Getting Started with IDL
Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures, functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the restrictions stated in the license agreement. RSI reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, as to any matter not expressly set forth in the license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are a licensed user of this product, RSI grants you a limited, nontransferable license to reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such copies must contain the title page and this notice page in their entirety.

Acknowledgments

IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of ITT Industries, registered in the United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch’s Kakadu software, for which Kodak has a commercial license. Kakadu Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.
Contents

Chapter 1
The Power of IDL ... 11
Using this Manual ... 15

Chapter 2
The IDL Interface .. 17
Starting IDL .. 18
Using the IDL Development Environment 19
 Menu Bar .. 20
 Toolbars .. 20
 Project Window .. 20
 Multiple Document Panel ... 21
 Command Line ... 22
 Output Log .. 23
 Variable Watch Window ... 23
 Status Bar .. 23
The IDL iTools ... 24
 Starting an iTool .. 25
 Loading Data into an iTool ... 25
 The iTools Data Manager .. 26
Quitting IDL .. 27
More About Using IDL ... 28

Chapter 3
Reading and Writing Data .. 29
 IDL and Reading and Writing Data 30
 IDL Supported Formats .. 31
 Importing Data from an ASCII File 32
 Reading and Writing Binary Data ... 33
 Reading and Writing Images ... 34
 Importing Image Data into an iTool 34
 Importing Image Data at the Command Line 35
More About IDL and Input/Output .. 36

Chapter 4
2-D Plots .. 37
 IDL and 2-D Plotting .. 38
 Using the iPlot Tool .. 39
 Displaying a 2D Plot ... 39
 Displaying an Overplot ... 40
 Modifying Plots .. 42
 Simple Command Line Plotting ... 43
 Using OPLOT .. 44
 Printing a Plot .. 44
 Plotting with Data Sets ... 46
 Other Plotting Capabilities .. 48
More About 2-D Plotting ... 49

Chapter 5
Signal Processing with IDL ... 51
 IDL and Signal Processing .. 52
 Creating a Data Set ... 53
 Signal Processing with SMOOTH .. 56
Frequency Domain Filtering ... 57
Displaying the Results ... 60
More About Signal Processing .. 62

Chapter 6
Images ... 63
IDL and Images ... 64
Using the iImage Tool ... 65
 Displaying an Image .. 65
 Modifying Images .. 66
Image Data and the Command Line .. 67
 Reading Image Data .. 67
 Displaying Image Data ... 67
Resizing an Image .. 70
Resizing a Graphics Window .. 72
Contrast Enhancement .. 73
 Thresholding .. 73
 Scaling Pixel Values .. 76
Smoothing and Sharpening ... 79
 Unsharp Masking .. 79
 Sharpening Images with Differentiation .. 80
Other Image Manipulations ... 83
 Rotating an Image .. 83
Extracting Profiles ... 85
More About Images in IDL ... 86

Chapter 7
Surfaces and Contours ... 87
Surfaces and Contours in IDL .. 88
Accessing Binary Surface Data ... 89
Using the iSurface Tool .. 90
 Displaying a Surface ... 90
 Modifying Surfaces ... 91
Using the iContour Tool ... 92
 Displaying a Contour ... 92
 Modifying a Contour ... 93
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Data and the Command Line</td>
<td>94</td>
</tr>
<tr>
<td>Displaying a Shaded Surface</td>
<td>95</td>
</tr>
<tr>
<td>Contour Data and the Command Line</td>
<td>100</td>
</tr>
<tr>
<td>Displaying a Contour</td>
<td>100</td>
</tr>
<tr>
<td>Plotting with SHOW3</td>
<td>105</td>
</tr>
<tr>
<td>More About Surfaces and Contours</td>
<td>106</td>
</tr>
<tr>
<td>Chapter 8</td>
<td></td>
</tr>
<tr>
<td>Volume Visualization</td>
<td>107</td>
</tr>
<tr>
<td>IDL and Volume Visualization</td>
<td>108</td>
</tr>
<tr>
<td>Using the iVolume Tool</td>
<td>109</td>
</tr>
<tr>
<td>Displaying a Volume</td>
<td>109</td>
</tr>
<tr>
<td>Modifying Volume Data</td>
<td>111</td>
</tr>
<tr>
<td>Command Line Volume Visualization</td>
<td>112</td>
</tr>
<tr>
<td>Reading in a Dataset for Visualization</td>
<td>112</td>
</tr>
<tr>
<td>3-D Transformations</td>
<td>113</td>
</tr>
<tr>
<td>Visualizing an Iso-Surface</td>
<td>114</td>
</tr>
<tr>
<td>Volume Slices and the IDL Slicer</td>
<td>117</td>
</tr>
<tr>
<td>Displaying a Surface with the Slicer</td>
<td>119</td>
</tr>
<tr>
<td>Dismiss the Slicer and Volume Windows</td>
<td>120</td>
</tr>
<tr>
<td>More About Volume Visualization</td>
<td>121</td>
</tr>
<tr>
<td>Chapter 9</td>
<td></td>
</tr>
<tr>
<td>Mapping</td>
<td>123</td>
</tr>
<tr>
<td>IDL and Mapping</td>
<td>124</td>
</tr>
<tr>
<td>Using the iMap Tool</td>
<td>125</td>
</tr>
<tr>
<td>Displaying a Map</td>
<td>125</td>
</tr>
<tr>
<td>Modifying Map Data</td>
<td>125</td>
</tr>
<tr>
<td>Drawing Map Projections</td>
<td>126</td>
</tr>
<tr>
<td>Drawing an Orthographic Projection</td>
<td>129</td>
</tr>
<tr>
<td>Plotting a Portion of the Globe</td>
<td>130</td>
</tr>
<tr>
<td>Plotting Data on Maps</td>
<td>131</td>
</tr>
<tr>
<td>Reading Latitudes and Longitudes</td>
<td>133</td>
</tr>
<tr>
<td>Plotting Contours Over Maps</td>
<td>134</td>
</tr>
<tr>
<td>Warping Images to Maps</td>
<td>136</td>
</tr>
<tr>
<td>More About Mapping</td>
<td>141</td>
</tr>
</tbody>
</table>
Chapter 10
Plotting Irregularly-Gridded Data ... 143
Irregularly Gridded Data in IDL ... 144
Creating a Dataset .. 145
The TRIANGULATE Procedure .. 147
Plotting the Results with TRIGRID ... 149
More About Gridding ... 151

Chapter 11
Animation .. 153
IDL and Animation ... 154
Animating a Series of Images ... 155
Displaying an Animation as a Wire Mesh ... 157
Animation with XINTERANIMATE ... 160
Cleaning Up the Animation Windows .. 161
More About Animation ... 162

Chapter 12
Programming in IDL ... 163
IDL and Programming ... 164
Programming Capabilities of the IDLDE .. 165
 Built-In Editor .. 165
 Types of IDL Programs .. 165
 Compound Statements .. 166
 Conditional Statements .. 166
 Loop Statements .. 166
 Jump Statements .. 167
Executing a Simple IDL Program .. 168
 Saving, Compiling and Running ... 169
Debugging Tools in IDL ... 170
 Breakpoints ... 170
 Variable Watch Window ... 170
 The IDL Code Profiler .. 171
Using IDL Projects .. 172
 Accessing All Application Files .. 172
 Working with Project Files ... 173
 Compiling and Running Applications ... 173
Chapter 15
Where to Go From Here ... 201
Learning More about IDL .. 202
 IDL Documentation Set .. 202
 Online Help ... 204
 Online Manuals ... 205
IDL Demo Applications and Examples ... 206
Contacting RSI .. 207
 Address .. 207
 Phone .. 207
 Fax .. 207
 E-mail ... 207
 World Wide Web ... 207
Index ... 209
IDL, the Interactive Data Language, is the ideal software for data analysis, visualization, and cross-platform application development. IDL integrates a powerful, array-oriented language with numerous mathematical analysis and graphical display techniques, thus giving you incredible flexibility. A few lines of IDL can do the job of hundreds of lines of C or Fortran, without losing flexibility or performance. A fourth-generation language, IDL is radically more compact than C or Fortran. Using IDL, tasks that require days or weeks of programming with traditional languages can be accomplished in hours. Users can explore data interactively using IDL commands and then create complete applications by writing IDL programs.
Create Data - Use IDL to create data, using a complete, structured language that can be used interactively and on sophisticated functions, procedures, and applications.

Create Applications - Use the IDLDE (IDL Development Environment) to compile and execute commands immediately. It also includes built-in editing and debugging tools that provide instant feedback and “hands-on” interaction.

Read and Write Data - Use IDL to read and write almost any kind of data. Support is provided for common image standards and scientific data formats. If you have data, you can read it into IDL!

Visualize Data with the iTools - Use IDL’s iTools for your data visualization needs including plots, images, contours, surfaces volumes, and maps.
Signal Processing - Use IDL Signal Processing techniques to process a variety of 1-D signals, from traditional filtering and transform operations to statistical methods such as prediction analysis.

Image Processing - Use IDL Image Processing techniques to filter out noise and to highlight true data characteristics and expose anomalies.

Mapping Capabilities - Use IDL Mapping techniques to plot data over different projections of the globe.

Irregularly-Sampled Data - Use IDL to easily fit irregularly-sampled data to a regular grid. This regularly-gridded data can then be sent to IDL’s plotting routines.
Animate Images - Use IDL Animation tasks to visualize your data dynamically and to create an array of images and play them back as an animated sequence.

Create Applications - Use IDL to write sophisticated programs and applications using a complete set of program-control statements.
Using this Manual

The chapters included in this manual provide a “hands-on” way to learn basic IDL concepts and techniques. *Getting Started with IDL* demonstrates a number of common IDL applications: reading and writing data, 2-D plotting, signal processing, surface and contour plotting, image processing, volume visualization, mapping, plotting irregularly-gridded data, animation, programming in IDL, manipulating data, IDL Toolkits, and use of IDL’s GUIBuilder. Each section introduces basic IDL concepts and highlights some of the commonly used IDL commands.

You don’t have to read all of the descriptive passages that accompany each chapter. Simply enter the IDL commands shown in courier type at the IDL Command Line (the “IDL>” prompt) and observe the results. Unless otherwise noted, each line shown is a complete IDL command (press RETURN after typing each command). If you want more information about a specific command, you can read the explanations.

Each chapter functions similarly to a tutorial and is a demonstration of a particular IDL feature. It is recommended that you walk through each short, interactive chapter to preserve continuity, since many commands rely upon previous commands. Each chapter assumes the most basic level of IDL experience.

Note

The examples and graphics in this manual have been captured using the Windows platform. Where needed, explanations have been provided for use of the examples on UNIX or Macintosh platforms.

Note

The dollar sign ($) at the end of the first line is the IDL continuation character. It allows you to enter long IDL commands as multiple lines.

Note

To simplify obtaining useful results from the examples in this manual, create a bitmap buffer for your graphic windows and use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```
Chapter 2
The IDL Interface

This chapter introduces the IDL Development Environment and its capabilities.

Starting IDL . 18
Using the IDL Development Environment . . 19
The IDL iTools . 24
Quitting IDL . 27
More About Using IDL 28
Starting IDL

To start IDL, follow the instructions according to your Operating System:

- **Windows** - Click the Windows Start button, and select:

 Programs → RSI IDL 6.3 → IDL.

- **Macintosh** - IDL 6.3 for MacOS X can only be run from a UNIX X-Windows prompt. In order to obtain an X-Windows prompt, it is necessary to start the Apple X11 window manager. Launch X11 from the Applications folder. X11 displays a UNIX X-Windows command line in an OS X window. Now at the system command prompt enter:

 idlde

- **Motif** - Start IDL by entering the following at the % prompt:

 idlde

Note

For more information on installing and licensing IDL, see the IDL installation instructions for your platform.
Using the IDL Development Environment

IDL’s multiple-document interface is called the IDL Development Environment (IDLDE) and includes built-in editing and debugging tools. The IDL Development Environment is available for use on the Windows, Macintosh, and Motif (UNIX) platforms.

Note
All figures shown in this chapter are Windows environment figures but the IDLDE is similar on each of the other platforms. Simply open the IDLDE in your environment and follow along with the descriptions of IDLDE features.

Note
A command line interface is also available on UNIX and Macintosh platforms. For more information, see the Using IDL manual.

When you start IDL, the IDL Development Environment appears:

![Screenshot of the IDL Development Environment](image)

Figure 2-1: The IDL Development Environment (Shown in Windows OS)
Menu Bar

The menu bar, located at the top of the main IDLDE window, allows you to control various IDLDE features. When you select an option from a menu item in the IDLDE, the Status Bar displays a brief description.

You can display menu commands for each menu using the following methods:

- Clicking the menu on the Menu bar.
- Pressing the Alt key plus the underlined letter in the menu’s title. For example, to display the File menu, press Alt+F.

You can select or execute a menu command using the following methods:

- Clicking the item in the menu.
- Pressing the Alt key plus the underlined letter in the menu’s title, and then pressing the letter underlined in the menu item. For example, to select the menu item File → Open, press Alt+F+O.
- Using the cursor and the arrow keys to highlight a menu item, and then pressing the Enter key.

Note

Many items (on each platform) have keyboard shortcuts displayed to the right of the corresponding menu option.

Toolbars

There are three toolbars in the IDLDE: Standard, Run & Debug, and Macros. In addition, when you open an IDL GUIBuilder window (Windows only), its associated toolbar is displayed. When you position the mouse pointer over a toolbar button, the Status Bar displays a brief description. If you click on a toolbar button which represents an IDL command, the IDL command issued is displayed in the Output Log. Display or hide toolbars by making selections among the Windows → Toolbars items.

Project Window

The Project Window displays information about the current Project you have open in the IDLDE. IDL Projects allow you to easily develop applications in IDL. Through a Project, you can compile, run, and create distributions of your IDL application. The IDL Project Window allows you to access and manage all of the files required for
your application. This makes it easier to create a distribution for other developers, colleagues, or users.

Multiple Document Panel

The section of the main IDL window where IDL Editor windows and GUIBuilder windows are displayed is known as the multiple document panel. Any number of files may be open at a single time. You can access different files from the **Windows** menu by clicking on the appropriate file.

Editor Windows

IDL Editor windows allow you to write and edit IDL programs (and other text files) from within IDL. Any number of Editor windows can exist simultaneously. No Editor windows are open when IDL is first started. Editor windows can be created by selecting **File → New** or **File → Open**. See “Maximizing the Editor’s Capabilities” in Chapter 2 of the *Building IDL Applications* manual for more information on the IDL Editor.

To see the Multiple Document Panel at work, open the file `examples.pro` by typing `.COMPILE examples.pro` at the IDL command line. (See “Command Line” on page 59 for details.)

The following figure shows the IDL program file opened in the Windows IDLDE.

GUIBuilder Windows

Under Microsoft Windows, IDL GUIBuilder windows allow you to interactively create user interfaces. Then, you can generate the IDL code that defines the interface and the code to contain the event-handling routines. You can modify the code, compile, and run the application in the IDLDE. To open a GUIBuilder window, you can select **File → New → GUI** or you can select **File → Open**. See Chapter 29.
“Using the IDL GUIBuilder” in the Building IDL Applications manual. for more information on the GUIBuilder.

Graphics Windows

IDL Graphics windows are not displayed in the Multiple Document Panel, but do appear when you use IDL to plot or display data. You can copy the contents of a Graphics window—iTool, Object or Direct—directly to the operating system clipboard in a bitmap format using CTRL+C.

When an IDL Graphics window is minimized (iconized), the icon displays the name of the IDL window. This icon appears on the desktop, not in the Multiple Document Panel, as with an iconized Editor window.

Warning
If the backing store is not set when a window is iconized, it will not be refreshed upon return. For more information about setting the backing store for graphics windows, see “Graphics Preferences” on page 106.

Command Line

The Command Line is an IDL prompt where you can enter IDL commands. The text output by IDL commands is displayed in the Output Log window. IDL is an interpreted language and commands entered at the Command Line are executed immediately. To see the IDL Command Line in action, enter the following in the Command Line at the IDL prompt and press Enter:

```
print, 'Hello World!' 
```

If you click the right mouse button while positioned over the Command Input Line, a popup menu appears displaying the command history, with a default buffer of 20 entries and a maximum of 100 entries. Select an entry to reissue the command. See “Recalling Commands” in Chapter 2 of the Building IDL Applications manual for additional information about the command recall buffer.
Output Log

Output from IDL is displayed in the Output Log window, which appears by default when the IDLDE is first started. Notice the result of our print command in the Output Log in the following figure.

Figure 2-4: The IDL Output Log

If you click the right mouse button while positioned over the Output Log, a context menu appears allowing you to move to a specified error or clear the contents of the Output Log. An additional Windows-only context menu option allows you to copy selected contents.

Variable Watch Window

The Variable Watch window appears by default when you start the IDLDE. It keeps track of variables as they appear and change during program execution (tabs exist for viewing variables by type; Locals, Params, Common and System). For more information about the Variable Watch window, see “The Variable Watch Window” in Chapter 8 of the Building IDL Applications manual.

Status Bar

When you position the mouse pointer over a Control Panel or Toolbar button, or select an option from a menu in IDLDE, the Status Bar displays a brief description.
The IDL iTools

The IDL Intelligent Tools (iTools) are a set of interactive utilities that combine data analysis and visualization with the task of producing presentation quality graphics. Based on the IDL Object Graphics system, the iTools are designed to help you get the most out of your data with minimal effort. They allow you to continue to benefit from the control of a programming language, while enjoying the convenience of a point-and-click environment. Each tool is designed around a specific visualization type:

- Two and three dimensional plots (line, scatter, polar, and histogram style)
- Surface representations
- Contour maps
- Image displays
- Volume visualizations
- Maps
- Vector displays

Figure 2-5: Black Hole Density Data in the iVolume Tool
For detailed information on the new iTools and how to use them, see the *iTool User’s Guide*.

The iTools are built upon an object-oriented framework, or set of object classes, that serve as the building blocks for their interface and functionality. IDL programmers can easily use this framework to create custom data analysis and visualization environments. Such custom Intelligent Tools may be called from within a larger IDL application, or they may serve as the foundation for a complete application in themselves. For more information on creating your own custom iTools, see the *iTool Developer’s Guide*.

