Code
The example code discussed in the following sectionsis contained in the procedure
fileobj vol.pro, located in the examples/doc/objects subdirectory of the
IDL distribution. Enter . COMPILE obj vol.pro todisplay thefilein the IDL
Editor window. You can run the example procedure by entering OBJ VOL at the
IDL command prompt. The procedure file stops after each operation (roughly
corresponding to each section below) and requests that you press return before
continuing.

Volume Opacity

The opacity table controls the transparency of a given voxel value. Manipulation of
the opacity tableis critical to improving the quality of arendering. The following
figure reflect the sample code, which makes the prism transparent and the cubes
opaque, allowing the cube within the prism to be seen. Thisis done by setting the
OPACITY_TABLEO array to low values for the prism and high values for the cubes.

Setting Volume Object Attributes Object Programming

RSI_PROCODE/examples/doc/objects/obj_vol.pro

Chapter 7: Creating Volume Objects 189

Figure 7-2: Volume Object Opacity

Volume Color

Each voxel value can be assigned an individual color aswell. This color mapping can
be changed by changing the RGB_TABLEO property. To further highlight the cubes,
we change their colors to blue and red, as shown in the example code,
obj_vol.pro, located in the examples/doc/objects subdirectory of the IDL
distribution.

Volume Lighting

Adding lights enhances the edges of volumes. Gradients within the volume are used
to approximate a surface normal for each voxel, and the lightsin the current view are
then applied. The gradient shading is enabled by setting the LIGHTING_MODEL
property equal to one. The ambient volume color is selected by setting the
AMBIENT property of the volume object to a color value. Setting the TWO_SIDED
property allows both sides of avoxel to belighted. See obj vol.pro inthe
examples/doc/objects subdirectory of the IDL distribution for an example of
using alight source.

Object Programming Setting Volume Object Attributes

190 Chapter 7: Creating Volume Objects

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxelsin alighted view, enabling light sources
increases the rendering time.

See “Light Objects’ on page 223 for more details on creating and using light objects.
Compositing

The volume object supports a number of methods for blending the projected voxels
together to form an image. By default, Alphablending is used. (In Alphablending,
each voxel occludes voxels behind it according to the opacity of the voxel in front).
Another common compositing technique is the maximum intensity projection (MIP).
Set the volume object to use MIP compositing by setting the
COMPOSITE_FUNCTION property equal to one as shown in obj_vol.pro,
located in the examples/doc/objects subdirectory of the IDL distribution. See
“IDLgrVolume Properties’ in the IDL Reference Guide manual for other options.

ZBuffering

When combining a volume with other geometry in the Object Graphics system,
volume objects should in general be drawn last to ensure they intersect the other
(solid) objects properly. To increase rendering speed, the intersection operation is
disabled by default. To enable the intersection calculations, set the ZBUFFER
property of the volume object equal to one.

Additionally, volume objects alow for control over the rendering of invisible
(opacity equals zero) voxels. By default, the zbuffer will be updated for such voxels
(even though no change is made in the image color). This writing to the zbuffer by
transparent voxels be disabled by setting the ZERO_OPACITY _SKIP property.

These properties are set near the beginning of the obj_vol.pro file, located in the
examples/doc/objects subdirectory of the IDL distribution.

Note
In volumes with large numbers of voxels with their opacity set to zero, enabling
ZERO_OPACITY_SKIP can improve rendering performance.

Setting Volume Object Attributes Object Programming

Chapter 7: Creating Volume Objects 191

Interpolation

By default, when rendering a volume object, values between the voxels are estimated
using nearest neighbor sampling. When higher quality rendering is desired, trilinear
interpolation can be selected instead by setting the INTERPOLATE property equal to
one.

myvolume->SetProperty, INTERPOLATE=1

Note
Trilinear interpolation will cause the rendering to take considerably longer than
nearest neighbor interpolation. See “Interpolation Methods” in Chapter 8 of the
Using IDL manual for more information on interpolation.

Rendering speed

Rendering speed can be improved by reducing the quality of the rendering. Use the
RENDER_STEP property to control this speed/quality trade-off. The value of the
RENDER_STEP property specifies a step size in the screen dimensionswhich is
used to skip voxels during the rendering process. Larger values yield faster rendering
times, but lower final image quality. For example, to render only half as many voxels
in the screen Z dimension, use the following statement:

myvolume->SetProperty, RENDER STEP=[1,1,2]

A more complex example using avolume object is shown in the volume visualization
demo. To start the demos, type demo at the IDL command prompt.