Starting an iTool

To get started using the new IDL iTools, from the IDLDE command line, simply type the name of the tool you wish to call. The tools available are:

- iContour
- iImage
- iPlot
- iSurface
- iVolume
- iMap
- iVector

You can also launch an iTool using these other methods:

- From Windows:

 Start → Programs → RSI IDL 6.1 → iTools → iTool Name

- From the IDLDE:

 File → New → Visualization → iTool Name

Loading Data into an iTool

There are multiple options for loading your data into your chosen iTool for visualization:

- **Command Line Argument** — At the IDL Command Line enter:

  ```plaintext
  mydata = RANDOMU(SEED, 45)
  iPlot, mydata
  ```
Chapter 2: The IDL Interface

This option allows you to have control over parameters and keyword options for setting up the way you wish your plot (or other visualization) to appear.

- **File → Open** — The quickest way to create a default visualization of your data.
- **File → Import → IDL variable** — This will invoke the IDL Import wizard.
- **File → Import → From a File** — This also invokes the IDL Import wizard.
- **Insert → Visualization** — This method gives you parameter control similar to using the command line.

Note

For more detailed information on loading data into the iTools, see Chapter 2, “Importing and Exporting Data” in the *iTool User’s Guide* manual.

The iTools Data Manager

All data used by any iTool is first loaded into the iTools Data Manager, which keeps track of which data items are associated with an iTool visualization. The Data Manager provides a convenient and structured environment in which to import and view files and variables.

The process of loading data into the Data Manager is entirely automatic if you specify data when launching an iTool at the IDL command line or if you open a data file using the **Open** command from the iTool’s **File** menu. In these cases, the iTool will import the data in the specified file or variable and create a visualization of the default type for the selected data and the iTool you are using.

If you want more control over the process of creating a visualization, you can load data into the Data Manager manually, either from a data file or from one or more variables that exist in your current IDL session. Once a data item is placed in the Data Manager, it is available to all iTools until it is removed.
Quitting IDL

To quit the current IDL session and return to the operating system, select File → Exit in the IDL Development Environment. You can also type EXIT at the IDL Command Line:

IDL>EXIT
More About Using IDL

This overview has acquainted you with the very basic layout and function of the IDL Development Environment and the basic functions of the IDL iTools. More in-depth information on working with IDL and the IDL Development Environment (IDLDE) can be found in *Using IDL* and more information on the iTools can be found in the *iTool User’s Guide*.
Chapter 3
Reading and Writing Data

This chapter introduces IDL’s ability to read and write data.
IDL and Reading and Writing Data

IDL’s flexible input and output capabilities allow you to read and write virtually any data format. When IDL reads a data file, bytes or characters in the file are converted to the appropriate data type (unless the file is binary, in which case no conversion takes place). Similarly, when writing data, the appropriate IDL variables are converted to the appropriate bytes or characters. In this chapter, you’ll import some existing data using IDL commands.

Note
To simplify obtaining useful results from the examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```
Chapter 3: Reading and Writing Data

IDL Supported Formats

IDL supports a wide variety of scientific and image file formats. See “Supported File Formats” in Chapter 1 of the Using IDL manual for a complete list.
Importing Data from an ASCII File

You can import ASCII data into IDL directly at the command line or also using the iTools if you need to visualize data in plot, surface, contour, image or volume form. Whether reading in directly or through the iTools you will need to read in the ASCII data in using IDL’s interactive wizard for importing ASCII data, known as the ASCII Template.

For information on the various ways you can read ASCII data using IDL, see “Reading ASCII Data” in Chapter 6 of the Using IDL manual.
Reading and Writing Binary Data

Reading data files into IDL is easy if you know the format in which the data is stored. Often, images are stored as arrays of bytes instead of a known format like JPEG or TIFF. These files we’ll refer to as “Binary” files. You can import binary data into IDL directly at the command line or also using the iTools if you need to visualize data in plot, surface, contour, image or volume form. Whether reading in directly or through the iTools you will need to read the binary data in using IDL’s interactive wizard for importing binary data, known as the Binary Template.

For information on the various ways you can read binary data using IDL, see “Reading Binary Data” in Chapter 6 of the Using IDL manual.
Reading and Writing Images

You can import image data into IDL directly at the command line or also using the iImage tool.

Importing Image Data into an iTool

The iTools are fully interactive and automatically read your image data.

Here is an example of opening an image file in iImage:

1. From the iImage window, select File → Open and from the \examples\data directory choose a file named image.tif.
2. Select Open, and the file is displayed in iImage.

![Image.tif Displayed in iImage](image.png)

Figure 3-1: Image.tif Displayed in iImage
Importing Image Data at the Command Line

Reading image files directly into IDL is easy if you know the format in which the image is stored. First we must read in the image. Here we will use a TIFF format image of an aerial satellite view of Manhattan Island in New York City.

1. Enter the following at the IDL Command Line to read the file into memory:

 MYIMAGE=READ_TIFF(FILEPATH('image.tif',SUBDIR= $ ['examples', 'data']))

2. Now display the image:

 TV, MYIMAGE

3. Now, using IDL’s WRITE_TIFF command, rename and write the file:

 WRITE_TIFF, 'imagecopy.tif', MYIMAGE

Note

Another way to import image data is to use the Import Image File toolbar button on the IDLDE toolbar. To use this feature simply click the button and the dialog will appear so that you may select “image.tif”. However, this will name the image differently than shown in this example.
More About IDL and Input/Output

For more examples of using IDL’s input/output capabilities, see Chapter 6, “Importing and Writing Data into Variables” in the Using IDL manual. For more information about the iTools’ input/output capabilities, see the iTool User’s Guide. Also, for list of the input and output routines provided by IDL, see the category for “Input/Output” in the IDL Quick Reference manual.
Chapter 4
2-D Plots

This chapter describes the following topics:

- IDL and 2-D Plotting 38
- Using the iPlot Tool 39
- Simple Command Line Plotting 43
- Plotting with Data Sets 46
- Other Plotting Capabilities 48
- More About 2-D Plotting 49
IDL and 2-D Plotting

IDL makes plotting data easy. X versus Y plots can be displayed with a single command, and multiple plots can be viewed at the same time. You can also use the new IDL iPlot tool to visualize and manipulate your plot data. This chapter demonstrates some of IDL’s plotting capabilities. We will also examine how you enter statements at the IDL Command Line and how to use the iPlot tool. This demonstrates IDL’s interactive capability, and shows how easy it is to manipulate your data.

Note
To simplify obtaining useful results from the command line examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
Using the iPlot Tool

The iPlot tool's primary design is to display plot data, though the tool is capable of much more once the data is plotted. The iPlot tool can display multiple types of plots and allows you to manipulate and edit the displays.

Displaying a 2D Plot

The first task is to display plot data. Here is a simple example of how to display a plot.

At the IDL command line, enter:

```
iPlot, RANDOMU(seed, 20)
```

![Figure 4-1: A Simple 2D Plot Using the iPlot Tool](image)
Chapter 4: 2-D Plots

Displaying an Overplot

Once you have plotted data, you may overplot new plot data in the original iPlot window. Overplotting is the process of plotting new data over the top of original data or datasets for the purpose of analyzing or comparing more than one dataset at a time.

For example, in order to overplot cosine data onto a plot of sine wave data follow these steps:

1. Create a variable named “theory” to contain sine wave data to be plotted:

   ```idl
   theory = SIN(2.0*FINDGEN(200)*!PI/25.0)*EXP(-0.02*FINDGEN(200))
   ```

2. Plot theory using iPlot:

   ```idl
   iPlot, theory
   ```

Figure 4-2: Sin Wave Data Plotted
3. Create a variable named “newtheory” which stores cosine data to be used for overplotting:

\[
\text{newtheory} = \cos(2.0 \cdot \text{FINDGEN}(200) \cdot \pi / 25.0) \cdot \exp(-0.02 \cdot \text{FINDGEN}(200))
\]

4. Now overplot the new cosine data onto your original plot:

\[
i\text{Plot, newtheory, \text{/OVERPLOT}}
\]

Figure 4-3: Cosine Data Overplotted on Sine Data

Note
You can also overplot in the iPlot tool any other way you can load new data into the existing iPlot tool (for example, using **File → Open**).
Modifying Plots

The iPlot tool allows you many options for modifying and manipulating your plots, such as displaying 3D plots, displaying polar plots, adding error bars, legends, colorbars, curve fitting, filtering, and annotating among other things. For much more information on working with the iPlot tool, see Chapter 13, “Working with Plots” in the *iTool User’s Guide* manual.
Chapter 4: 2-D Plots

Simple Command Line Plotting

Simple plots can be charted using the PLOT procedure. Each call to PLOT establishes the plot window (the rectangular area enclosed by the axis), the plot region (the box enclosing the plot window and its annotation), the axis types (linear or logarithmic), and the scaling.

First, we’ll plot a simple graph using a sine function. Use the FINDGEN function here to specify the dimensions of the array. The FINDGEN function returns a single-precision, floating-point array, with the specified dimension, where each element of the array is set to the value of its one-dimensional subscript.

1. First, create a value for the X axis:
 \[X = 2 \times \frac{\pi}{100} \times \text{FINDGEN}(100) \]
2. Now, use PLOT to visualize the array:
 \[\text{PLOT, SIN}(X) \]

![Figure 4-4: A simple sine wave using the PLOT command](image)

Also, additional data can be added, as before, using the O PLOT procedure. Frequently, the color index, linestyle, or line thickness parameters are changed in each call to O PLOT to distinguish the data sets. The IDL Reference Guide contains a table describing the features you can change.
Using OPLLOT

Now use OPLLOT to plot the new information over the existing plot:

1. Plot at twice the frequency:

 \[
 \text{OPLLOT, } \sin(2 \times X)
 \]

2. Plot at three times the frequency:

 \[
 \text{OPLLOT, } \sin(3 \times X)
 \]

The results are shown in the following figure.

Printing a Plot

IDL allows you to easily print the plot just created. Simply enter the following command lines shown.

1. First, save the original settings of your plotting environment:

 \[
 \text{MYDEVICE= !D.NAME}
 \]

2. Tell IDL that you wish to designate the printer to be the destination for the plot:

 \[
 \text{SET_PLOT, 'printer'}
 \]

3. Now plot again to the printer:
Chapter 4: 2-D Plots

PLOT, SIN(X)

4. Close the printing device:
 DEVICE, /CLOSE

5. Redesignate the original setting as the future destination for any plots:
 SET_PLOT, MYDEVICE

Note
If you are having problems printing on UNIX, be sure your printer is configured correctly. For more information on this see “IDL Printer Setup in UNIX or Mac OS X” in Chapter 2 of the Using IDL manual.
Chapter 4: 2-D Plots

Plotting with Data Sets

To demonstrate IDL’s capability to read a data set and plot it, we will create and use an ASCII template.

1. At the IDL command line, enter the following to create the variable plotTemplate, which will contain your custom ASCII template:

 plotTemplate = ASCII_TEMPLATE()

 A dialog box appears, prompting you to select a file.

2. Select the plot.txt file in the examples/data subdirectory of the IDL distribution.

 Note
 Another way to import ASCII data is to use the **Import ASCII File** toolbar button on the IDLDE toolbar. To use this feature, simply click the button and select plot.txt from the file selection dialog.

3. After selecting the file, the **Define Data Type/Range** dialog appears. First, choose the field type. Since the data file is delimited by tabs (or whitespace) select the **Delimited** button. In the **Data Starts at Line** field, specify to begin reading the data at line 3, not line 1, since there are two comment lines at the beginning of the file. Click **Next** to continue.

4. In the **Define Delimiter/Fields** dialog box, select **Tab** as the delimiter between data elements since it is known that tabs were used in the original file. Click **Next**.

5. In the **Field Specification** dialog box, name each field as follows:
 - Click on the first row (row 1). In the **Name** field, enter **time**.
 - Select the second row and enter **temperature1**.
 - Select the third row and enter **temperature2**.

6. Click **Finish**.

7. Type the following line at the IDL command line to read in the plot.txt file using the custom template, plotTemplate:

 PLOT_ASCII = READ_ASCII(FILEPATH('plot.txt', SUBDIRECTORY= ['examples', 'data']), TEMPLATE=plotTemplate)

8. Plot the first set of data on temperatures which is stored in Temp1:

 PLOT, PLOT_ASCII.TIME, PLOT_ASCII.temperature1
Chapter 4: 2-D Plots

Figure 4-6: Plotting an existing data set using PLOT

Note
The file is read into a structure variable. For more information on accessing ASCII data, see “Reading ASCII Data” in Chapter 6 of the Using IDL manual.
Other Plotting Capabilities

Now add titles to the simple plot graph using the TITLE, XTITLE, and YTITLE keywords. Using these simple keywords, IDL allows you to add a title to your plot as well as descriptive titles for your X and Y axis.

1. Plot with titles:

```
PLOT, PLOT_ASCII.TIME, PLOT_ASCII.Temperature1, 
  TITLE='Temperature Over Time', 
  XTITLE='Time in Seconds', YTITLE='Temperature Celsius'
```

![Temperature Over Time](image)

Figure 4-7: Adding Titles to a Plot Using TITLE, XTITLE and YTITLE
More About 2-D Plotting

IDL has many more plotting capabilities than the ones shown in this chapter. For a list of plotting routines, see “Plotting” in of the IDL Quick Reference manual. To take advantage of all of IDL’s powerful capabilities in creating two-dimensional plots, look for more information about the iPlot tool in Chapter 13, “Working with Plots” in the iTool User’s Guide manual, and for information about plot objects in Chapter 5, “Working with Plots and Graphs” in the Object Programming manual.
Chapter 5
Signal Processing with IDL

This chapter describes the following topics:

- IDL and Signal Processing 52
- Creating a Data Set 53
- Signal Processing with SMOOTH 56
- Frequency Domain Filtering 57
- Displaying the Results 60
- More About Signal Processing 62
This chapter introduces you to IDL's digital signal processing tools. Most of the procedures and functions mentioned here work in two or more dimensions. For simplicity, only one-dimensional signals are used in the examples.

A signal, by definition, contains information. Any signal obtained from a physical process also contains noise. It is often difficult or impossible to make sense of the information contained in a digital signal by looking at it in its raw form—that is, as a sequence of real values at discrete points in time. Signal analysis transforms offer natural, meaningful, alternate representations of the information contained in a signal.
Creating a Data Set

First, we need to create a dataset to display.

1. Enter the following command to create a sinewave function with a frequency that increases over time and store it in a variable called \texttt{ORIGINAL}:

\begin{verbatim}
ORIGINAL=SIN((FINDGEN(200)/35)^2.5)
\end{verbatim}

The \texttt{FINDGEN} function returns a floating-point array in which each element holds the value of its subscript, giving us the increasing “time” values upon which the sinewave is based. The sine function of each “time” value divided by 35 and raised to the 2.5 power is stored in an element of the variable \texttt{ORIGINAL}.

2. To view a quick plot of this dataset, shown in the following, enter:

\begin{verbatim}
PLOT, ORIGINAL
\end{verbatim}

\begin{center}
\textit{Figure 5-1: Plot of Increasing Frequency}
\end{center}
3. Now add some uniformly-distributed random noise to this dataset and store it in a new variable:

\[
\text{NOISY} = \text{ORIGINAL} + (\text{RANDOMU(SEED, 200) - .5}) / 2
\]

4. Now plot the array:

\[
\text{PLOT, NOISY}
\]

Figure 5-2: Plot of Random Noise

The RANDOMU function creates an array of uniformly distributed random values. The original dataset plus the noise is stored in a new variable called NOISY. This dataset looks more like real-world test data.
5. Display the original dataset and the noisy version simultaneously by entering the following commands:

```
PLOT, ORIGINAL, XTITLE="Time",YTITLE="Amplitude",THICK=3
```

6. Then overplot the previous data:

```
PLOT, NOISY, /OVERPLOT
```

The XTITLE and YTITLE keywords are used to create the X and Y axis titles. The OPLT command plots the NOISY dataset over the existing plot of ORIGINAL without erasing. Setting the THICK keyword causes the default line thickness to be multiplied by the value assigned to THICK, so you can differentiate between the data. This result can be seen in the following figure.

![Combined Plotting of Datasets](image)

Figure 5-3: Combined Plotting of Datasets
Signal Processing with SMOOTH

A simple way to smooth out the NOISY dataset is to use IDL’s SMOOTH function. It returns an array smoothed with a boxcar average of a specified width.

1. Create a new variable to hold the smoothed dataset by entering the following command:

 \[\text{SMOOTHED} = \text{SMOOTH(NOISY, 5)} \]

2. Now plot your new data set:

 \[\text{IPLOT, SMOOTHED, TITLE='Smoothed Data'} \]

The TITLE keyword draws the title text centered over the plot. Notice that while SMOOTH did a fairly good job of removing noise spikes, the resulting amplitudes taper off as the frequency increases.

![Figure 5-4: Using the SMOOTH Command](image)
Frequency Domain Filtering

Perhaps a better way to eliminate noise in the NOISY dataset is to use Fourier transform filtering techniques. Noise is basically unwanted high-frequency content in sampled data. Applying a lowpass filter to the noisy data allows low-frequency components to remain unchanged while high-frequencies are smoothed or attenuated. Construct a filter function by entering the following step-by-step commands:

1. Create a floating point array using FINDGEN which sets each element to the value of its subscript and stores it in the variable Y by entering:
 \[
 Y = \{\text{FINDGEN}(100), \text{FINDGEN}(100) - 100\}
 \]
2. Next, make the last 99 elements of Y a mirror image of the first 99 elements:
 \[
 Y[101:199] = \text{REVERSE}(Y[0:98])
 \]
3. Now, create a variable filter to hold the filter function based on Y:
 \[
 \text{filter} = 1.0 / (1 + (Y/40)^{10})
 \]
4. Finally, plot:
 \[
 \text{IPLT, filter}
 \]

![Figure 5-5: Constructing a Filter Function](image-url)
Chapter 5: Signal Processing with IDL

Frequency Domain Filtering

Getting Started with IDL

To filter data in the frequency domain, we multiply the Fourier transform of the data by the frequency response of a filter and then apply an inverse Fourier transform to return the data to the spatial domain.