Figure 7-3: Volume Object Rendering

Object Programming Setting Volume Object Attributes

192 Chapter 7: Creating Volume Objects

Setting Volume Object Attributes Object Programming

Chapter 8
Polygon and Polyline
Objects

This chapter describes the use of polygon, polyline objects. The following topics are covered in
this chapter:

About Polygon and Polyline Objects 194 PatternObjects 198
PolygonObjects. 195 Polygon Optimization 200
Tessellator Objects. 197 PolylineObjects 205

Object Programming 193

194 Chapter 8: Polygon and Polyline Objects

About Polygon and Polyline Objects

Polygon and Polyline objects are both defined by set of vertices that share rendering
attributes. These objects can be used as underlying structures for other objects (such
as when texture-mapping an image onto a polygon), or can create an independent
3-dimensional visualization of data as shown in the following examples:

* “Mapping an Image onto a Sphere” on page 125

* “Creating a Surface Mesh of an ROI Group” in the Image Processing in IDL
manual

Polylines and polygons can also be used in plotting to represent plot data or support
the display of plot data as shown in the following examples:

« “DENDROGRAM" inthe IDL Reference Guide manual contains an example
that uses an IDLgrPolyline

e “Custom Image Object Annotations’ on page 226 uses polylines and polygons
to construct a custom legend col orbar

This chapter introduces how to create and configure polygon and polyline objects.

About Polygon and Polyline Objects Object Programming

Chapter 8: Polygon and Polyline Objects 195

Polygon Objects

Polygon objects represent one or more filled polygons that share a given set of
vertices and rendering attributes. All polygons must be simple (the edges of the
polygon should not intersect) and convex (the shape of the polygon should not have
any indentations). Concave polygons can be converted into convex polygons using
the helper object IDLgrTessellator. See “ Tessellator Objects’ on page 197 for more
on tessellator objects.

Creating Polygon Objects

To create a polygon object, provide atwo- or three-dimensional array (or two or three
vectors) containing the locations of the polygon’s vertices to the IDLgrPolygon::Init

method. For example, the following statement creates a square with sides one unit in
length, with the lower Ieft corner at the origin:

mypolygon = OBJ_NEW('IDLgrPolygon', [[0,0], [0,1], [1,1], [1,0]])
See “IDLgrPolygon” in the IDL Reference Guide manual for details on creating
polygon objects.

Configuring Polygon Objects

Polygon objects have numerous properties controlling how they are rendered. You
can set these properties when creating the polygon object, or use the SetProperty
method to the polygon object to change these properties after creation.

Style

Set the STY LE property to an integer value that controls how the polygon isrendered.
Set the STY LE property equal to O (zero) to render only the vertices. The following
statement changes the polygon to display only the vertex points, in blue:

mypolygon->SetProperty, STYLE=0, COLOR=[0,0,255]

Set the STY LE property equal to 1 (one) to render the vertices and lines connecting
them. The following statement draws the polygon’s outline in green:

mypolygon->SetProperty, STYLE=1, COLOR=[0,255,0,]

The default setting for the STY LE property is 2, which produces afilled polygon. The
following statement draws the filled polygon in red:

mypolygon->SetProperty, STYLE=2, COLOR=[255,0,0]

Object Programming Polygon Objects

196 Chapter 8: Polygon and Polyline Objects

Vertex Colors

You can supply avector of vertex colorsviathe VERT _COLORS property. The
colorsin the vector will be applied to each vertex in turn. If there are more vertices
than colors supplied for the VERT _COLORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting line
one of four colors:

vcolors =[[0,100,200], [200,150,200], [150,200,250], [250,0,100]]
mypolygon->SetProperty, STYLE=1, VERT COLORS=vcolors

Fill Patterns

As demonstrated in “ Pattern Objects’ on page 198, you can fill a polygon with a
pattern contained in an IDLgrPattern object. Set the FILL_PATTERN property equal
to the object reference of the pattern object. If you have created a pattern object called
mypattern, the following statement uses that pattern as the polygon’sfill pattern:

mypolygon->SetProperty, STYLE=2, FILL PATTERN=mypattern

Shading

IDL provides two types of shading for filled objects. In Flat shading, the color of the
first vertex in each polygon is used to define the color for the entire polygon. The
polygon color has aconstant intensity. In Gouraud shading, the colors along each line
are interpolated between vertex colors, and then along scanlines from each of the
edge intensities.