1. Now we can use a lowpass filter on the NOISY dataset and store the filtered data in the variable lowpass by entering:

\[
\text{LOWPASS=FFT(FFT(NOISY,1)*filter,-1)}
\]

2. Then plot:

\[
\text{IPLOT, LOWPASS}
\]

![Figure 5-6: Using a LOWPASS Filter](image)

Note

Your plots may look slightly different due to the random number generator.
Chapter 5: Signal Processing with IDL

1. The same filter function can be used as a high-pass filter (allowing only the high frequency or noise components through) by entering:

 \[
 \text{NOISY} = \text{ORIGINAL} + \left(\frac{(\text{RANDOMU(\text{SEED, 200}) - .5})}{2}\right)
 \]

 \[
 \text{HIGHPASS} = \text{FFT}(\text{FFT(NOISY, 1)} \times (1.0 - \text{filter}), -1)
 \]

2. Then plot:

 \[
 \text{IPLOT, HIGHPASS}
 \]

![Figure 5-7: Using a Highpass Filter](image)
Displaying the Results

Now look at all of the results at the same time. The plotting window can be split into six sections, making each section display a different plot. The system variable !P.MULTI tells IDL how many plots to put on a single page.

Enter the following lines to display a plotting window which shows all of the plots simultaneously.

1. To display all plots at the same time with two columns and three rows, enter:

   ```idl
   !P.MULTI=[0,2,3]
   ```

2. Now, display original dataset, upper-left:

   ```idl
   PLOT,ORIGINAL,TITLE='Original (Ideal) Data'
   ```

3. Next, display noisy dataset in the upper-right:

   ```idl
   PLOT,NOISY,TITLE='Noisy Data'
   ```

4. Display filter function, middle-left. The SHIFT function was used to show the filter's peak as centered.

   ```idl
   PLOT,SHIFT(filter,100),TITLE='Filter Function'
   ```

5. Now, display low-pass filtered dataset in the middle-right:

   ```idl
   PLOT,LOWPASS,TITLE='Lowpass Filtered'
   ```

6. Display high-frequency noise, lower-left:

   ```idl
   PLOT,HIGHPASS,TITLE='Highpass Filtered'
   ```
7. Finally, display the SMOOTH function dataset for comparison with the low-pass filtered data in the lower right.

\[
\text{PLOT, smoothed, TITLE = 'Smoothed with Boxcar average'}
\]

Figure 5-8: Using !P.MULTI to Show Six Plots in One Plotting Window

8. Before continuing with the rest of the chapters, reset the plotting window to display a single image by entering the command:

\[
!P.MULTI = 0
\]
More About Signal Processing

Using just a few IDL commands, we have performed some complex and powerful signal processing tasks. IDL has many more signal processing abilities than the ones shown in this chapter. To take advantage of all of IDL’s powerful capabilities, look for more information in Chapter 11, “Signal Processing” in the Using IDL manual.
Chapter 6
Images

This chapter describes the following topics:

- IDL and Images 64
- Using the iImage Tool 65
- Image Data and the Command Line 67
- Resizing an Image 70
- Resizing a Graphics Window 72
- Contrast Enhancement 73
- Smoothing and Sharpening 79
- Other Image Manipulations 83
- Extracting Profiles 85
- More About Images in IDL 86
IDL and Images

IDL is ideal for working with image data because of its interactive operation, uniform notation, and array-oriented operators and functions. Images are easily represented as two-dimensional arrays in IDL and can be processed just like any other array. IDL also contains many procedures and functions specifically designed for image display and processing. In addition, the iImage tool allows you great flexibility in manipulating and visualizing image data.

In this chapter, we will image process by entering statements at the IDL Command Line as well as trying out the new iImage tool. This will demonstrate IDL’s interactive capability, and will show how easy it is to manipulate your data.

Note

To simplify obtaining useful results from the command line examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```

See “Image Display” (and the functional category “Image Processing” in the IDL Quick Reference manual) for a brief description of IDL routines for displaying and manipulating images. Detailed information is available in the IDL Reference Guide.
Chapter 6: Images

Using the iImage Tool

The iImage tool is a powerful option for visualizing and manipulating image data. Unlike the command line-oriented visualizations shown previously, with iImage, a single command will give you a fully interactive environment.

Displaying an Image

Using our same TIFF data, follow these steps:

1. At the IDL Command Line, enter `iImage`.
2. As shown in Chapter 3, “Reading and Writing Data”, select `File → Open` and from the `examples\data` directory choose a file named `image.tif`.
3. Select `Open`, and the file is displayed in iImage.

![Image of iImage tool](image.png)

Figure 6-1: TIFF Data View of Manhattan in the iImage Tool
Modifying Images

The iImage tool allows you many options for modifying and manipulating your images, for example the Data Window on the iImage tool allows you to adjust and manipulate the image brightness by changing the RGA or indexed channel values. For indexed color images, Channel 0 represents the image data values. For RGBA images, Channel 0 represents the red values, Channel 1 represents the green values and Channel 2 represents the blue values. Within each channel is a red bar representing minimum values and a green bar representing maximum values. You can click on each bar in each channel (which are tabbed) to manipulate these values.

Other options are available in iImage such as displaying multiple images, manipulating image color and lighting as well as brightness and contrast, filtering, resampling, morphing, surfacing, adding contours, and annotating among other things. For much more information on working with the iImage tool, see Chapter 10, “Working with Images” in the iTool User’s Guide manual. The following sections show how to duplicate some of the iImage tool functionality at the command line using direct graphics.
Image Data and the Command Line

The following sections show examples of reading and displaying image data at the command line.

Reading Image Data

First we must import an image to be processed into IDL. Reading image data files into IDL is easy whether at the command line or using the iImage tool.

The file that we will read contains the image we used in Chapter 3, “Reading and Writing Data” of an aerial view above Manhattan in TIFF format.

1. Read the file by entering:

   ```idl
   MYIMAGE=READ_TIFF(FILEPATH('image.tif',SUBDIR= $ 
                      ['examples', 'data']))
   ```

Displaying Image Data

Using the IDL command line, you can view an image with two different routines. The TV procedure writes an array to the display as an image without scaling. Enter the commands below at the IDL Command Line. The TVSCL routine is another routine which is described following the TV routine.

Note
The default graphics window size is 640 by 512 pixels in size on a UNIX workstation and one-fourth of the display size on most Windows environments.

1. Display the image:

   ```idl
   TV, MYIMAGE
   ```
2. Enter WDELETE at the Command Line to dismiss the graphics window.

```
WDELETE
```

3. The TVSCL procedure displays the image with the color values scaled to use the whole color table. Display the scaled image:

```
TVSCL, MYIMAGE
```
Chapter 6: Images

4. Enter WDELETE at the Command Line to dismiss the graphics window.
Resizing an Image

The REBIN function in IDL makes it easy to resize a vector or array to new dimensions. The supplied dimensions must be proportionate (that is, integral multiples or factors) to the dimensions of the original image. Since our original image array here is 768 by 512, we’ll need to decide the correct dimensions of our new resized image. If we want to resize the image to half the original size then simply take half of the array’s original dimensions.

1. Create a new image with new dimensions using the REBIN function:

 \[
 \text{NEWIMAGE}=\text{REBIN(MYIMAGE, 384, 256)}
 \]

2. Now display the image:

 \[
 \text{TV, NEWIMAGE}
 \]

3. Enter WDELETE at the Command Line to dismiss the graphics window.

 \[
 \text{WDELETE}
 \]

Figure 6-4: MYIMAGE resized to one half the original array size
Note
The CONGRID function also shrinks or expands the size of an array. CONGRID differs from REBIN in that where REBIN requires that the new array size must be an integer multiple of the original size, CONGRID will resize an array to any arbitrary size. For more information, see CONGRID in the *IDL Reference Guide*.
Resizing a Graphics Window

IDL automatically creates a window for displayed graphics if one does not already exist. You can use the WINDOW command to create new windows with custom sizes.

1. To display Manhattan in a larger graphics window, enter:

 \[
 \text{WINDOW, 0, XSIZE=800, YSIZE=600}
 \]

2. Then enter:

 \[
 \text{TV, MYIMAGE}
 \]

3. Enter WDELETE at the Command Line to dismiss the graphics window for the next graphic.

 \[
 \text{WDELETE}
 \]

The WINDOW command above creates a new version of window number 0 that is 800 pixels wide (specified with the XSIZE keyword) and 500 pixels tall (specified with the YSIZE keyword).
Contrast Enhancement

In order to improve the look of an image, sometimes all that is necessary is a change in how the colors are represented. IDL provides several ways to manipulate the contrast.

Thresholding

One of the simplest contrast enhancements that can be performed on an image is thresholding. Thresholding produces a two-level mapping from all of the possible intensities into black and white. The IDL relational operators, EQ, NE, GE, GT, LE, and LT, return a value of 1 if the relation is true and 0 if the relation is false. When applied to images, the relation is evaluated for each pixel and an image of 1’s and 0’s results.

1. To display the pixels in the image that have values greater than 140 as white and all others as black, as shown in the following, enter:

 \[
 \text{TVC_CL, MY_IMAGE GT 140}
 \]

 Figure 6-6: Image with all values greater than 140 shown as white
2. Similarly, the pixels that have values less than 140 can be displayed as white, as shown, by entering the command:

```
TVSCL, MYIMAGE LT 140
```

![Image with all values less than 140 shown as white](image)

Figure 6-7: Image with all values less than 140 shown as white

In many images, the pixels have values that are only a small subrange of the possible values. By spreading the distribution so that each range of pixel values contains an approximately equal number of members, the information content of the display is maximized, as shown in the following.
3. The HIST_EQUAL function performs this redistribution on an array. To display a histogram-equalized version of myimage, enter the following:

```idl
TV, HIST_EQUAL(myimage)
```

Figure 6-8: A histogram-equalized version of the image
Scaling Pixel Values

Another way to enhance the contrast of an image is to scale a subrange of pixel values to fill the entire range of displayed brightnesses. The > operator, the IDL maximum operator, returns a result equal to the larger of its two parameters. The following commands contrast the maximum and minimum operators.

1. Scale pixels with a value of 100 or greater into the full range of displayed brightnesses:

 `TVSCL, MYIMAGE > 100`

2. Scale pixels with a value less than 140 into the full range of brightnesses.

 `TVSCL, MYIMAGE < 140`
3. The minimum and maximum operators can be used together for more complicated contrast enhancements. Set the minimum brightness to 140, set the maximum brightness to 200, scale myimage and display it by entering:

```
TVSCL, MYIMAGE >140<200
```
Contrast Enhancement

Chapter 6: Images

Note

Although this command illustrates the use of the IDL minimum and maximum operators, the same function can be executed more efficiently by IDL with the command:

\[
\text{TV, BYTSCL(MYIMAGE,MIN=140,MAX=200,TOP=!D.TABLE_SIZE)}
\]

Figure 6-11: Image Scaled from 140 to 200
Chapter 6: Images

Smoothing and Sharpening

Images can be rapidly smoothed to soften edges or compensate for random noise in an image using IDL’s SMOOTH function. SMOOTH performs an equally weighted smoothing using a square neighborhood of an arbitrary odd width, as shown below.

1. Display myimage smoothed using a 7 by 7 area:

 \[\text{TVSCL, SMOOTH(MYIMAGE, 7)} \]

Unsharp Masking

The previous image looks a bit blurry because it contains only the low frequency components of the original image. Often, an image needs to be sharpened so that edges or high spatial frequency components of the image are enhanced. One way to sharpen an image is to subtract a smoothed image containing only low-frequency components from the original image. This technique is called *unsharp masking*.

1. Unsharp mask and display image:

 \[\text{TVSCL, FLOAT(MYIMAGE) - SMOOTH(MYIMAGE, 7)} \]

Figure 6-12: Smoothing with SMOOTH

Unsharp Masking

The previous image looks a bit blurry because it contains only the low frequency components of the original image. Often, an image needs to be sharpened so that edges or high spatial frequency components of the image are enhanced. One way to sharpen an image is to subtract a smoothed image containing only low-frequency components from the original image. This technique is called *unsharp masking*.

1. Unsharp mask and display image:

 \[\text{TVSCL, FLOAT(MYIMAGE) - SMOOTH(MYIMAGE, 7)} \]
Chapter 6: Images

Smoothing and Sharpening

Getting Started with IDL

This command subtracts a smoothed version of the image from the original, scales the result, and displays it, as shown previously.

Sharpening Images with Differentiation

IDL has other built-in sharpening functions that use differentiation to sharpen images. The ROBERTS function returns the Roberts gradient of an image. Enter the following commands:

1. Create a new variable, R, that contains the Roberts gradient of myimage:
 \[R = \text{ROBERTS}(\text{MYIMAGE}) \]

2. Display array R:
 \[\text{TVSCL, R} \]

Figure 6-13: Unsharp Masking
Another commonly used gradient operator is the Sobel operator. IDL’s SOBEL function operates over a 3 by 3 region, making it less sensitive to noise than some other methods. Enter the following commands.

1. Create a Sobel sharpened version of the image:

 \[
 SO = \text{SOBEL}(\text{MYIMAGE})
 \]

2. Display the sharper image:

 \[
 \text{TVSCL, SO}
 \]

Figure 6-14: Roberts Gradient of myimage
Try loading some of the pre-defined IDL color tables to make this image more visible. While the graphics window is visible, type XLOADCT at the IDL Command Line. The XLOADCT widget application appears. Select a color table from the field; the window will reflect the color scheme. Click “Done” to accept a color table. When you are finished looking at the effects of different tables, click on the first color table in the field, B-W Linear, and click “Done” to load the original black and white color table.

Note

If you load a new color table while an image is still being displayed on a 24-bit (true) color display, you will need to close the image and reload it in IDL in order to see the new image displayed in the new color scheme. In an 8-bit (pseudo) color display however, you will not need to re-display the image as the color change will be immediate.
Chapter 6: Images

Other Image Manipulations

Sections of images can be easily displayed by using subarrays.

1. Erase the current display, create a new array that contains Manhattan and display it by entering:

 ERASE
 E=MYIMAGE[100:300, 150:250]

2. Then enter:

 TV, E

3. Enter WDELETE at the Command Line to dismiss the graphics window.

 WDELETE

Rotating an Image

Simple rotation in multiples of 90 degrees can be accomplished with the ROTATE function.

1. Rotate the image by 90 degrees, as shown below, by entering:

 R=ROTATE(E, 1)
2. Now enter to display:

 TVSCL, R

![Image Rotated by 90 Degrees](image.png)

Figure 6-17: The Image Rotated by 90 Degrees

The second parameter of ROTATE is an integer from 1 to 8 that specifies which one of the eight possible combinations of rotation and axis reversal to use.

3. Enter WDELETE at the Command Line to dismiss the graphics window for the next graphic.

 WDELETE
Extracting Profiles

Another useful image processing tool is the PROFILES routine. This routine interactively draws row or column profiles of an image. It allows you to view an image and an X-Y plot of the pixel brightnesses in any row or column of the image simultaneously.

1. Use the PROFILES routine with the rotated image that you just displayed by entering the following:

 PROFILES, R

 A new window for displaying the profiles appears. Move the cursor in the window containing the image R to display the profiles of different rows and columns.

2. Click the left mouse button while the cursor is in the image window to switch between displaying row and column profiles.

3. Click the right mouse button while the cursor is in the image window to exit the PROFILES routine.

Figure 6-18: Viewing an Image and an X-Y Plot of the Pixel Brightnesses

A new window for displaying the profiles appears. Move the cursor in the window containing the image R to display the profiles of different rows and columns.

2. Click the left mouse button while the cursor is in the image window to switch between displaying row and column profiles.

3. Click the right mouse button while the cursor is in the image window to exit the PROFILES routine.
More About Images in IDL

IDL offers much more in the area of Image Processing. To learn more about IDL’s image processing capabilities, see *Image Processing in IDL*. For much more information on working with the iImage tool, see Chapter 10, “Working with Images” in the *iTool User’s Guide* manual.
Chapter 7
Surfaces and Contours

This chapter describes the following topics:

- Surfaces and Contours in IDL 88
- Accessing Binary Surface Data 89
- Using the iSurface Tool 90
- Using the iContour Tool 92
- Surface Data and the Command Line 94
- Contour Data and the Command Line ... 100
- Plotting with SHOW3 105
- More About Surfaces and Contours 106
Surfaces and Contours in IDL

IDL provides many command line techniques for visualizing two-dimensional arrays, including contour plots, wire-mesh surfaces, and shaded surfaces. The new iSurface and iContour tools are also available for easy surface and contour visualization and manipulation. This chapter demonstrates just a few of the options for visualizing and manipulating data in three dimensions.

Note
To simplify obtaining useful results from the command line examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
Chapter 7: Surfaces and Contours

Accessing Binary Surface Data

For this example we will use the binary dataset of the Maroon Bells Mountains. We will use the BINARY TEMPLATE and READ_BINARY functions to read this data set. Once you have read the file into IDL, you are ready to move on to visualizing the data set three-dimensionally.

To import binary data directly into IDL, use the BINARY TEMPLATE function in conjunction with the READ_BINARY function. To import a binary data file into IDL, you must first describe the format of the data using the Binary Template.

The binary file that we will read in the following example is stored as an integer array and contains an image of the Maroon Bells mountains, a group of mountains located among the Rocky Mountains of Colorado.

1. At the IDL Command Line, enter the following:

 MARBELLSTEMPLATE=BINARY TEMPLATE(FILEPATH('surface.dat', $ SUBDIR = ['examples', 'data']))

 The binary template dialog box appears.

2. In the Template Name field, enter “marbellstemplate” for the name of the new template.

3. In the File’s byte ordering pull-down field, select “Little Endian” since we know that this file was created on an Intel processor-based machine.

4. Click the New Field button in the lower left corner of the dialog box.

5. When the New Field dialog appears, enter “MARBELLS” as the field name. Verify the box in the upper right corner marked Returned in the result since we will want our data set returned at the time it is read.

6. At the Number of Dimensions pull-down menu, be sure to specify that we are dealing with a two-dimensional data set here. These data are contained in a 350 by 450 array, so we will enter these values in the two boxes marked Size.

7. Specifying Integer (16 bits) at the Type pull-down menu. Click OK.

8. Click OK when the binary template dialog reappears.

9. Use the READ_BINARY function to read the template we have just created.

 At the IDL Command Line, enter:

 MARBELLS_BINARY=READ_BINARY (FILEPATH('surface.dat', $ SUBDIR=['examples', 'data'])),TEMPLATE=MARBELLSTEMPLATE)
Using the iSurface Tool

The IDL iSurface tool provides interactive access to surface data. You can visualize surfaces and then modify and manipulate those surfaces in a single interactive environment.

Displaying a Surface

To import a file containing surface data into the iSurface tool:

1. Follow the steps in “Accessing Binary Surface Data” on page 89 for instructions on how to read in the binary marbells.dat file, located in the examples\data directory of your IDL installation.

2. After entering all steps to read in your binary template, at the IDL Command Line, type: iSurface, MARBELLS_BINARY.MARBELLS. This displays the surface data.

Figure 7-1: Maroon Bells Binary Data Visualized in the iSurface Tool
Modifying Surfaces

The iSurface tool allows you many options for manipulating and modifying surfaces. For example, rotation tools are provided in the iSurface tool to make it easier to see all aspects of a 3-D surface visualization. Surfaces can be rotated freely or along an axis with the mouse, and they can be rotated in fixed or arbitrary increments from the Operations menu.

To rotate a surface freely or along an axis with the mouse:

1. Select the surface in the iSurface window.
2. Click Rotate \(\rightarrow \) on the Manipulator toolbar. The rotation sphere is displayed around the surface.
 - To rotate the surface freely, position the mouse pointer over the surface so that it changes to a free rotation pointer \(\bigcirc \). Click and drag to rotate the surface in the desired direction.
 - To rotate the surface along an axis, position the mouse pointer over an axis so that it changes to an axis rotation pointer \(\bigtriangledown \). Click and drag to rotate the surface along the axis in the desired direction.

To rotate a surface in 90° increments left or right from the Operations menu:

1. Select the surface in the iTool window.
2. Select \(\text{Operations} \rightarrow \text{Rotate} \rightarrow \text{Rotate Left} \) or \(\text{Operations} \rightarrow \text{Rotate} \rightarrow \text{Rotate Right} \).

To rotate a surface an arbitrary number of degrees from the Operations menu:

1. Select the surface in the iTool window.
2. Select \(\text{Operations} \rightarrow \text{Rotate} \rightarrow \text{Rotate by Angle} \).
3. In the Rotate Angle dialog, enter the desired number of degrees to rotate the surface.

Other options are available in iSurface such as manipulating surface color, texture mapping, and annotating among other things. For much more information on working with the iSurface tool, see Chapter 11, “Working with Surfaces” in the iTool User’s Guide manual.
Using the iContour Tool

The IDL iContour tool provides interactive access to contour data. You can visualize contours and then modify and manipulate those contours in a single interactive environment.

Displaying a Contour

To import a file containing binary data into the iContour tool:

1. Follow steps in "Accessing Binary Surface Data" on page 89 for instructions on how to read in the binary marbells.dat file.

2. After entering all steps to read in your binary template, at the IDL Command Line, type: iContour, MARBELLS_BINARY.MARBELLS

The contour is now displayed in iContour.
Modifying a Contour

The iContour tool allows you many options for contour modification and manipulation. For example, you can add a legend to your contour which shows the levels of the contour in their increments. To add a legend, select **Insert → Legend** from the iContour tool window. Once you have placed a legend on your contour you can edit the legend settings such as the title and level increments as well as the color options on the legend. Double-clicking on the legend itself will show you the Visualization Browser.

There are many other tasks available within iContour such as manipulating contour color, values, and annotating among other things. For much more information on working with the iContour tool, see Chapter 12, “Working with Contours” in the *iTool User’s Guide* manual.
Surface Data and the Command Line

Surface data can be visualized and manipulated at the IDL Command Line. First, we need to create a two-dimensional dataset which we will then visualize. See “Accessing Binary Surface Data” on page 89 for instructions to open this data set.

First, view the array MARBELLS_BINARY.MARBELLS as a three-dimensional, “wire-mesh” surface. Use the CONGRID procedure initially to resample the data set so that the “mesh” can be displayed at a size visible to the human eye.

1. Here resample the array size to 35 by 45, or one tenth its original size. To do this enter:

 \[\text{MARBELLS=CONGRID(MARBELLS_BINARY.MARBELLS,35,45)} \]

2. Now we are ready to visualize the mesh using the SURFACE command:

 \[\text{SURFACE, MARBELLS} \]

![Surface Plot with Default Angles](image)

Figure 7-3: Surface Plot with Default Angles

Note

You can also enter ISURFACE, MARBELLS and interactively manipulate the display.
The SURFACE command can be used to view your data from different angles. AX and AZ are plotting keywords that are used to control the SURFACE command. The keyword AX specifies the angle of rotation of the surface (in degrees towards the viewer) about the X axis. The AZ keyword specifies the rotation of the surface in degrees counterclockwise around the Z axis.

3. View the array from a different angle by entering the following command:

```
SURFACE, MARBELLS, AX = 70, AZ = 25
```

Displaying a Shaded Surface

You can also view a two-dimensional array as a light-source shaded surface.

1. First, load one of the pre-defined IDL color tables by entering:

```
LOADCT, 3
```

2. To view the light-source shaded surface, shown in the following, simply enter the command:

```
SHADE_SURF, MARBELLS
```
3. To look at the array from another angle, enlarge the label text, and add a title. Again, keywords are used to control certain features of the shaded surface plot. The AX and AZ keywords control the viewing angle, just as they did with the SURFACE command.

The CHARSIZE keyword controls the size of plotted text. The TITLE keyword was used to add the title “Shaded Surface Representation”.

```
SHADE_SURF, MARBELLS, AX=45, AZ=20, CHARSIZE=1.5, $
TITLE='Shaded Surface Representation'
```
4. You can create a different kind of shaded surface, where the shading information is provided by the elevation of each point. Now different shading colors on the plot correspond to different elevations (the BYTSCL function scales the data values into the range of bytes).

You could also specify a different array for the shading colors.

\texttt{SHADE_SURF, MARBELLS, SHADE=BYTSCL(MARBELLS)}
Figure 7-7: Byte-scaled Surface Plot
Chapter 7: Surfaces and Contours

5. You can plot a wire-frame surface of the Maroon Bells Mountains right over the existing plot. The XSTYLE, YSTYLE, and ZSTYLE keywords are used to select different styles of axis. Here, SURFACE is set to not draw the X, Y, and Z axes because they were already drawn by the SHADE_SURF command.

The /NOERASE keyword allows the SURFACE plot to be drawn over the existing SHADE_SURF plot. Enter the following:

```
SURFACE, MARBELLS, XSTYLE=4, YSTYLE=4, ZSTYLE=4, /NOERASE
```

Figure 7-8: Byte-scaled Surface Plot with an Overlaid Wire-frame
Contour Data and the Command Line

Contour data can be visualized and manipulated at the IDL Command Line. First, we need to create a two-dimensional dataset which we will then visualize. See “Accessing Binary Surface Data” on page 89 for instructions to open this data set. Once you have read the file into IDL, you are ready to move on to visualizing the data set three-dimensionally.

Displaying a Contour

Another way to view a two-dimensional array is as a contour plot. A simple contour plot of the data can be created.

1. Set the array size back to its original 350 by 450 size by entering:
   ```idl```
   MARBELLS=MARBELLS_BINARY.MARBELLS
   ```idl```

2. Plot the contour:
   ```idl```
   CONTOUR, MARBELLS
   ```idl```

![Contour Plot](image)

Figure 7-9: Contour Plot

That command was very simple, but the resulting plot was not as informative as it could be.
3. Create a customized CONTOUR plot with more elevations and labels by entering:

```
CONTOUR, MARBELLS, NLEVELS=8, C_LABELS=[0, 1]
```

By using the NLEVELS keyword, CONTOUR was told to plot eight equally-spaced elevation levels. The C_LABELS keyword specifies which contour levels should be labeled. By default, every other contour is labeled. C_LABELS allows you to override this default and explicitly specify the levels to label.
4. Similarly, you can create a filled contour plot where each contour level is filled with a different color (or shade of gray) by setting the FILL keyword. To do this, enter:

```
CONTOUR,MARBELLS,NLEVELS=8,/FILL
```

5. To outline the resulting contours, make another call to CONTOUR and set the OVERPLOT keyword to keep the previous plot from being erased.

You can add tickmarks that indicate the slope of the contours (the tickmarks point in the downhill direction) by setting the DOWNHILL keyword:

```
CONTOUR,A,NLEVELS=8,/OVERPLOT,/DOWNHILL
```
Chapter 7: Surfaces and Contours

6. CONTOUR plots can be rendered from a three-dimensional perspective.
 First, set up the default 3-D viewing angle by entering:

 SURFR

7. By using the T3D keyword in the next call to CONTOUR, the contours will be drawn as seen from a 3-D perspective. Enter:

 CONTOUR,MARBELLS,NLEVELS=8,/T3D

Figure 7-12: Contour Plot with Downhill Tickmarks Labeled
Figure 7-13: Contour Plot with 3-D Contour Plot
Plotting with SHOW3

In addition to IDL’s built-in routines, there are many functions and procedures included with IDL that are written in the IDL language and that can be changed, customized, or even rewritten by IDL users. The SHOW3 procedure is one of these routines.

1. Create a plot that shows a two-dimensional array as an image, wire-frame surface, and contour simultaneously.

SHOW3, MARBELLS

Figure 7-14: Combined Surface and Contour Plots Using SHOW3
More About Surfaces and Contours

IDL offers much more in the area of working with Surfaces and Contours. To learn more about surface and contour functionality in IDL, see *Using IDL* and For much more information on working with the iSurface and iContour tools, see Chapter 11, “Working with Surfaces” in the *iTool User’s Guide* manual and Chapter 12, “Working with Contours” in the *iTool User’s Guide* manual. For more information on surface and contour objects, see Chapter 5, “Working with Plots and Graphs” and Chapter 6, “Working with Surface Objects” in the *Object Programming* manual.
Chapter 8
Volume Visualization

This chapter describes the following topics:

- IDL and Volume Visualization 108
- Using the iVolume Tool 109
- Command Line Volume Visualization 112
- Volume Slices and the IDL Slicer 117
- Displaying a Surface with the Slicer 119
- More About Volume Visualization 121
IDL and Volume Visualization

IDL can be used to visualize multi-dimensional volume datasets either at the command line or using the new iVolume tool. Given a 3-D grid of density measurements, IDL can display a shaded surface representation of a constant-density surface (also called an iso-surface). For example, in medical imaging applications, a series of 2-D images can be created by computed tomography or magnetic resonance imaging. When stacked, these images create a grid of density measurements that can be contoured to display the surfaces of anatomical structures.

This chapter demonstrates the use of the SHADE_VOLUME and POLYSHADE commands for iso-surface visualization at the command line. The chapter then concludes with a brief look at the interactive iVolume tool.

Note
To simplify obtaining useful results from the command line examples in this manual, create a bitmap buffer for your graphic windows by entering the following command at the IDL command prompt:

```idl
DEVICE, RETAIN=2, DECOMPOSED=0
```
Chapter 8: Volume Visualization

Using the iVolume Tool

The interactive iVolume tool allows you great flexibility in manipulating and visualizing true volume data.

Displaying a Volume

Here is a simple example of one way to visualize a volume using the iVolume tool.

1. At the IDL command line, specify the location of the data file:

 \[
 \begin{align*}
 \text{file} & = \text{FILEPATH}(\text{\textquoteleft head.dat\textquoteright},$ \\
 & \text{\textquoteleft examples\textquoteright}, \text{\textquoteleft data\textquoteright}) \\
 \text{data} & = \text{READ_BINARY}(\text{file}, \text{DATA DIMS} = [80, 100, 57])
 \end{align*}
 \]

2. Now invoke the iVolume tool to visualize the volume:

 iVolume, data

Volume data does not automatically appear in the tool window since volume rendering can be a time consuming operation. To render the volume, click the \textbf{Render} button on the tool. Auto-render is available but not set by default since it can slow down your iTool session if you have simultaneous operations.

\textbf{Note}

Volume data is only rendered if the volume dataspace is selected. Thus, if you have multiple volumes in your dataspace, auto-render must be turned on in order to render both simultaneously.

The data loaded earlier can be displayed by clicking the \textbf{Render} button.
Chapter 8: Volume Visualization

Using the iVolume Tool

Volume Rendering Quality

The volume can be rendered in two quality modes:

- **Low** — Done with a stack of 2D texture-mapped semi-transparent polygons. The polygons are oriented so that the flat sides face the viewer as directly as possible. On most systems, Low-quality mode renders faster than High-quality mode, but not as accurately.

- **High** — Done with the IDLgrVolume ray-casting volume renderer. This quality mode is CPU-intensive and will usually take much longer than the Low-quality mode.

Volume Extents

Since the volume is not always rendered, iVolume draws volume extents to help you locate and select the volume. You can select the volume by selecting on the extents,
without rendering the volume. By default, iVolume draws a translucent solid cube with internal extents. You can also select a wire frame, or no extents.

Note

Use caution when turning off extents. If extents are turned off and Auto-Render is also off, you may need to use the Visualization Browser to select the volume again.

Modifying Volume Data

The iVolume tool allows you many options such as displaying multiple planes, manipulating volume color and lighting, filtering, resampling, image planes, isosurfaces, interval volumes, viewing statistics and annotating. For much more information on working with the iVolume tool, see Chapter 14, “Working with Volumes” in the *iTool User’s Guide* manual.
Command Line Volume Visualization

Visualizing volume data at the IDL command line is as easy as reading in data and then calling the correct command to visualize. The following sections will guide you through the process of reading and visualizing volume data via the command line.

Reading in a Dataset for Visualization

The following steps illustrate the use of BINARY_TEMPLATE and READ_BINARY to read in a dataset:

1. First, create the template for reading the data. At the IDL Command Line, enter:

 MYTEMPLATE=BINARY TEMPLATE(FILEPATH('head.dat', $SUBDIR=['examples', 'data']))

 The binary template dialog box appears.

2. In the Template Name field, enter “Head” as the name of the new template.

3. Now we are ready to enter the field values, click the box in the lower left corner of the dialog box called “New Field”.

4. When the New/Modify Field dialog appears, enter “B” as the field name. Check the box in the upper right corner marked “Returned” since we will want our data set returned at the time it is read.

 At the “Number of Dimensions” pull-down menu, be sure to specify that we are dealing with a three-dimensional data set. These data are contained in an 80 by 100 by 57 array, so we will enter these values in the three boxes marked “size”.

 Finally, let the binary template dialog know that we are dealing with Byte type data by specifying “Byte (Unsigned 8-bits)” at the “Type” pull-down menu.

 Once you have entered the above data, the binary template dialog appears once again showing the specifications you have made.

5. Click “OK”.

6. Now we will use the READ_BINARY procedure to read the data defined by template we have just created.

 HEAD_BINARY=READ_BINARY(FILEPATH('head.dat', $SUBDIR=['examples', 'data']), TEMPLATE=MYTEMPLATE)
3-D Transformations

When creating “3-D” plots at the IDL command line (for example, surfaces, shaded surfaces, and volume visualizations), a three-dimensional transformation needs to be set up. The 3-D transformation applies the requested translation, rotation, and scaling to a 3-D plot before displaying it.

Three-dimensional transformations are especially important when using the POLYSHADE routine. Unless the transformation is set up such that the entire volume is visible, the volume will not be rendered correctly. Once a 3-D transformation has been established, most IDL plotting routines can be made to use it by including the T3D keyword.

There are a number of ways to set up a transformation matrix in IDL.

One way is that a transformation matrix can be entered explicitly into the system variable !P.T. This method is rather difficult, because you have to figure out the transformation yourself. More information about the transformation matrix can be found in “Coordinate Conversions” in Chapter 8 of the Using IDL manual.

Another method, is the SURFACE and SHADE_SURF commands, which automatically create a 3-D transformation based on the datasets being visualized.

1. For example, specify a slice of the data:

 \[
 \text{SLICE=(HEAD_BINARY.B) [*,*,25]}
 \]

2. Now surface the slice specified:

 \[
 \text{SURFACE, SLICE}
 \]
A number of different IDL procedures that simplify the creation of 3-D transformations can be used. Keyword arguments to some of these procedures allow you to set viewing angles and data ranges. The procedures then create the appropriate transformation matrix for you and store it in !P.T. These procedures include T3D, SCALE3, SCALE3D, and SURFR. For more information on these routines, consult the IDL Reference Guide.

Visualizing an Iso-Surface

Two IDL commands, SHADE_VOLUME and POLYSHADE, are used together to visualize an iso-surface. SHADE_VOLUME generates a list of polygons that define a 3-D surface given a volume dataset and a contour (or density) level. The function POLYSHADE can then be used to create a shaded-surface representation of the iso-surface from those polygons.

Like many other IDL commands, POLYSHADE accepts the T3D keyword that makes POLYSHADE use a user-defined 3D transformation. Before you can use POLYSHADE to render the final image, you need to set up an appropriate three-dimensional transformation. The XRANGE, YRANGE, and ZRANGE keywords accept 2-element vectors, representing the minimum and maximum axis values, as
arguments. POLYSHADE returns an image based upon the list of vertices, \(V \), and list of polygons, \(P \). The T3D keyword tells POLYSHADE to use the previously-defined 3D transformation. The TV procedure displays the shaded-surface image.

Enter the following lines:

1. Create the polygons and vertices that define the iso-surface with a value of 70. Return the vertices in \(V \) and the polygons in \(P \):

 \[
 \text{SHADE_VOLUME, HEAD_BINARY.B, 70, V, P, /LOW}
 \]

2. Set appropriate limits for the X, Y, and Z axes with the SCALE3 procedure:

 \[
 \text{SCALE3, XRANGE=[0, 80], YRANGE=[0, 100], ZRANGE=[0, 57]}
 \]
3. Display a shaded-surface representation of the previously generated arrays of vertices and polygons:

\[\text{TV, POLYSHADE}(V, P, /T3D) \]

Figure 8-3: Shaded-surface Representation Using POLYSHADE
Volume Slices and the IDL Slicer

Another useful volume visualization tool is IDL's SLICER3 procedure. The Slicer is a widget-based application that allows you to create iso-surfaces and pass cutting planes through 3-D datasets.

The IDL Slicer provides many other volume visualization techniques. As the name implies, the slicer allows you to look at slices through a volume dataset.