Set the SHADING property of the polygon object equal to O (zero) to use flat shading
(thisisthe default), or equal to 1 (one) to use Gouraud shading. In the above example
using vertex colors, adding the following statement:

mypolygon->SetProperty, STYLE=2, SHADING=1
creates a polygon fill in which the color values are interpolated between the vertex
colors.
Texture Mapping

You can map an image onto a polygon object by specifying an IDLgrlmage object to
the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individual data points within the image data are mapped to the polygon’s vertices.
Note that you must specify both TEXTURE_MAP and TEXTURE_COORD to
enable texture mapping.

Polygon Objects Object Programming

Chapter 8: Polygon and Polyline Objects 197

Tessellator Objects

The IDLgrTessellator classis a helper class that converts a simple concave polygon
(or asimple polygon with holes) into a number of simple convex polygons (general
triangles). A polygonissimpleif it includes no duplicate vertices, if the edges
intersect only at vertices, and exactly two edges meet at any vertex.

Tessellation is useful because the IDLgrPolygon object accepts only convex
polygons. Using the IDLgrTessellator object, you can convert a concave polygon into
agroup of convex polygons.

Creating Tessellator Objects

The IDLgrTessellator::1nit method takes no arguments. Use the following statement
to create a tessellator object:

myTess = OBJ NEW('IDLgrTessellator')

See“IDLgrTessellator” in the IDL Reference Guide manual for details on creating
tessellator abjects.

Using Tessellator Objects

Theobj tess.pro procedure creates a concave polygon, attempts to draw it, and
then tessellates the polygon and re-draws. Finally, the procedure demonstrates adding
aholeto apolygon. (You will be prompted to press Return after each step is
displayed.) You can also inspect the source code inthe obj tess.pro filefor hints
on using the tessellator object.

Example Code
The procedure fileobj tess.pro, located in the examples/doc/objects
subdirectory of the IDL distribution, provides an example using the
IDLgrTessellator object. To run the example, enter OBJ TESS at the IDL prompt.
Enter .COMPILE obj tess.pro toopenthefileinan IDL Editor window.

Object Programming Tessellator Objects

RSI_PROCODE/examples/doc/objects/obj_tess.pro

198 Chapter 8: Polygon and Polyline Objects

Pattern Objects

Objects of the IDLgrPattern class are used to fill objects of the IDLgrPolygon class.
Pattern objects can create a solid fill (the default), aline fill (with control over the
orientation, spacing, and thickness of the lines used), or a pattern fill (using a byte
pattern you specify). Pattern objects do not have a color of their own; patterns take
their color from the COLOR property of the polygon they fill.

Creating Pattern Objects

Specify afill-pattern style when you call the IDLgrPattern::Init method. Set the
argument to the Init method equal to zero to create a solid fill, equal to oneto create a
line pattern, or equal to two to use abitmap byte array asthefill pattern. For example,
the following statement creates a pattern object with a solid fill:

myPattern = OBJ NEW('IDLgrPattern', O0)

The following statement creates a pattern object with lines ten pixels apart, 5 pixels
wide, at an angle of 30 degrees:

myPattern = OBJ NEW('IDLgrPattern', 1, SPACING=10, THICK=5, $
ORIENTATION=30)

To create a pattern fill, specify a 32-by-4 byte array viathe PATTERN property of
the pattern object. The byte array you specify will be tiled over the area of the
polygon to befilled. For example, the following statements create a pattern fill with a
random speckle. Thefirst statement creates a 32-by-4 byte array with random values
ranging between 0 and 255. The second statement creates the pattern object.

pattern = BYTE (RANDOMN (seed, 32, 4)*255)
myPattern = OBJ NEW('IDLgrPattern', 2, PATTERN=pattern)

See “IDLgrPattern” in the IDL Reference Guide manual for details on creating
pattern objects.