1. To use the slicer with dataset B, it is first required to pass a pointer to the data set by entering the following at the IDL Command Line:

   ```idl
   BDATA=PTR_NEW(HEAD_BINARY.B)
   ```

2. Then enter:

   ```idl
   SLICER3, BDATA
   ```

3. The IDL Slicer appears. The Slicer window will come up empty by default though the data is loaded. Be sure that the Mode pull-down menu is set to Slice which is the default. Position the pointer within the cube. Hold down the left mouse button and move the mouse. (In IDL for Macintosh, the mouse button is interpreted as the left mouse button.) An outline of the cutting plane appears. This plane moves only in the direction indicated by the orientation display. Move the cutting plane to the center of the volume and release the mouse button. A cross-section of the volume is displayed.
4. To make slices in different orientations, move the cursor into the large drawing window and press the right mouse button.

5. To simulate a right mouse button press, IDL for Macintosh users can hold down the command key and click the mouse. The orientation display changes to show the new direction of the cutting plane.

6. Click the right button a second time to see the third possible orientation.

7. Make slices in these orientations by clicking on the mouse button and dragging the cutting plane outline to the desired location.

Figure 8-4: IDL Slicer3
Chapter 8: Volume Visualization

Displaying a Surface with the Slicer

To display a surface with the IDL Slicer, do the following:

1. To create a surface in Slicer similar to the one you created previously at the IDL command line, click on the Surface option on the Mode pull-down menu on the Slicer. A Surface Threshold window, a slider, and a number of new buttons should appear.

2. Click in the Surface Threshold and slide the determiner line to choose the Display button. A status window reports on the number of vertices and polygons generated and then the iso-surface appears.

Figure 8-5: IDL Slicer3 with a Surface
Dismiss the Slicer and Volume Windows

When you are done experimenting with the Slicer, before continuing with other chapters in this book, you should dismiss the Slicer window.

1. To exit the volume window, enter the following at the Command Line:

 WDELETE

2. To exit the IDL Slicer, choose the path File → Quit.
More About Volume Visualization

For a list of volume-related routines, see the “Volume Visualization” section of the category “3D Visualization” in of the IDL Quick Reference manual. To take advantage of all of IDL’s powerful capabilities in creating and manipulating volumes, see the IVolume tool in Chapter 14, “Working with Volumes” in the iTool User’s Guide manual. See Chapter 7, “Creating Volume Objects” in the Object Programming manual for information on volume objects.
Chapter 9
Mapping

This chapter describes the following topics:

IDL and Mapping 124
Using the iMap Tool 125
Drawing Map Projections 126
Drawing an Orthographic Projection .. 129
Plotting a Portion of the Globe 130
Plotting Data on Maps 131
Reading Latitudes and Longitudes ... 133
Plotting Contours Over Maps 134
Warping Images to Maps 136
More About Mapping 141
IDL and Mapping

IDL’s mapping facilities allow you to plot data over different projections of the globe. This chapter shows how to display various map projections and plot data over them.

In this chapter, we will enter statements at the IDL Command Line. This demonstrates IDL’s interactive capability, and shows how easy it is to manipulate your data.

Note

To simplify obtaining useful results from the examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```
Chapter 9: Mapping

Using the iMap Tool

The interactive iMap tool allows you great flexibility in manipulating and visualizing map data.

Displaying a Map

You can apply a map projection before or after you import image or contour data into the iMap tool. To do so, select Operations → Map Projection. This command opens the Map Projection dialog, shown in the following figure:

![Map Projection Dialog](image)

Figure 9-1: The Map Projection Dialog

You can apply a map projection to another iTool as well. If you do, the tool will adapt to expose iMap functionality, including the iMap operations and the Map panel.

Modifying Map Data

The iMap tool allows you many options such as inserting a map grid and inserting shapefiles. For much more information on working with the iMap tool, see “Working with Maps” in Chapter 15 of the iTool User’s Guide manual.
Drawing Map Projections

Drawing continental outlines and plotting data in different projections is easy using IDL’s mapping routines. The MAP_SET routine is the heart of the mapping package. It controls the type of projection and the limits of the global region to be mapped.

1. Reset the graphics window to default size:

 WinDow

2. Display a cylindrical projection map of the world:

 MAP_set,/CYLINDRICAL,/GRID,/CONTINENTS,/LABEL

 Figure 9-2: A Cylindrical Projection

 The CYLINDRICAL keyword tells MAP_SET to use the cylindrical projection. The GRID keyword causes the latitude and longitude lines to be drawn. The LABEL keyword adds the latitude and longitude labels. The CONTINENTS keyword tells MAP_SET to draw continental outlines.

 A similar map could be created by entering a series of separate commands to set up the type of projection, draw the continent outlines, and then draw the grid lines.
Although the single-line MAP_SET command is quicker to enter, by using the separate MAP_SET, MAP_GRID, and MAP_CONTINENTS commands, you exercise more control over the map colors, fills, and so on.

3. Load a new color table.
   ```idl```
   LOADCT, 39
```

4. Display a Miller cylindrical projection of the world.
   ```idl```
   MAP_SET, /MILLER
```

5. Draw the continent outlines. The FILL keyword fills in the continents using the color specified by the COLOR keyword.
   ```idl```
   MAP_CONTINENTS, COLOR=220, /FILL
```

6. Draw the grid lines. The COLOR keyword specifies the color of the grid lines. The LABEL keyword labels the lines.
   ```idl```
   MAP_GRID, COLOR=160, /LABEL
```

Figure 9-3: Miller Cylindrical Projection with MAP_CONTINENTS and MAP_GRID

The order of MAP_GRID and MAP_CONTINENTS depends on how you wish to display your map. In the above example, if you call MAP_GRID before MAP_CONTINENTS, the filled continents are drawn over the labeled grid lines.
7. Dismiss the graphics window:

\texttt{WDELETE}
Chapter 9: Mapping

Drawing an Orthographic Projection

To draw a map that looks more like a globe, use the orthographic projection.

1. Open a graphics window for viewing:

 WINDOW

2. Enter the following at the Command Line:

 MAP_SET, 30, -100, 0, /ORTHOGRAPHIC, /ISOTROPIC, /GRID, $
 /CONTINENTS, /LABEL, /HORIZON

3. Dismiss the graphics window:

 WDELETE

Figure 9-4: Orthographic Projection Showing North America at the Center

The numbers following the MAP_SET command (30, -100, and 0) are the latitude and longitude to be centered and the angle of rotation for the North direction. The ISOTROPIC keyword creates a map that has the same scale in the vertical and horizontal directions, so we get a circular map in a rectangular window. IDL keywords (but not function and procedure names) can always be abbreviated to their minimum unique length. The GRID, COLOR, and LABEL keywords work the same as before. The HORIZON keyword draws the line at which the horizon exists. Without the HORIZON keyword, MAP_SET only draws the grid and the continents.
Chapter 9: Mapping

Plotting a Portion of the Globe

You do not always have to plot the entire globe, you can plot a section of the globe by using the LIMIT keyword which specifies a region of the globe to plot.

1. Open a graphics window for viewing:

 WINDOW

2. Enter the following at the Command Line:

 MAP_SET,32,-100,/AZIM,LIMIT=[10, -130, 55, -70], $
 /GRID,/CONT,/LABEL

 Figure 9-5: Azimuthal Equidistant Projection

 The azimuthal equidistant projection shows the United States and Mexico. The AZIM keyword selects the azimuthal equidistant projection. The keyword LIMIT is set equal to a four-element vector containing the minimum latitude, minimum longitude, maximum latitude, and maximum longitude.

3. Dismiss the graphics window:

 WDELETE
Chapter 9: Mapping

Plotting Data on Maps

You can annotate plots easily in IDL. To plot the location of selected cities in North America, as shown in the following figure, you need to create three arrays: one to hold latitudes, one to hold longitudes, and one to hold the names of the cities being plotted.

1. Open a graphics window for viewing:
   ```idl```
   WINDOW
   ```idl```
2. Create a 5-element array of floating-point values representing latitudes in degrees North of zero.
   ```idl```
   LATS=[40.02, 34.00, 38.55, 48.25, 17.29]
   ```idl```
3. The values in LONS are negative because they represent degrees West of zero longitude.
   ```idl```
   LONS=[-105.16, -119.40, -77.00, -114.21, -88.10]
   ```idl```
4. Create a five-element array of string values. Text strings can be enclosed in either single quotes ('text') or double quotes ("text").
   ```idl```
   CITIES=['Boulder, CO', 'Santa Cruz, CA', 'Washington, DC', 'Whitefish, MT', 'Belize, Belize']
   ```idl```
5. Draw a Mercator projection featuring the United States and Mexico.
   ```idl```
   MAP_SET,/MERCATOR,/GRID,/CONTINENT, LIMIT=[10, -130, 60, -70]
   ```idl```
6. Place a plotting symbol at the location of each city.
   ```idl```
   PLOTS, LONS, LATS, PSYM=4, SYMSIZE=1.4, COLOR=220
7. Place the names of the cities near their respective symbols.

   \begin{verbatim}
   XYOUTS, LONS, LATS, CITIES, COLOR=80, \\
   CHARThICK=2, CHARSIZE=1.25, ALIGN=0.5
   \end{verbatim}

The PSYM keyword makes PLOTS use diamond-shaped plotting symbols instead of connecting lines. The SYMSIZE keyword controls the size of the plotting symbols. XYOUTS draws the characters for each element of the array CITIES at the corresponding location specified by the array elements of LONS and LATS. The CHARTHICK keyword controls the thickness of the text characters and the CHARSIZE keyword controls their size (1.0 is the default size). Setting the ALIGN keyword to 0.5 centers the city names over their corresponding data points.

\textit{Figure 9-6: Annotating a Map Projection}
Chapter 9: Mapping

Reading Latitudes and Longitudes

If a map projection is displayed, IDL can return the position of the cursor over the map in latitude and longitude coordinates.

1. Enter the command:

   CURSOR, LON, LAT & PRINT, LAT, LON

   The CURSOR command reads the “X” and “Y” positions of the cursor when the mouse button is pressed and returns those values in the LON and LAT variables. Use the mouse to move the cursor over the map window and click on any point. The latitude and longitude of that point on the map are printed in the Output Log.

2. When you are finished with your map, dismiss the graphics window:

   WDELETE
Plotting Contours Over Maps

Contour plots can easily be drawn over map projections by using the OVERPLOT keyword to the CONTOUR routine. See the map in the figure below. Enter the following at the Command Line:

1. Open a graphics window for viewing:
   
   WINDOW

2. Create a dataset to plot:
   
   A=DIST(91)

3. Create an X value vector containing 91 values that range from -90 to 90 in 2 degree increments:
   
   LAT=FINDGEN(91)*2-90

4. Create a Y value vector containing 91 values that range from -180 to 180 in 4 degree increments:
   
   LON=FINDGEN(91)*4-180

5. Create a new sinusoidal map projection over which to plot the data:
   
   MAP_SET,/GRID,/CONTINENTS,/SINUSOIDAL,/HORIZON

6. Draw a twelve-level contour plot of array A over the map:
   
   CONTOUR,A,LON,LAT,/OVERPLOT,NLEVELS=12
Since latitudes range from -90 to 90 degrees and longitudes range from -180 to 180 degrees, you created two vectors containing the “X” and “Y” values for CONTOUR to use in displaying the array A. If the X and Y values are not explicitly specified, CONTOUR will plot the array A over only a small portion of the globe.

7. When you are finished with the map, dismiss the graphics window:

\texttt{WDELETE}
Warping Images to Maps

Image data can also be displayed on maps. The MAP_IMAGE function returns a warped version of an original image that can be displayed over a map projection. In this example, elevation data for the entire globe is displayed as an image with continent outlines and grid lines overlaid.

1. Define the template for the file worldelv.dat. This file contains a 360 by 360 square array of byte values.

   \[
   \text{WORLDTEMPLATE} = \text{BINARY TEMPLATE}\left(\text{FILEPATH('worldelv.dat', SUBDIR=['examples', 'data'])}\right)
   \]

2. When the binary template dialog box appears, name the template “WORLDTEMPLATE” and then click New Field.

3. In the New Field dialog, enter “W” for the Field Name, be sure to specify that you have two dimensions and that the field sizes are 360 and 360.

4. Also select Byte (unsigned) in the Type field. Now click OK in the New Field dialog. Click “OK” to close the binary template dialog as well. Next, read the file by entering:

   \[
   \text{WORLDELV_BINARY} = \text{READ_BINARY}\left(\text{FILEPATH('worldelv.dat', SUBDIR=['examples', 'data']), TEMPLATE=WORLDTEMPLATE}\right)
   \]

5. Load a color table.

   \[
   \text{loadct, 26}
   \]

6. View the data as an image.

   \[
   \text{TV, WORLDELV_BINARY.W}
   \]
Chapter 9: Mapping

137

Getting Started with IDL

Warping Images to Maps

The first column of data in this image corresponds to 0 degrees longitude. Because MAP_IMAGE assumes that the first column of the image being warped corresponds to -180 degrees, we’ll use the SHIFT function on the dataset before proceeding.

7. Shift the array 180 elements in the row direction and 0 elements in the column direction to make -180 degrees the first column in the array.

    WORLDELV_BINARY.W=SHIFT(WORLDELV_BINARY.W, 180, 0)

8. View the data as an image.

    TV, WORLDELV_BINARY.W

Figure 9-8: worldelv.dat Visualized with TV
From the image contained in the data, we can create a warped image to fit any of the available map projections. A map projection must be defined before using MAP_IMAGE, because MAP_IMAGE uses the currently defined map parameters.

9. Create a Mollweide projection with continents and gridlines.
   
   \[ \text{MAP\_SET, /MOLLWEIDE, /CONT, /GRID, COLOR=100} \]

10. Warp the image using bilinear interpolation and save the result in the variable new.
    
    \[ \text{NEW=MAP\_IMAGE(WORLDELV\_BINARY.W, SX, SY, /BILIN)} \]
    
    The SX and SY in the command above are output variables that contain the X and Y position at which the image should be displayed. Setting the BILIN keyword causes bilinear interpolation to be used, resulting in a smoother warped image.

11. Display the new image over the map:
    
    \[ \text{TV, NEW, SX, SY} \]
The SX and SY variables provide TV with the proper starting coordinates for the warped image. TV usually displays images starting at position (0, 0). See the map in the previous figure. Note that the warped image gets displayed over the existing continent and grid lines.

12. The continent outlines and thick grid lines can be displayed, as shown next, by entering:

```
MAP_CONTINENTS
MAP_GRID, GLINETHICK=3
```
Figure 9-11: Showing gridlines and continents
More About Mapping

More information on the IDL mapping routines can be found in *Using IDL* and in the *IDL Reference Guide*. Also see “Working with Maps” in Chapter 15 of the *iTool User’s Guide* manual.
Chapter 10
Plotting Irregularly-Gridded Data

This chapter describes the following topics:

<table>
<thead>
<tr>
<th>Irregularly Gridded Data in IDL</th>
<th>144</th>
<th>Plotting the Results with TRIGRID</th>
<th>149</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating a Dataset</td>
<td>145</td>
<td>More About Gridding</td>
<td>151</td>
</tr>
<tr>
<td>The TRIANGULATE Procedure</td>
<td>147</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Irregularly Gridded Data in IDL

IDL can be used to display and analyze irregularly gridded data. IDL routines allow you to easily fit irregularly sampled data to a regular grid. This regularly gridded data can then be sent to IDL’s plotting routines. In this chapter, we will see how easy it is to manipulate your irregularly gridded data.

Note
To simplify obtaining useful results from the examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
Chapter 10: Plotting Irregularly-Gridded Data

Creating a Dataset

Create a set of 32 irregularly-gridded data points in 3-D space that we can use as arguments to the TRIGRID and TRIANGULATE functions.

1. Open a window for viewing:
   \[ \text{WINDOW} \]

2. Set SEED to the longword value 1. SEED is used to generate random points.
   \[ \text{SEED}=1L \]

3. Set the number of points to be randomly generated.
   \[ \text{N}=32 \]

4. Create a set of X values for each of the 32 data points.
   \[ \text{X=\text{RANDOMU}(SEED, N)} \]

5. Create a set of Y values for each of the 32 data points.
   \[ \text{Y=\text{RANDOMU}(SEED, N)} \]

6. Create a set of Z values for each of the 32 data points from the X and Y values.
   \[ \text{Z=\text{EXP}(-3*(\text{(X-0.5)^2+(Y-0.5)^2}))} \]
7. Plot the XY positions of the random points.

```
PLOT,X,Y,PSYM=1,TITLE='Random XY Points'
```

![Figure 10-1: Plot of random values](image)

8. Dismiss the graphics window:

```
WDELETE
```
The TRIANGULATE Procedure

The TRIANGULATE procedure constructs a Delaunay triangulation of a planar set of points. After a triangulation has been found for a set of irregularly-gridded data points, the TRIGRID function can be used to interpolate surface values to a regular grid.

1. Open a window for viewing:
   
   WINDOW

2. To return a triangulation in the variable TR, enter the command:
   
   TRIANGULATE, X, Y, TR

   The variable TR now contains a three-element by 54-element longword array (you may see this by typing “Help, TR” at the IDL Command Line).

   **Note**
   This is not always a 54-element array, it may vary based on the number of points.

3. To produce a plot of the triangulation, shown below, enter the following commands:

   PLOT, X, Y, PSYM=1, TITLE='Triangulation'

   FOR i=0, N_ELEMENTS(TR)/3 - 1 DO BEGIN $ & T= $ & TR[*, i],TR[0, i] & PLOTS, X[T], Y[T] & ENDFOR
Chapter 10: Plotting Irregularly-Gridded Data

Figure 10-2: The triangulation of the random values

4. Dismiss the graphics window

WDELETE
Plotting the Results with TRIGRID

Now that we have the triangulation TR, the TRIGRID function can be used to return a regular grid of interpolated Z values.

1. Display a surface plot of the gridded data by passing the result of the TRIGRID function to SURFACE, using the default interpolation technique and add a title to the plot, shown below, by entering:

```
SURFACE,TRIGRID(X,Y,Z,TR)
XYOUTS,.5,.9,'Linear Interpolation',ALIGN=.5,/NORMAL
```

![Figure 10-3: Linear interpolation of triangulated data](image)

The TRIGRID function can also return a smoothed interpolation. Set the QUINTIC keyword to use a quintic polynomial method when interpolating the grid.
2. Display the results of the quintic gridding method, shown below, by entering:

```
SURFACE, TRIGRID(X, Y, Z, TR, /QUINTIC XYOUTS, .5, .9, 'Quintic Interpolation', ALIGN=.5, /NORMAL)
```

*Figure 10-4: Quintic interpolation of triangulated data*
Chapter 10: Plotting Irregularly-Gridded Data

More About Gridding

More information on the TRIGRID and TRIANGULATE routines as well as other triangulation routines, can be found in the IDL Reference Guide.
Chapter 11

Animation

This chapter describes the following topics:

- IDL and Animation ................. 154
- Animating a Series of Images .... 155
- Displaying an Animation as a Wire Mesh . 157
- Animation with XINTERANIMATE ... 160
- More About Animation ............ 162
IDL and Animation

IDL can help you visualize your data dynamically by using animation. An animation is just a series of still frames shown sequentially. In IDL, a series of frames can be represented by a 3-D array (for example, a 3-D array could hold forty, 300 pixel by 300 pixel images). This chapter shows you how to create an array of images and play them back as an animated sequence.

**Note**
To simplify obtaining useful results from the examples in this manual, create a bitmap buffer for your graphic windows and to use a maximum of 256 colors by entering the following command at the IDL command prompt:

```
DEVICE, RETAIN=2, DECOMPOSED=0
```
Chapter 11: Animation

Animating a Series of Images

To create an animation that shows a series of images that represent an abnormal heartbeat, first read in the images to be displayed. The file holds 16 images of a human heart as 64 by 64 element arrays of bytes.

1. Enter the following commands at the IDL Command Line:
   
   HEARTTEMPLATE=BINARY TEMPLATE(FILEPATH('abnorm.dat', $ 
   SUBDIR=['examples', 'data']))

2. When the binary template dialog box appears, name the template “Animation” and then click New Field.

3. Enter “H” for the Field Name, be sure to specify that you have three dimensions and that the sizes are 64, 64 and 16.

4. Also select Byte in the Type field. Now click OK for both open dialogs.

5. Next, read the images into variable HEART_BINARY:
   
   HEART_BINARY=READ_BINARY(FILEPATH('abnorm.dat', $ 
   SUBDIR=['examples', 'data']), TEMPLATE=HEARTTEMPLATE)

6. Load an appropriate color table:
   
   LOADCT, 3

7. Display the first “slice” of our 3-D array:
   
   TV, HEART_BINARY.H[*, *, 0]

   The asterisks (*) in the first two element positions tell IDL to use all of the elements in those positions. Hence, the TV procedure displays a 64 by 64 byte image. The image is rather small.

8. Now resize each image in the array with bilinear interpolation by entering:
   
   H=REBIN(HEART_BINARY.H, 320, 320, 16)

9. Then display:
   
   TV, H[*, *, 0]

   Each image in H is 5 times its previous size.

   Now a simple FOR statement can be used to “animate” the images. (A more robust and convenient animation routine, XINTERANIMATE, is described next.)

10. To animate, enter:
    
    FOR I=0,15 DO TVSCL,H[*,*,i]
Chapter 11: Animation

Getting Started with IDL

IDL displays the 16 images in the array \( H \) sequentially. To repeat the animation, press the “up arrow” key to recall the command and press enter.

**Note**

If the IDLDE screen covers an existing IDL window, you may want to delete the current IDL window before recalling the `FOR` statement in order to clearly see the animation.

11. Dismiss the window:

`WDELETE`
Chapter 11: Animation

Displaying an Animation as a Wire Mesh

The same series of images can be displayed as different types of animations. For example, each frame of the animation could be displayed as a SURFACE plot.

1. Create a new array to hold the heartbeat data:

   \[ S = \text{REBIN}(\text{HEART\_BINARY.H, 32, 32, 16}) \]

   \( S \) now holds 32 byte by 32 byte versions of the heartbeat images. SURFACE plots are often more legible when made from a resized version of the dataset with fewer data points in it.

2. Display the first image in \( S \), as a wire-mesh surface by entering:

   \[ \text{SURFACE,} S[*,*,0] \]

   ![Figure 11-2: Surface visualization of heartbeat data](image)

   Now create a whole series of SURFACE plots, one for each image in the original dataset.

3. To do this, first create a three-dimensional array to hold all of the images by entering:

   \[ \text{FRAMES=} \text{BYTARR}(300, 300, 16) \]

   The variable \( frames \) will hold sixteen, 300 by 300 byte images.
4. Now create a 300 by 300 pixel window in which to display the images:

```
WINDOW,1,TITLE='IDL Animation',xsize=300,ysize=300
```

A blank IDL Animation screen will appear.

The next command will draw each frame of the animation. A SURFACE plot is drawn in the window and then the TVRD function is used to read the image from the plotting window into the frames array. The FOR loop is used to increment the array indices. The lines which follow are actually a single IDL command. The dollar sign ($) works as a continuation character in IDL and the ampersand (&) allows multiple commands in the same line.

5. Enter:

```
FOR I=0,15 DO BEGIN SURFACE,S[*,*,i],ZRANGE=[0,250]$
& FRAMES[0,0,i]=TVRD()&END
```

You should see a series of SURFACE plots being drawn in the animation window, as shown in below. The ZRANGE keyword is used to keep the “height” axis the same for each plot.

6. Now display the new images in series by entering:

```
FOR I=0,15 DO TV,FRAMES[*,*,i]
```

![Image of SURFACE plots](image-url)

*Figure 11-3: One of the SURFACE plots of the animation window*
Note

Once again, if the IDLDE screen covers an existing IDL window, you may want to delete the current IDL window before recalling the FOR statement in order to clearly see the animation.
Animation with XINTERANIMATE

IDL includes a powerful, widget-based animation tool called XINTERANIMATE. Sometimes it is useful to view a single wire-mesh surface or shaded surface from a number of different angles. Let’s make a SURFACE plot from one of the S dataset frames and view it rotating through 360 degrees. by entering:

1. Save the first frame of the S dataset in the variable A to simplify the next set of commands:
   
   ```idl
 A=S[*,*],0
   ```

2. Create a window in which to display your surface:
   
   ```idl
 WINDOW,0,XSIZE=300,YSIZE=300
   ```

3. Display A as a wire-mesh surface:
   
   ```idl
 SURFACE,A,XSTYLE=4,YSTYLE=4,ZSTYLE=4
   ```

   Setting the XSTYLE, YSTYLE, and ZSTYLE keywords equal to 4 turns axis drawing off. Usually, IDL automatically scales the axes of plots to best display all of the data points sent to the plotting routine. However, for this sequence of images, it is best if each SURFACE plot is drawn with the same size axes. The SCALE3 procedure can be used to control various aspects of the three-dimensional transformation used to display plots.

4. Force the X and Y axis ranges to run from 0 to 32 and the Z axis range to run from 0 to 250:
   
   ```idl
 SCALE3,XRANGE=[0,31],YRANGE=[0,31],ZRANGE=[0,250]
   ```

5. Set up the XINTERANIMATE routine to hold 40, 300 by 300 byte images:
   
   ```idl
 XINTERANIMATE, SET=[300,300,40],/SHOWLOAD
   ```

6. Return focus to the plot window for the SURFACE calls which follow.
   
   ```idl
 WSET, 0
   ```

7. Generate each frame of the animation and store it for the XINTERANIMATE routine. Once a 3-D transformation has been established, most IDL plotting routines can be made to use it by including the T3D keyword. The [XYZ]STYLE keywords are shortened to [XYZ]ST:
   
   ```idl
 FOR I=0,39 DO BEGIN SCALE3,AZ= -i * 9 & SURFACE,A, /T3D,XSTYLE=4,YSTYLE=4,ZSTYLE=4 & XINTERANIMATE,$
 FRAME=I,WIN=0 & END
   ```
8. Play images back as an animation after all the images have been saved in the XINTERANIMATE routine:

XINTERANIMATE

Figure 11-4: The XINTERANIMATE window

The XINTERANIMATE window should appear, as shown above. “Tape recorder” style controls can be used to play the animation forward, play it backward, or stop. Individual frames can also be selected by moving the “Animation Frame” slider. The “Options” menu controls the style and direction of image playback. Click on “End Animation” when you are ready to return to the IDL Command Line.

Cleaning Up the Animation Windows

Before continuing with the rest of the tutorials, delete the two windows you used to create the animations. The WDELETE procedure is used to delete IDL windows.

1. Delete both window 0 and window 1 by entering:

```
WDELETE, 0
WDELETE, 1
```
More About Animation

With just a few IDL commands, you’ve created a number of different types of animation. For a list of other animation related commands, see “Animation” in the IDL Quick Reference manual.
Chapter 12

Programming in IDL

This chapter describes the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDL and Programming</td>
<td>164</td>
</tr>
<tr>
<td>Programming Capabilities of the IDLDE</td>
<td>165</td>
</tr>
<tr>
<td>Executing a Simple IDL Program</td>
<td>168</td>
</tr>
<tr>
<td>Debugging Tools in IDL</td>
<td>170</td>
</tr>
<tr>
<td>Using IDL Projects</td>
<td>172</td>
</tr>
<tr>
<td>More About IDL Programming</td>
<td>174</td>
</tr>
</tbody>
</table>
IDL and Programming

IDL encompasses a complete set of program control statements that allow for the writing of sophisticated programs and applications. These control statements are similar to, if not identical to, those found in other major programming languages. This chapter demonstrates some of IDL’s more basic yet important programming capabilities.

**Note**
For optimum performance when using these examples, create a bitmap buffer for your graphic windows and use a maximum of 256 colors by entering the following command at the IDL command prompt:

```idl
DEVICE, RETAIN=2, DECOMPOSED=0
```

**Note**
See Chapter 6, “Library Authoring” in the Building IDL Applications manual for information on naming procedures to avoid conflicts with IDL routine names. It is important to implement and consistently use a naming scheme from the earliest stages of code development to avoid namespace conflicts.
Chapter 12: Programming in IDL

Programming Capabilities of the IDLDE

The IDL Development Editor (IDLDE) offers you the ability to program applications with ease. The term “IDL Application” is used very broadly and any program written in the IDL language is treated as an IDL application. IDL applications range from the very simple (for example, a MAIN program entered at the IDL command line) to the very complex (for example, large programs with graphical user interfaces). Whether you are writing a small program to analyze a single data set or a large-scale application for commercial distribution, it is useful to understand the programming concepts used by the IDL language. IDL even allows you to call IDL from other programs written in other languages and call other programs from IDL.

Built-In Editor

The IDL Editor is a programmer-style editor. For example, some characteristics include:

- Indenting a line using the Tab key also allows following lines to be indented
- Using the Shift-Tab key moves position left one tab stop
- Moving the cursor position within an IDL Editor window can be done with the mouse or the keyboard

A thorough listing of IDL Editor window key definitions is given in “Editor Window Keyboard Shortcuts” in Chapter 2 of the Building IDL Applications manual.

Chromacoded Editor

The Windows IDL Editor supports chromacoding — the automatic coloring of different types of IDL statements. Select File → Preference and choose the Editor tab to display the colors used for different types of entries recognized by IDL.

Types of IDL Programs

There are multiple ways of executing a program within IDL. These involve varying levels of complexity and include:

$\text{Main}$

A main program unit consists of a sequence of IDL statements that end in an END statement. Only one main program unit may exist within an IDL project window at any time. All commands (except executive statements) that can be entered at the IDL Command Line can also be contained in an IDL program.
Procedure

A procedure is a self-contained sequence of IDL statements that performs a well-defined task. A procedure is identified by a procedure definition statement where the procedure name is the name of the IDL statement you are creating and the parameters are named variables that are used in the procedure.

Function

A function is a self-contained sequence of IDL statements that performs a well-defined task and returns a value to the calling program unit when it is executed. All functions return a function value which is given as a parameter in the RETURN statement used to exit the function.

See “Overview of IDL Program Types” in Chapter 2 of the Building IDL Applications manual for more information.

Compound Statements

The compound statements in IDL are:

- **BEGIN...END** — Creates a block of statements

Conditional Statements

The conditional statements in IDL are:

- **IF ... THEN ... ELSE** — Conditionally executes a statement or a block of statements
- **CASE** — Selects one, and only one, statement for execution
- **SWITCH** — Selects one statement for execution from multiple choices

Loop Statements

The loop statements in IDL are:

- **FOR...DO** — Executes one or more statements repeatedly, while incrementing or decrementing a variable with each repetition, until a condition is met
- **REPEAT...UNTIL** — Repetitively executes a subject statement until a condition is true
• **WHILE...DO** — Executes a statement repeatedly while a condition remains true

### Jump Statements

The jump statements in IDL are:

- **BREAK** — Provides a convenient way to immediately exit from a loop statement without resorting to the GOTO statement
- **CONTINUE** — Provides a convenient way to immediately start the next iteration of the enclosing FOR, WHILE, or REPEAT loop
- **GOTO** — Transfers program control to a point in the program specified by the label

**Note**

For more detailed information about the functions of these IDL statements, see Chapter 7, “Program Control” in the *Building IDL Applications* manual.
Executing a Simple IDL Program

To show IDL’s programming capabilities, the following program removes the bridges from the image of Manhattan Island in New York City using IDL’s erosion and dilation capabilities.

1. From the IDLDE, open a new IDL Editor window by selecting File → New → Editor (or for Macintosh, simply File → New).

2. Type (or copy) the following lines of code into the new Editor window to form a program:

```
PRO remove_bridges
 ; Read an image of New York.
 xsize = 768 ; pixels.
 ysize = 512 ; pixels.
 img = read_binary($
 filepath('nyny.dat', subdir=['examples', 'data'])), $
 data_dims=[xsize, ysize]
 ; Increase image's contrast.
 img = bytscl(img)
 ; Create an image mask from thresholded image.
 threshold_level = 70 ; determined empirically.
 mask = img lt threshold_level
 ; Make a disk-shaped "structuring element."
 disk_size = 7 ; determined empirically.
 se = shift(dist(disk_size), disk_size / 2, disk_size / 2)
 se = se le disk_size / 2
 ; Remove details in the mask's shape.
 mask = dilate(erosion(mask, se), se)
 ; Fuse gaps in the mask's shape.
 mask = erosion(dilation(mask, se), se)
 ; Remove all but the largest region in the mask.
 label_img = label_region(mask)
 labels = label_img[where(label_img ne 0)]; Remove background.
 label = where(histogram(label_img) eq max(histogram(labels)))
 mask = label_img eq label[0]
 ; Generate a new image consisting of local area minimums.
 new_img = dilate(erosion(img, se, /gray), se, /gray)
```
Chapter 12: Programming in IDL

; Replace new image with original image, where not masked.
new_img[where(mask eq 0)] = img[where(mask eq 0)]
;
; View result, comparing the new image with the original.
print, 'Hit any key to end program.'
window, xsize=xsize, ysize=ysize
flick, img, new_img
wdelete
END

Note
Semicolons (;) in IDL code are indicators of the beginning of comment lines, which explain what the actual code lines are doing and/or to help you understand your code (while being ignored by IDL itself).

Note
The dollar sign ($) at the end of the first line is the IDL continuation character. It allows you to enter long IDL commands as multiple lines.

Note
To change the colors used in the chromacoded editor, select File → Preferences and then select the Editor tab.

Saving, Compiling and Running

To view the program at work, IDL requires a few additional steps:

1. Save the file as remove_bridges.pro by selecting File → Save As and then entering “remove_bridges.pro”.
2. Compile the program by selecting Run → Compile remove_bridges.pro (or on Macintosh, simply Run → Compile).
3. Run the program by selecting Run → Run remove_bridges.pro (or for Macintosh, simply Run → Run).

Note
If your program encounters an error in running be sure to check your code for typographical errors.
Debugging Tools in IDL

IDL provides many features to help you debug your program. These features are introduced in the following sections. See Chapter 8, “Debugging and Error-Handling” in the Building IDL Applications manual for more information.

Breakpoints

Setting breakpoints in your program allows you to stop and step through the execution of the program. You can observe the value of variables at those points and continue execution of the program.

Variable Watch Window

The Variable Watch Window displays current variable values after IDL has completed execution of your program. If the calling context changes during execution — such as when stepping into a procedure or function — the variable table is replaced with a table appropriate to the new context.

While IDL is at the main program level, the Variable Watch Window remains active and displays any variables created.
The IDL Code Profiler

The Code Profiler helps you analyze the performance of your applications. You can easily use it to monitor the calling frequency and execution time for procedures and functions. The Profiler can be used with programs entered from the command line as well as programs run from within a file.

![Figure 12-3: The Profile Dialog](image)
Using IDL Projects

IDL’s project capabilities allow you to easily develop applications. You can manage, compile, run, and create distributions of all the files you will need to develop your application. All of your application files can be organized so that they are more easily accessed and imported to other developers, colleagues, or users.

Note
See Chapter 22, “Creating IDL Projects” in the Building IDL Applications manual for details and examples of using IDL project.

Accessing All Application Files

IDL projects have an easy to use interface that allows you to group:

- IDL source code files (.pro)
Chapter 12: Programming in IDL

- GUI files (.prc) created with the IDL GUIBuilder
- Data files (ASCII text or binary)
- Image files (.tif, .jpg, .bmp, etc.)
- Other files (help files, .sav files, etc.)

After adding files to a project, you can simply double click on .pro files to open them in the IDL editor or .prc files to open them in the IDL GUIBuilder.

Working with Project Files

IDL projects makes it easy to add, remove, move, edit, compile, and test files in your project. All of your workspace information is saved as well. If you save and exit your project with open files, when again opening the project, those files will be opened automatically. IDL projects also store breakpoint information. There is no need to reset breakpoints every time you open the project.

Compiling and Running Applications

Compiling and running applications is fast and easy. You can compile all of your source files or just the files that you have modified and then run your application through the Projects menu. You can customize how your application is compiled and run by specifying options for your project.

Building Distributions

Once you have completed your application, you can quickly and easily create a distribution. If you have purchased the IDL Developer’s Kit, your application is automatically licensed for distribution.

Exporting Applications

You can easily move your application to another platform or distribute your source code to colleagues by exporting your project. All your source code, GUI files, data files, and image files are copied to a directory you specify. You also have the option of creating an IDL Run Time distribution with your application.
More About IDL Programming

This chapter has given you a very brief introduction and overview into programming in IDL. Many more resources are available to you if you wish to continue to learn to program in IDL. A wealth of information exists in the Building IDL Applications manual. Also see the documentation for specific routines in the IDL Reference Guide.
Chapter 13
Manipulating Data

This chapter describes the following topics:

IDL and Manipulating Data . . . . . . . . . . . . 176
IDL Array Routines . . . . . . . . . . . . . . . . . . 177
Avoiding IF Statements for Performance . 178
More About Manipulating Data . . . . . . . 181
IDL and Manipulating Data

IDL has been specifically designed to process arrays easily and naturally. You can get excellent performance in your applications by using the built-in array processing routines instead of other methods like FOR loops. This chapter will show how easy it is to manipulate your data using IDL’s capabilities.
IDL Array Routines

IDL contains many array processing procedures and functions dealing with array creation, array manipulation, and array and image processing. For a list of array relate routines, see Array Creation and “Array Manipulation” in the IDL Quick Reference manual. See Chapter 15, “Arrays” in the Building IDL Applications manual for details on working with arrays.
Avoiding IF Statements for Performance

Programs with array expressions run faster than programs with scalars, loops, and IF statements. The following sections provide alternatives to using IF statements.

Summing to Avoid IF Statements

The first example adds all positive elements of array B to array A.

- Using a loop will be slow:
  
  \[
  \text{FOR } I=0,(N-1) \text{ DO IF } B[I] \gt 0 \text{ THEN } A[I]=A[I] + B[I] \\
  \]

- Fast way: Mask out negative elements using array operations.
  
  \[
  A=A + (B \gt 0) \times B \\
  \]

- Faster way: Add \( B > 0 \)
  
  \[
  A=A + (B > 0) \\
  \]

When an IF statement appears in the middle of a loop with each element of an array in the conditional, the loop can often be eliminated by using logical array expressions.

Using Array Operators and the WHERE Function

In the example below, each element of C is set to the square-root of A if \( A[I] \) is positive; otherwise, \( C[I] \) is set to minus the square-root of the absolute value of \( A[I] \).

- Using an IF statement is slow:
  
  \[
  \text{FOR } I=0,(N-1) \text{ DO IF } A[I] \le 0 \text{ THEN } C[I]=-\sqrt{-A[I]} \text{ ELSE } C[I]=\sqrt{A[I]} \\
  \]

- Fast way:
  
  \[
  C = ((A \gt 0) \times 2 - 1) \times \sqrt{\text{ABS}(A)} \\
  \]

The expression \( (A \gt 0) \) has the value 1 if \( A[I] \) is positive and has the value 0 if \( A[I] \) is not. \( (A \gt 0) \times 2 - 1 \) is equal to +1 if \( A[I] \) is positive or -1 if \( A[I] \) is negative, accomplishing the desired result without resorting to loops or IF statements.

Another method is to use the WHERE function to determine the subscripts of the negative elements of A and negate the corresponding elements of the result.

- Get subscripts of negative elements.
  
  \[
  \text{NEG-S}=\text{WHERE}(A \lt 0) \\
  \]

\[
\text{Avoiding IF Statements for Performance} \\
\text{Getting Started with IDL}
\]
Chapter 13: Manipulating Data

- Take root of absolute value.
  \[ C = \text{SQRT}(\text{ABS}(A)) \]
- Negate elements in C corresponding to negative elements in A.
  \[ C[\text{negs}] = -C[\text{negs}] \]

Example— Using Vector and Array Operations

Whenever possible, vector and array data should always be processed with IDL array operations instead of scalar operations in a loop. For example, consider the problem of flipping a $512 \times 512$ image. This problem arises because approximately half the available image display devices consider the origin to be the lower-left corner of the screen, while the other half recognize it as the upper-left corner.

The following example is for demonstration only. The IDL system variable !ORDER should be used to control the origin of image devices. The ORDER keyword to the TV procedure serves the same purpose.

A programmer without experience in using IDL might be tempted to write the following nested loop structure to solve this problem:

```idl
FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN
 Temporarily save pixel:
 TEMP=IMAGE[I, J]
 Exchange pixel in same column from corresponding row at bottom.
 IMAGE[I, J] = IMAGE[I, 511 - J]
 IMAGE[I, 511-J] = TEMP
ENDFOR
```

A more efficient approach to this problem capitalizes on IDL's ability to process arrays as a single entity.

- Enter at the IDL Command Line:
  ```idl
 FOR J = 0, 255 DO BEGIN
 Temporarily save current row.
 temp = IMAGE[*, J]
 Exchange row with corresponding row at bottom.
 IMAGE[*, J] = IMAGE[*, 511-J]
 IMAGE[*, 511-J] = temp
 ENDFOR
  ```
At the cost of using twice as much memory, processing can be simplified even further by using the following statements:

- Get a second array to hold inverted copy.
  
  \[
  \text{image2} = \text{BYTARR}(512, 512)
  \]

- Copy the rows from the bottom up.
  
  \[
  \text{FOR J = 0, 511 DO image2[*], J} = \text{image[*], 511-J}
  \]

- Even more efficient is the single line:
  
  \[
  \text{image2} = \text{image[*], 511 - INDGEN(512)}
  \]

that reverses the array using subscript ranges and array-valued subscripts.

- Finally, using the built-in Rotate function is quickest of all:
  
  \[
  \text{image} = \text{ROTATE(image, 7)}
  \]

This works because inverting the image is equivalent to transposing it and rotating it 270 degrees clockwise.

**Note**

Another way to invert the image is to enter:

\[
\text{image} = \text{REVERSE(image, 2)}
\]
More About Manipulating Data

IDL has many more array processing capabilities than the ones shown in this chapter. To take advantage of all of IDL’s powerful capabilities in manipulating data, look for more information in *Building IDL Applications*. Also see the following topics:

- Chapter 6, “Importing and Writing Data into Variables” in the *Using IDL* manual
- Chapter 7, “Getting Information About Files and Data” in the *Using IDL* manual
Chapter 14
Creating Interfaces with the IDL GUIBuilder

This chapter describes the following topics:

- What is the IDL GUIBuilder? ........... 184
- IDL GUIBuilder Tools ................. 186
- Creating an Example Application .... 187
- Widget Types ..................... 197
- More About the IDL GUIBuilder ...... 199
What is the IDL GUIBuilder?

The IDL GUIBuilder is part of the IDL Development Environment. GUI stands for *Graphical User Interface*; the IDL GUIBuilder supplies you with a way to interactively create user interfaces. You can then generate the IDL source code that defines that interface and contains the event-handling routine place holders that complete your interface.

*Note*

The IDL GUIBuilder is supported on Windows only. However, the code it generates is portable to other platforms and will run on the same version of IDL or higher.

The IDL GUIBuilder has several tools that simplify application development. These tools allow you to create the widgets that constitute user interfaces, define the behavior of those widgets, define menus, as well as create and edit color bitmaps for use in buttons.

*Note*

When using code generated by the IDL GUIBuilder on other non-Windows platforms, more consistent results are obtained by using a row or column layout for your bases instead of a bulletin board layout. By using a row or column layout, problems caused by differences in the default spacing and decorations (for example, beveling) of widgets on each platform can be avoided.

Using the IDL GUIBuilder

These are the basic steps you will follow when building an application interface using the IDL GUIBuilder:

1. Interactively design and create a user interface using the components, or *widgets*, supplied in the IDL GUIBuilder. Widgets are simple graphical objects supported by IDL, such as sliders or buttons.

2. Set attribute properties for each widget. The attributes control the display, initial state, and behavior of the widget.

3. Set event properties for each widget. Each widget has a set of events to which it can respond. When you design and create an application, it is up to you to decide if and how a widget will respond to the events it can generate. The first step to having a widget respond to an event is to supply an event procedure name for that event.
Chapter 14: Creating Interfaces with the IDL GUIBuilder

4. Save the interface design to an IDL resource file, *.prc file, and generate the portable IDL source code files. There are two types of generated IDL source code: widget definition code (*.pro files) and event-handling code (*.eventcb.pro files).

5. Modify the generated *.eventcb.pro event-handling code file using the IDLDE, then compile and run the *.pro code. This code can run on any IDL-supported platform.

The *.eventcb.pro file contains placeholders for all of the event procedures you defined for the widgets, and you complete the file by filling in the necessary event callback routines for each procedure.

**Warning**

Once you have generated the widget definition code (*.pro files), you should not modify this file manually. If you decide to change your interface definition, you will need to regenerate the interface code, and will therefore overwrite that *.pro file. The event handling code will not be overwritten but will instead be appended.

You can also create user interfaces programmatically in IDL without the GUIBuilder. Chapter 28, “Creating Widget Applications” in the Building IDL Applications manual contains complete information about IDL widgets, and it describes this process.
**IDL GUIBuilder Tools**

You will use the following tools to design and construct a graphical interface using the IDL GUIBuilder:

- The IDL GUIBuilder Toolbar, which you use to create the widgets that make up your interface.
- Widget Properties dialog, which you use to set widget attributes and event properties.
- Widget Browser, which you can use to see the widget hierarchy and to modify certain aspects of the widgets in your application.
- The Menu Editor, which you use to define menus to top-level bases and buttons.
- The Bitmap Editor, which you use to create or modify bitmap images to be displayed on button widgets.
- The IDLDE to modify, compile, and run the generated code.

**Using the IDL GUIBuilder Toolbar**

The IDL GUIBuilder has its own toolbar in the IDE, which you use to create the widgets for your user interface. The components of the toolbar are shown in the following figure.

![IDL GUIBuilder Toolbar Diagram](image)

*Figure 14-1: IDL GUIBuilder Toolbar*
Creating an Example Application

This simple example application contains a menu and a draw widget. When complete, the running application allows the user to open and display a graphics file in PNG format, change the color table for the image display, and perform a smooth operation on the displayed image.

The following example shows in various steps how to create a widget, set widget properties, and write IDL code to handle events:

Defining Menus for the Top-Level Base

To define the menu, follow these steps:

1. Open a new IDL GUIBuilder window by selecting File → New → GUI from the IDLDE menu, or click the “New GUI” button on the IDLDE toolbar.

2. Drag out the window so that the top-level base to a reasonable size for displaying an image.

   To view the property values, right-click on the base, and choose Properties from menu. In the Properties dialog, scroll down to view the X Size and Y Size property values.

3. Right-click on the top-level base in the IDL GUIBuilder window, then choose Edit Menu. This action opens the Menu Editor.

4. In the Editor’s Menu Caption field, enter “File” and click Insert. Clicking Insert sets the entered value and adds a new line after the currently selected line, and the new line becomes the selected line.

5. To define the File menu items:
   - With the new line selected, click on the right arrow in the Menu Editor, which indents the line and makes it a menu item.
   - Click in the Menu Caption field and enter “Open”.
   - Click in the Event Procedure field and enter “OpenFile”. The OpenFile routine will be called when the user selects this menu.
   - To create a separator after the Open menu, click the line button at the right side of the dialog (above the arrow buttons).
   - To set the values and move to a new line, click Insert.
   - In the Menu Caption field, enter “Exit”.

6. To add more menu items, repeat steps 4 and 5 for each menu item.

7. Save the GUIBuilder window.

8. Build and run the application.

9. Click on the File menu to test the menu items.

10. Adjust the window size and position to suit your needs.

11. Restart the application to continue using the menu items.

Creating an Example Application
6. To define the **Tools** menu and its one item, do the following:
   - With the new line selected, click the left arrow to make the line a top-level menu.
   - In the **Menu Caption** field, enter “Tools”, then click Insert.
   - Click the right arrow to make the new line a menu item.
   - In the **Menu Caption** field, enter “Load Color Table”.
   - In the **Event Procedure** field, enter “OnColor”.
   - To set the values and move to a new line, click Insert.

7. To define the **Analyze** menu and its one menu item, do the following:
   - With the new line selected, click the left arrow to make the line a top-level menu.
   - In the **Menu Caption** field, type “Analyze”, then press Enter.
   - Click the right arrow to make the new line a menu item.
   - In the **Menu Caption** field, enter “Smooth”.
   - In the **Event Procedure** field, enter “DoSmooth”.

![Menu Editor Dialog with Example Menus](image-url)
8. Save your menu definitions by clicking OK in the Menu Editor.
9. At this time you can click on the menus to test them.
10. From the IDLDE File menu, choose Save, which opens the “Save As” dialog.
11. In the “Save As” dialog, select a location, enter “example.prc” in the File name field, and click Save. This action writes the portable resource code to the specified file.

To create a draw area that will display PNG image files, follow these steps:

1. Click on the Draw Widget tool button (the dark square icon), then drag out an area that fills the top-level base display area. Leave a small margin around the edge of the draw area when you drag it out.
2. Right click on the draw area, and choose Properties. This action opens the Properties dialog for the draw area; the draw widget properties are displayed in the dialog.
3. In the Properties dialog, click the push pin button (in the top right corner of the dialog box) so the dialog will stay open and on top.

**Note**

This Properties dialog floats and is resizeable.
4. In the Properties dialog, change the draw widget Name attribute value to “Draw”.

Later, you will write code to handle the display of the image in this draw area widget. Renaming the widget now will make it easier to write the code later; the “Draw” name is easy to remember.

**Note**

The Name property must be unique to the widget hierarchy.

5. In the IDL GUIBuilder window, click on the top-level base widget to select it. When you do so, the Properties dialog will update and display the attributes for this base widget.
6. In the **Properties** dialog, locate the **Component Sizing** property, and select **Default** from the droplist values. This action sizes the base to the draw widget size you created.

When the size of the base was first dragged out, the **Component Sizing** property changed from **Default** to **Explicit**—you explicitly sized the widget. Now that the base widget contains items, you can return it to **Default** sizing, and IDL will handle the sizing of this top-level base.

7. From the **File** menu, choose **Save**.

**Running the Application in Test Mode**

You can run the application in test mode, which allows you to test the display of widgets and menus.

To run your application in test mode:

- From the **Run** menu, choose **Test GUI**.

  This action displays the interface as it will look when it runs.

To exit test mode:

- Press the **Esc** key or Click the close X in the upper-right corner of the test application window.

**Generating the IDL Code**

To generate the code for the example application, follow these steps:

1. From the **File** menu, choose **Generate .pro**. This action opens the “Save As” dialog.

2. In the “Save As” dialog, find the location where you want the files saved, enter “example.pro” in the File name field, and click **Save**.

   This action generates an **example.pro** widget definition file and an **example_eventcb.pro** event-handling file.

The **example.pro** file contains the widget definition code, and you should never modify this file. If you decide later to change your interface, you will need to regenerate this interface code, and thus overwrite the widget code file.

The **example_eventcb.pro** contains place holders for all the event procedures you defined in the IDL GUIBuilder Menu Editor and Properties dialog. You must complete these event procedures by filling in event callback routines. This file will
only be appended to when new event handlers are added so changes made will not be lost.

**Note**
You should modify only the generated event-handling file (*.eventcb.pro); you should never modify the generated interface code (the *.pro file).

### Handling the Open File Event

You can now modify the generated example_eventcb.pro file to handle the events for the application. First, you will modify the OpenFile routine.

When the user selects Open from the File menu of the example application, the appropriate event structure is sent, and the OpenFile routine handles the event. For this application, the Open menu item will launch an Open dialog to allow the user to choose a PNG file, and then the routine will check the selected file’s type, read the image, and display it in the draw area.

To open the file and add the code to handle the OpenFile event, follow these steps:

1. From the File menu in the IDLDE, choose Open, which launches the Open dialog.

2. In the Open dialog, locate and select the example_eventcb.pro file, and click Open. This file contains the event handling routine placeholders, which you will now complete.

3. In the example_eventcb.pro file, locate the OpenFile procedure, which looks like this:

   ```pro
 PRO OpenFile, Event
 END
   ```

   **Tip**
   To find the OpenFile routine, select OpenFile from the Functions/Procedures drop-down list on the IDLDE toolbar.

4. Add the following code between the PRO and END statements to handle the event:

   ```pro
 ; If there is a file, draw it to the draw widget.
 sFile = DIALOG_PICKFILE(FILTER='*.png')
 IF(sFile NE '') THEN BEGIN
 ; Find the draw widget, which is named Draw.
 wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw');
   ```
Chapter 14: Creating Interfaces with the IDL GUIBuilder

; Make sure something was found.
IF(wDraw GT 0)THEN BEGIN
; Make the draw widget the current, active window.
WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
WSET,idDraw
; Read in the image.
im = READ_PNG(sFile, r, g, b)
; If TrueColor image, quantize image to pseudo-color:
IF (SIZE(im, /N_DIM) EQ 3) THEN $
   im = COLOR_QUAN(im, 1, r, g, b)
; Size the image to fill the draw area.
im = CONGRID(im, !D.X_SIZE, !D.Y_SIZE)
; Handle TrueColor displays:
DEVICE, DECOMPOSED=0
; Load color table, if one exists:
IF (N_ELEMENTS(r) GT 0) THEN TVLCT, r, g, b
; Display the image.
TV, im
; Save the image in the uvalue of the top-level base.
WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY
ENDIF
ENDIF

Note
In the added code, you used the FIND_BY_UNAME keyword to find the draw widget using its name property. In this example, the widget name, “Draw”, is the one you gave the widget in the IDL GUIBuilder Properties dialog. The widget name is case-sensitive.

Now re-save example.pro to be sure that the changes are retained.

Handling the Exit Event

To add the code that causes the example application to close when the user chooses Exit from the File menu, follow these steps:

1. Locate the OnExit procedure place holder, which looks like this:

   PRO OnExit, Event

   END

2. Add the following statement between the PRO and END statements to handle the destruction of the application:

   WIDGET_CONTROL, Event.top, /DESTROY
Handling the Load Color Table Event

To add the code that causes the example application to open the IDL color table dialog when the user chooses **Load Color Table** from the **Tools** menu, follow these steps:

1. Locate the `OnColor` routine placeholder, which looks like this:
   ```idl```
   ```
   PRO OnColor, Event
   END
   ```
   ```idl```

2. Add the following code between the `PRO` and `END` statements:
   ```idl```
   ```
   XLOADCT, /BLOCK
   ; Find the draw widget, which is named Draw:
   wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw')
   IF(wDraw GT 0) THEN BEGIN
   ; Make the draw widget the current, active window:
   WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
   WSET, idDraw
   WIDGET_CONTROL, Event.top, GET_UVALUE=im, /NO_COPY
   ; Make sure the image exists:
   IF (N_ELEMENTS(im) NE 0) THEN BEGIN
   ; Display the image:
   TV, im
   ; Save the image in the uvalue of the top-level base:
   WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY
   ENDIF
   ENDIF
   ```
   ```idl```

   This procedure opens a dialog from which the user can select from a set of predefined color tables. When the user clicks the name of a color table, it is loaded and the displayed image changes appropriately.

   **Note**

   The `XLOADCT` color table dialog affects only 8-bit display devices.

Handling the Smooth Event

When the user selects **Smooth** from the **Analyze** menu, a smooth operation is performed on the displayed image. The smooth operation displays a smoothed image with a boxcar average of the specified width, which in the example code is 5.

To add the callback routines to handle the smooth operation, follow these steps:

1. Locate the `DoSmooth` routine placeholder, which looks like this:  

   ```idl```
   ```
   PRO DoSmooth, Event
   END
   ```
   ```idl```

   ```idl```
   ```
   XLOADCT, /BLOCK
   ; Find the draw widget, which is named Draw:
   wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw')
   IF(wDraw GT 0) THEN BEGIN
   ; Make the draw widget the current, active window:
   WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
   WSET, idDraw
   WIDGET_CONTROL, Event.top, GET_UVALUE=im, /NO_COPY
   ; Make sure the image exists:
   IF (N_ELEMENTS(im) NE 0) THEN BEGIN
   ; Display the image:
   TV, im
   ; Save the image in the uvalue of the top-level base:
   WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY
   ENDIF
   ENDIF
   ```
   ```idl```

   This procedure opens a dialog from which the user can select from a set of predefined color tables. When the user clicks the name of a color table, it is loaded and the displayed image changes appropriately.
PRO DoSmooth, Event

END

2. Add the following code between the PRO and END statements to handle the smooth operation:

; Get the image stored in the uvalue of the top-level-base.
WIDGET_CONTROL, Event.top, GET_UVALUE=image, /NO_COPY
; Make sure the image exists.
IF(N_ELEMENTS(image) GT 0)THEN BEGIN
; Smooth the image.
  image = SMOOTH(image, 5)
; Display the smoothed image.
  TV, image
; Place the new image in the uvalue of the button widget.
  WIDGET_CONTROL, Event.top, SET_UVALUE=image, /NO_COPY
ENDIF

3. From the File menu, choose Save, which saves all your changes to the example_eventcb.pro file.

Compiling and Running the Example Application

To compile and run your example application, follow these steps:

1. Type example at the IDL> command prompt. This compiles and runs the example application, opening the GUI interface that has been created.

2. Now open a PNG image to try out the new application. From the File menu choose Open, locate a PNG file, and click “Open”.

3. You will now see the image opened in your GUI window. To manipulate the color schemes, click Tools/Load Color Table. The following figure shows the example application and the IDL color table dialog. You can also perform the smooth procedure on the image.
Figure 14-4: The Example GUI Application
## Widget Types

The IDL GUIBuilder toolbar allows you many options for creating widgets of various types. The following table contains a short listing and descriptions of the widget types you can create using the toolbar:

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>Creates a container for a group of widgets within a top-level base container (which is contained in the IDL GUIBuilder window).</td>
</tr>
<tr>
<td>Button</td>
<td>Creates a push button. The easiest way to allow a user to interact with your application is through a button click.</td>
</tr>
<tr>
<td>Radio Button</td>
<td>Creates a toggle button that is always grouped within a base container.</td>
</tr>
<tr>
<td>Checkbox</td>
<td>Creates a checkbox, which you can use either as a single toggle button to indicate a particular state is on or off or as a list of choices from which the user can select none to all choices.</td>
</tr>
<tr>
<td>Text</td>
<td>Creates a text widget.</td>
</tr>
<tr>
<td>Label</td>
<td>Creates a label.</td>
</tr>
<tr>
<td>Horizontal and</td>
<td>Creates a slider with a horizontal or vertical layout.</td>
</tr>
<tr>
<td>Vertical Sliders</td>
<td></td>
</tr>
<tr>
<td>Droplist</td>
<td>Creates a droplist widget, which you can use to present a scrollable list of items from which the user can select.</td>
</tr>
<tr>
<td>Listbox</td>
<td>Creates a list widget, which you can use to present a scrollable list of items from which the user can select.</td>
</tr>
<tr>
<td>Draw Area</td>
<td>Creates a draw area, which you can use to display graphics in your application.</td>
</tr>
<tr>
<td>Table</td>
<td>Creates a table widget, which you can use to display data in a row and column format.</td>
</tr>
</tbody>
</table>

*Table 14-1: Widget Types and Descriptions*
Note
The Select Cursor button returns the cursor to its standard state, and it indicates that the cursor is in that state. After you click on another button and create the selected widget, the cursor returns to the selection state.

## Widget Properties

For each widget type, there is a set of attribute values and a set of event values you can set using the IDL GUIBuilder Properties dialog. When you select a widget in the IDL GUIBuilder window or in the Widget Browser, the Properties dialog is updated to contain the properties for the selected widget. These properties include those common to all widgets and those specific to the selected widget.

On the Attributes tab of the Properties dialog (right click on the draw area, and choose Properties. This action opens the Properties dialog for the draw area) the attributes are set to default values and are arranged in the following order:

- Name property
- Combined Alphabetical list of common and widget-specific properties

On the Events tab, the possible events for a widget are listed in alphabetical order, with the common and the widget-specific events combined. By default, no event values are set initially. When you enter a routine name for an event property, you are responsible for making sure that event procedure exists. IDL does not validate the existence of the specified routine.

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab</td>
<td>Creates a tab widget on which different “pages” (base widgets and their children) can be displayed by first selecting the appropriate tab.</td>
</tr>
<tr>
<td>Tree</td>
<td>Creates a tree widget, which presents a hierarchical view that can be used to organize a wide variety of data structures and information.</td>
</tr>
</tbody>
</table>
More About the IDL GUIBuilder

The functionality shown here is only a small part of the capabilities of the IDL GUIBuilder. You can find much more information on building your own user interfaces in Chapter 29, “Using the IDL GUIBuilder” in the Building IDL Applications manual.
Chapter 14: Creating Interfaces with the IDL GUIBuilder
Using just a few examples, you’ve now gained a brief glimpse at the many and powerful options that IDL offers you for data analysis, visualization, and cross-platform application development. But the power of IDL has only begun and IDL offers you many options to aid you in learning more and more about its incredible functionality.
Learning More about IDL

A multitude of resources are made available to you to assist you as you learn the many capabilities of IDL. IDL manuals are offered both printed and online (in PDF version). IDL also includes an online help system directly accessible from the IDL Development Environment.

IDL Documentation Set

If you have just purchased IDL, you will receive part of the documentation set (depending upon which products you have purchased) in printed form with your order. All IDL manuals are available in PDF form on your product CD-ROM. For more information, see “Online Manuals” on page 205.

Installing and Licensing IDL 6.2

*Installing and Licensing IDL 6.3* describes how to install and license IDL on your platform. It provides information about the different types of licensing available for IDL and how to manage licensing on your system.

Using IDL

*Using IDL* explains IDL from an interactive user’s point of view. It contains information about the IDL environment, the structure of IDL, and how to use IDL to analyze and visualize your data.

Building IDL Applications

*Building IDL Applications* explains how to use the IDL language to write programs—from simple procedures to large, complex applications. It contains information on the structure of the IDL language, programming techniques, and tools you can use to create applications in IDL.

Image Processing in IDL

*Image Processing in IDL* introduces you to the full image processing power of IDL, describing how to display, manipulate, and extract information from images. This manual features both Direct Graphics and Object Graphics examples that will aid in developing IDL applications that require image processing.
Chapter 15: Where to Go From Here

ITool User's Guide

The iTool User's Guide shows you important iTool functionality such as how to start the iTools, how to import data into an iTool, how to export data out of an iTool, the general layout of the iTools, and how to perform common iTool tasks.

ITool Developer's Guide

The iTool Developer's Guide describes the IDL iTools component framework and provides examples of its use. The manual helps you understand how to use the component framework to create your own intelligent tools.

IDL Quick Reference

The IDL Quick Reference provides quick access to the following: IDL procedures and functions (categorized functionally and alphabetically), objects, executive commands, and statements.

IDL Reference Guide

The IDL Reference Guide contains detailed information about all of IDL's procedures, functions, objects, system variables, and other useful reference materials. It also contains detailed information about IDL's routines for dealing with Common Data Format (CDF), Hierarchical Data Format (HDF), Earth Observing System extensions to HDF (HDF-EOS), and Network Common Data Format (NetCDF) files.

Object Programming

Object Programming discusses object-oriented programming using IDL and contains information about IDL's object graphics system.

External Development Guide

The External Development Guide explains how to use IDL to develop applications that interact with programs written in other programming languages.

Obsolete IDL Features

Obsolete IDL Features describes routines that have become obsolete by enhancements to the IDL language. While these routines continue to exist, RSI recommends that you do not use routines that have become obsolete in new code.
Chapter 15: Where to Go From Here

Getting Started with IDL

IDL DataMiner Guide

The IDL DataMiner Guide contains information on using IDL to interact with databases using the Open Database Connectivity (ODBC) interface.

Note

Additional documentation can be ordered from RSI by contacting RSI Sales at (303) 786-9900 or by visiting www.RSInc.com.

Online Help

IDL is equipped with extensive on-line help facilities that provide two kinds of information: documentation for the IDL language and information on the status of the IDL environment. There are several ways to access these help facilities from within the IDL:

The IDL Development Environment Help Menu

To view the IDL help system, select “Contents” from the “Help” pull-down menu in the IDL Development Environment. You can also search using the “Find Topic” selection on the same menu.

The Question Mark

You can access the IDL Help by entering a question mark (?) at the IDL prompt. The IDL Online Help window appears. The most current documentation on any aspect of IDL is available through this command. Although the help window has buttons for performing searches, you can also perform a keyword search from the command line by entering “?” followed by a keyword for which you want to search. For example, to search for topics related to contouring when starting the help system, you could enter:

? CONTOUR

IDL Help Outside of the IDL Development Environment

You can access the IDL online help system when IDL itself is not running. On UNIX and Mac OS X, execute the following at the shell prompt:

idlhelp

On Windows platforms, select IDL Online Help from the Start menu.

HELP Command

The HELP procedure gives information about the IDL session. Enter:
Chapter 15: Where to Go From Here

HELP

with no additional parameters to display an overview of the current IDL session including one-line descriptions of all variables and the names of all compiled procedures and functions. Enter:

HELP, variable

to display information about that variable’s type. Many keyword parameters can be used with the HELP procedure to retrieve more specific information.

Online Manuals

All volumes of the IDL documentation set are also available in Adobe Acrobat Portable Document Format (PDF). These PDF files are provided on the IDL installation CD-ROM, but are not automatically installed on your machine along with IDL. In order to view these manuals, you will need a copy of Adobe’s Acrobat Reader software. For more information on Adobe Acrobat Reader, visit their World Wide Web site at www.adobe.com.

How to Access IDL Online Manuals

The IDL online manuals are located in the info/docs directory of your IDL CD-ROM.

Navigation of the IDL Online Manuals

The online IDL manuals are fully hypertext linked for easy navigation. You can also use the bookmarks panel at the left of the Acrobat Reader window to switch between manuals.

Searching within the Online Manual Set

The IDL online manuals are set up to search for any information you might need within the IDL manual set. To search the IDL manual set, you can click on the binocular/page button in the Acrobat Reader tool bar after you have opened any IDL manual in the set.
IDL Demo Applications and Examples

The IDL Demo Applications illustrate some of the many ways IDL can help visualize data. The IDL Demo Applications are a series of programs written in the IDL language that demonstrate different aspects of IDL. To Start the Demo Applications, complete the following steps:

For Windows, by clicking the Windows Start button and selecting Start → Programs → Research Systems IDL 6.3 → IDL Demo.

For UNIX and Mac OS X, enter the following at the UNIX prompt:

```
idldemo
```

**Note**

If you have already started IDL, you can simply type in DEMO at the IDL prompt.

IDL> DEMO

Another way to access the IDL Demo System is to use the “Run Demo” toolbar button on the IDLDE toolbar. To use this feature simply click the button and the dialog for running the demo will appear.

IDL also comes with many built-in examples such as source code and example data files. These can be found in the `RSI_DIR/examples` where `RSI_DIR` is the directory in which you have installed IDL.
Chapter 15: Where to Go From Here

Contacting RSI

Address

Research Systems, Inc.
4990 Pearl East Circle
Boulder, CO 80301

Phone

(303) 786-9900
(303) 413-3920 (Technical support)

Fax

(303) 786-9909

E-mail

Sales inquiries: info@RSInc.com
Technical support: support@RSInc.com
Training information: training@RSInc.com

World Wide Web

Chapter 15: Where to Go From Here

Contacting RSI

Getting Started with IDL
Index

**Numerics**

2D, plot, 53

**A**

Adobe, Portable Document Format (PDF), 205
animation, wire mesh surface, 157
annotating, maps, 131
axes, turning off, 160
azimuthal equidistant map projection, 130

**C**

clipboard support, graphics windows, 22
code
  GUIBuilder, modifying generated, 192
color tables
  example (GUIBuilder), 194
  loading, 95
colors
  contrast enhancement, 73
  filling contours, 102
  scaling, 68
command line, IDLDE, 22
Contents button, 204
contours
  filling, 102
iContour tool, 92
levels, 101
  3D perspective, 103
tickmarks, 102
contrast enhancements, using, 73
creating, data, 53
D
data, irregularly gridded, 144
data sets
  creating, 53
  plotting, 46
datasets, creating, 53, 145
differentiated smoothing, 80
Direct Graphics, clipboard support, 22
dismissing windows, 68
displaying
  plots, 2D plots, 39
draw widgets, GUIBuilder example, 189
drawing, latitude and longitude lines, 129

E
Editor window, defined, 21
elevation levels, contours, 101
events, handling in IDL GUIBuilder code, 192

F
Fast Fourier transform, noise reduction filter, 57
filling
  contours, example, 102
filtering, Fourier transform, 57
frequency domain filtering, 57

G
globe, drawing, 129
graphics
  clipboard support, 22
  windows
    dismissing, 68
    OS clipboard support, 22
    resizing, 72
  gridding
    latitude and longitude lines, 129
    quintic, 149

H
help on IDL, 204

I
iContour tool, 92
IDL, getting help, 204
IDL Code Profiler, 171
IDL Development Environment. See IDLDE
IDL GUIBuilder
  access, 21
  base widgets, use, 197
  button widgets, use, 197
  checkbox widgets, use, 197
  draw widgets, use, 197
  droplist widgets, use, 197
  examples
    color table example, 194
    compiling and running, 195
    creating draw area, 189
    defining menus, 187
    modifying code, 192
  files, modifying generated, 192
  label widgets, use, 197
  listbox widgets, use, 197
  radio buttons, use, 197
  slider widgets, use, 197
  smooth example, 194
  starting, 187
  tab widgets, use, 198
  table widgets, use, 197
  test mode, 191
  text widgets, use, 197
  toolbar, 186
  tools, 186
tree widgets, use, 198
writing event-handling code, 192
IDLDE, layout, 19
iImage tool, about, 65
image display
   getting started, 67
   routines, 64
images
   contrast enhancement, 73
   iImage tool, 65
   opening, 67
   reading, 67, 67
   rotating, 83
   sharpening, 79
   smoothing, 79
input/output, getting started, 30
interpolation
   linear, 149
   quintic, 149
iPlot, tool, 39
irregularly gridded data, 144
iTools, clipboard support, 22
iVolume tool, using, 109

L
latitude lines, 129
levels, contour, 101
lines
   drawing latitude and longitude, 129
   horizon, 129
longitude lines, 129

M
mapping
   annotations, 131
   getting started, 124
   grid of latitude and longitude lines, 129
   horizon line, 129
limiting region mapped, 130
projection
   azimuthal equidistant, 130
   orthographic, 129
multiple plot displays, 60

O
objects
   object graphics, clipboard support, 22
opening, image files, 67
orthographic map projection, 129
Output Log, overview, 23
overplotting, 102
   IPLOT, 40

P
PDF files, 205
performance, analyzing, 171
pixels
   brightness profile, 85
   scaling, 76
plots
   2-D iPlot, 39
   overplotting in iPlot, 40
plotting
   annotating maps, 131
   ASCII data example, 46
   displaying multiple plots, 60
   iPlot tool, 39
   irregularly gridded data, 144
   other capabilities, 48
   overplotting, 102
   simple, 43
   surfaces, 164
   symbols, 146
   text size, 96
   titles, 96
   printing, plot (direct graphics), 44
profiling, 171
project
  about, 172
  interface, 20
projections
  azimuthal equidistant, 130
  orthographic, 129

Q
quintic interpolation, 149
quitting IDL, 27

R
reading
  binary data, 33
  images, 34, 67
rendering, volumes, 109
resizing graphics windows, 72
rotating
  images, ROTATE function, 83
routines, image display, 64

S
scaling, pixels, 76
sharpening an image, 79
signal processing, and IDL, 52
SIN function, 53
sinewave function, 53
slicing volumes, SLICER3, 117
smoothing
  example, 194
  images, 79
status bars, IDLDE, 23
surfaces
  displaying, 119
  plotting, 164
wire mesh animation, 157

T
test mode, IDL GUIBuilder, 191
text, size, 96
three-dimensional, contour plot, 103
thresholding, example, 73
toolbars
  IDL GUIBuilder, 186
  IDLDE, 20, 20, 21, 22
tutorials, 15

U
unsharp mask filtering, 79

V
Variable Watch Window, 170
variables, displaying current, 170
volumes
  extents, 110
  iVolume tool, 109
  rendering, 109
  visualizing, 109

W
widgets, creating in IDL GUIBuilder, 186
windows
  clipboard support for graphics, 22
deleting, 161
dismissing, 68
resizing, 72
wire mesh surface, animation, 157
writing, images, 34