Using Pattern Objects

To fill apolygon with the pattern specified by a pattern object, set the
FILL_PATTERN property equal to the pattern object reference:

myPolygon->SetProperty, FILL PATTERN = myPattern

The following statements create atriangle and fills it with the random speckle
pattern:

pattern = BYTE (RANDOMN (seed, 32, 4)*255)
myPattern = OBJ NEW('IDLgrPattern', 2, PATTERN=pattern)

Pattern Objects Object Programming

Chapter 8: Polygon and Polyline Objects 199

myView = OBJ_NEW (' IDLgrView', VIEWPLANE RECT=[0,0,10,10])

myModel = OBJ NEW ('IDLgrModel')

myPolygon = OBJ NEW('IDLgrPolygon',6 [4, 7, 31, [8, 6, 3],$
color=[255,0,255], fill pattern=myPattern)

myView->Add, myModel

myModel->Add, myPolygon

myWindow = OBJ_ NEW ('IDLgrWindow')

myWindow->Draw, myView

Object Programming Pattern Objects

200 Chapter 8: Polygon and Polyline Objects

Polygon Optimization

Polygon object can be used in awide variety of graphic displays. Consider consulting
the following topics for information on improving the performance of polygon
creation and rendering:

¢ “Polygon Mesh Optimization” on page 200 — describes how to optimize
polygon meshes associated with a polygon through the POLY GON keyword

e “Back-face Culling” on page 203 — lets you skip rendering the unseen side of
closed polygons

¢ “Normal Computations’ on page 203 — uses normals that can be computed by
COMPUTE_MESH_NORMALS instead of the expensive generation of
default normals each time a polygon is drawn

Polygon Mesh Optimization

IDLgrPolygon objects consist of a set of vertices and, optionally—viathe

POLY GON keyword—a connectivity array describing how those vertices are to be
connected to form one or more polygons. Internally, IDL can identify three special
types of polygonal meshes that may be represented very efficiently and therefore
displayed substantially faster than individually described polygons. These specia
mesh types are characterized by repetitive patternsin the connectivity of the vertices.
In performance terms, it isto your advantage to utilize this optimization whenever
possible by appropriately preparing the connectivity list according to the rules
described for the corresponding type of mesh. The special mesh types are as follows:

e “Quad Strips’ on page 200

e “Triangle Fans’ on page 202

e “Triangle Strips’ on page 202
Quad Strips

A quad strip is a connected set of four-sided polygons. To take advantage of
accelerated quad strips, the connectivity should be set up so that the first and last

Polygon Optimization Object Programming

Chapter 8: Polygon and Polyline Objects 201

vertex for one quad are the same as the second and third of the previous quad. See the

figure below.
0 1 2 3
4 5 6 7
8 9 10 11

Figure 8-1: Quad Strip Mesh

For example, to use a quad strip optimization for the polygons shown above, the
connectivity for the vertices should be as follows:

verts = [vO0, v1, v2, v3, v4, v5, vé6, v7, v8, v9, v10 ,vll]
oPoly = OBJ NEW(IDLgrPolygon, verts, $
POLYGON=[4, O, 1, 5, 4, s
4, 1, 2 ,6, 5, s
4, 2, 3, 7, 6, S
4, 4, 5, 9, 8, S
4, 5, 6, 10, 9, s
4, 6, 7, 11, 101)

An aternate connectivity list that still uses quad strip optimization can also be used
asin the following example, which orients each quad in the opposite direction of the
first example.

oPoly = OBJ NEW('IDLgrPolygon', verts, $
POLYGON=[4, 4, 5, 1, 0, $

4, 5, 6, 2, 1, 8
4, 6, 7, 3, 2, S
4, 8, 9, 5, 4, S
4, 9, 10, 6, 5,8
4, 10, 11, 7, 61)

Object Programming Polygon Optimization

202 Chapter 8: Polygon and Polyline Objects

Triangle Fans

A triangle fan is a set of connected triangles that all share acommon vertex. To take
advantage of accelerated triangle fans, the connectivity should be set up so that the
first vertex in every triangle is the common vertex, and the second vertex is the same
asthelast vertex of the previous triangle, as shown below.

Figure 8-2: Triangle Fan Mesh (left) and Triangle Strip Mesh (right)

For example, to use atriangle fan optimization for the polygons shown in the left side
of the figure, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, V5]
oPoly = OBJ NEW(IDLgrPolygon, verts, $
POLYGON=[3, 0, 1, 2, $
3, 0, 2, 3, S
3, 0, 3, 4, S
3, 0, 4, 51])

’

Triangle Strips

A triangle strip is a set of connected triangles, each of which share two vertices with
the previous triangle. To take advantage of accelerated triangle strips, the
connectivity should be set up so that the first two verticesin every triangle must have
been in the previoustriangle and ordered in the same direction (counter-clockwise or
clockwise) and the final vertex must be new, as shown in the right side of the
previous figure.

For example, to use the triangle strip optimization for the polygons shown in the
right-hand figure, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]

Polygon Optimization Object Programming

Chapter 8: Polygon and Polyline Objects 203

oPoly = OBJ NEW(IDLgrPolygon, verts, $
POLYGON=[3, 0, 1, 2, $

3’ 2/ ll 3’ $
3, 2, 3, 4, 8§
3, 4, 3, 5])

No limits are imposed on the number of meshes or types of meshes within any given
polygon object. A single POLY GON keyword value might contain any combination
of quad strips, triangle strips, triangle fans, or non-specialized polygons.

Asthe length of the strips or fans grows, and as the percentage of vertex connections
that are optimized by the rules described above increases, the performance upgrade
becomes more perceptible. The optimizations are a result of minimizing the time
required to perform vertex transforms. If the drawing of the polygons are otherwise
limited by fill-rate (as might occur on some systems if texture-mapping is being
applied, for instance), these optimizations may not be of significant benefit. In any
case, performance will not be hindered in any way by utilizing these specialized
meshes, so it is suggested that they be applied whenever possible.

Note
The IDLgrSurface object always takes advantage of the quad mesh optimization
automatically without programmer intervention.

Back-face Culling

For polygonal meshes that describe a closed shape (for example, a sphere), it is often
wasteful to spend any time rendering the polygons whose normal vector faces away
from the eye because it is known that the polygons whose hormals face toward the
eye will obscure those back-facing polygons. Therefore, for efficiency, it may be
beneficia to employ back-face culling, which is simply the process of choosing to
skip the rasterization of any polygons whose normal vector faces away from the eye.

On an IDLgrPolygon object, set the REJECT property to avalue of 1 to enable
back-face culling.

Normal Computations

For IDLgrPolygon objects, normal vectors are computed by default at each vertex by
averaging the normals of the polygons that share that vertex. These normals are then
used to compute illumination intensities across the surface of the polygon.
Computing default normals is a computationally expensive operation. Each time the
polygon is drawn, this computation will be repeated if the polygon has changed
significantly enough to warrant anew internal cache (for example, if the

Object Programming Polygon Optimization

204 Chapter 8: Polygon and Polyline Objects

connectivity, vertices, shading, or style have changed). In some cases, the normals do
not actually change as other modifications are made. In these cases, the expense of
default normal computation can be bypassed if the user provides the normals
explicitly (viathe NORMALS keyword). These normals can be computed by using
the COMPUTE_MESH NORMALS routine in the IDL Reference Guide. The
resulting normals, if passed in viathe NORMALS keyword of the IDLgrPolygon
object, will be reused every time the polygon is drawn (without further computation)
until they are replaced explicitly by the user.

Polygon Optimization Object Programming

Chapter 8: Polygon and Polyline Objects 205

Polyline Objects

Polyline objects lines connect a series of points in two- or three-dimensional space.
Creating Polyline Objects

To create a polyline object, provide a 2-by-n or 3-by-n array (or two or three vectors)
containing the locations of the polyline's constituent pointsto the IDLgrPolyline::Init
method. For example, the following statement creates aline from the origin, to the
point X=1,Y=2,thentothepoint X=4, Y=3:

mypolyline = OBJ NEW('IDLgrPolyline', [[0,0], [1,2], [4,3]11])
See“IDLgrPolyline” in the IDL Reference Guide manual for details on creating
polyline objects.

Using Polyline Objects

Polyline objects have numerous properties controlling how they are rendered. You
can set these properties when creating the polyline object, or use the SetProperty
method to the polyline object to change these properties after creation.

Symbols

You can specify asymbol to render at each point in the polyline's path by setting the
SYMBOL property to the object reference of an IDLgrSymbol object (or to an array
of IDLgrSymbol objects). See “ Symbol Objects’ on page 168 for details.

Shading and Vertex Coloring

Polyline object can be shaded or their vertex points colored in the same manner as
polygon objects. See “ Shading” and “Vertex Colors” in “Configuring Polygon
Objects’ on page 195 for details.

Object Programming Polyline Objects

206 Chapter 8: Polygon and Polyline Objects

Polyline Objects Object Programming

Chapter 9

Annotating an Object

Display

The following topics are covered in this chapter:

Annotating Object Graphic Displays. 208
TextObjectso vvii i 209
FontObjects........................ 213
ROIObjects ...t 217

Object Programming

LegendObjectst 218
Colorbar Objects 221
Light Objects 223
Custom Image Object Annotations 226

207

208 Chapter 9: Annotating an Object Display
Annotating Object Graphic Displays

Additional objects can be added to the main subjects of an object graphic display
(such as aplot, surface, image or volume) to provide explanatory notes or otherwise
enhance the information displayed. The objects discussed in this chapter are typically
used to further illustrate characteristics of the main subjects of adisplay. For

exampl e, text objects can add descriptive titles, legend objects can distinguish plot
data, and light objects can reveal characteristics of surfaces or volumes.

Annotating Object Graphic Displays Object Programming

Chapter 9: Annotating an Object Display 209

Text Objects

Text objects contain string values that are drawn to the destination object at alocation
you specify. You have control over the font used (viaan IDLgrFont object), the angle
of the text baseline, and the vertical direction of the text.

Creating Text Objects

To create atext object, specify astring or an array of strings to the IDLgrText::Init
method when calling OBJ NEW.

mytext = OBJ_NEW('IDLgrText',6 'A Text String')
or

mytextarr = OBJ _NEW('IDLgrText', $
['First String', 'Second String', 'Third String'l)
See“IDLgrText” in the IDL Reference Guide manual for details on creating text
objects.

Using Text Objects

Creating text annotationsin their simplest form—two-dimensional text displayed at a
given location—involves only specifying the text, and the location. For example, to
display the words Text String in awindow in the default font, the following
statements suffice:

mywindow = OBJ NEW ('IDLgrWindow', DIMENSIONS=[400,400])

myview = OBJ NEW('IDLgrView', VIEWPLANE RECT=[0,0,10,10])

mymodel = OBJ NEW ('IDLgrModel')

mytext = OBJ NEW('IDLgrText', 'Text String', LOCATION=[4,4], $
COLOR=[50,100,150])

myview->Add, mymodel

mymodel->Add, mytext

mywindow->Draw, myview

Thetext is drawn at the specified location, with the baseline paralel to the x-axis.
Location and Alignment

Specifying alocation viathe LOCATION property picks a point in space where the
text object will be placed. By default, text objects are aligned with their lower left
edge located at the point specified by the LOCATION property.

Object Programming Text Objects

210 Chapter 9: Annotating an Object Display

You can change the horizontal position of the text object with respect to the point
specified by LOCATION by changing the ALIGNMENT property to a floating-point
value between 0.0 and 1.0. The default value (0.0) aligns and | eft-justifies text at the
location specified. Setting ALIGNMENT to 1.0 right-justifies the text; setting it to
0.5 centers the text above the point specified. The vertical position with respect to
location can also be set using the VERTICAL_ALIGNMENT property. The default
value (0.0) bottom-justifies the text at the given location. A vertical alignment of 1.0
top-justifies the text.

3D Text and Text “On the Glass”

Text objects, like all graphics atoms, are located and oriented in three-dimensional
space. (We often ignore the third dimension when making simple plots and graphs—
in these cases we simply use the default z value of zero.) With text objects, however,
there is an option to project text on the glass.

Projecting text on the glass ensures that it is displayed asif it werein flat, two-
dimensional space no matter what its true orientation in three-dimensional space may
be. In cases where text objects may be rotated at arbitrary angles, projecting on the
glass ensures that the text will be readable.

To project text on the glass, set the ONGLASS property of the text object to avalue
other than zero.

rOj eCted D T

ONGLASS Text

Figure 9-1: 3D Text and Text “On the Glass”

Text Objects Object Programming

Chapter 9: Annotating an Object Display 211

Baseline

The text baseline can be atered from its default orientation (parallel to the x-axis) by