
The promise of grid computing, particularly grid-
enabled visualization, is a transparent, intercon-

nected fabric to link data sources, computing
(visualization) resources, and users into widely dis-
tributed virtual organizations. The grid’s purpose is to
tackle increasingly complex problems. However, a wide
gulf exists between current visualization technologies
and the vision of global, grid-enabled visualization
capabilities. Here, we discuss our views of how visual-
ization technology must evolve to offer true effective-
ness in a grid environment.

The vision
In our example, Dr. Jane is a geophysics researcher

studying the effects of a new material, code-named zorbs,
that can mitigate the effects of earthquakes on urban
structures. The material works by isolating structures
from direct exposure to shock damage through direct
injection into porous media upon which structures are
built. In the course of her studies, she runs experiments
at the molecular scale, where she observes molecule to
molecule interactions, and at the urban scale, where she
induces shock waves into the ground with large equip-
ment. She has access to instrumentation attached direct-
ly to urban structures in Shaky City that collects real-time
data and stores it at a nearby data center.

Dr. Jane runs large-scale simulations that spawn off
subsimulations around the world, wherever compute
cycles are available. The subsimulations, when com-
plete, report the results of parameter studies to the mas-
ter simulation. Because the simulations routinely
generate terabytes of results, data caches located close
to the computational resource store data for later analy-
sis and visualization. Dr. Jane routinely seeds her sim-
ulations with experimental data, and in turn, modifies
her experimental parameters with simulation results.

When an earthquake hits, she can immediately connect
to a vast network of sensors to observe how her handi-
work has reduced direct shock damage caused by the
pressure and shear waves generated by earthquakes.
She can make these observations using a desktop work-
station or a handheld telephone. Dr. Jane is part of a
large, multidisciplinary team scattered around the
world. All collaborators can access the entire collection
of experimental and simulation data, which may reside
at any one of the member institutions, see Figure 1.

Although this description is fiction, the scope of
Dr. Jane’s activities is not far fetched, and is reasonably
characteristic of many modern research scientists.
Indeed, the promise of grids is the ability to weave a col-
lection of disparate resources into a single application in
exactly the fashion we have suggested. As visualization
researchers and developers who work with people like
Dr. Jane on a routine basis, and who design and build
visualization tools, it’s our opinion that the current state
of visualization software is not grid ready. In fact, we
believe that a fundamental paradigm shift is needed to
create fully global visualization applications. A new grid-
aware framework is needed for distributed visualization
that’s easy to use, modular, extensible, and permits reuse
of existing investments in visualization technology.

Getting from here to there
A number of successful, contemporary visualization

systems such as VTK, AVS, and OpenDX let users quickly
assemble finished applications by combining software
components into a processing pipeline. These systems’
success is due to their flexible and extensible character-
istics. Application developers can use this flexibility by
combining components in several ways, enabling a wide
variety of visualization tasks. Developers also can bene-
fit from the systems’ extensibility by adding new compo-

nents to the system, extending
functionality.

We well understand the charac-
teristics of such systems deployed on
a single machine, some of which can
run in a distributed manner across a
limited number of machines. But
deploying such systems onto the
grid requires consideration of new
conditions not likely anticipated
during their initial design and
implementation. A distributed visu-

John Shalf and
E. Wes Bethel

Lawrence
Berkeley
National
Laboratory

The Grid and Future Visualization System Architectures

Visualization Viewpoints

6 March/April 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE

Shaky City
Data caches

High-performance
computing

Sensor
nets

Simulations

Shared
memory
transfer

Handheld
devices

Dr. JaneCollaborators

Figure 1. Grid-
based visualiza-
tion and
computing
applications
comprised of
heterogeneous
resources.

alization architecture—a framework suited for distrib-
uted, component-based, grid-enabled visualization—
can best meet these additional design considerations.

Distributed, heterogeneous components
Building upon the architecture of successful, con-

temporary systems, future grid-based systems will like-
ly use a component-based architecture. At their core,
these distributed components will probably resemble
their single-machine cousins—that is, they will perform
a well-defined operation on strongly typed input data
to produce a result. Currently, modules from one sys-
tem are often incompatible with those of another or
bound to a particular user interface paradigm, creating
isolation among users and within the visualization com-
munity. Visualization system users want to use the best
tool for the job, regardless of its source.1 Achieving such
a goal requires solving a plethora of engineering issues
and cultural differences. One issue is the nature of a flex-
ible high-performance-computing component interface,
a subject of active research. For instance, the Common
Component Architecture (http://www.cca-forum.org)
effort seeks to create an Interface Description Language
and automatic language wrappers oriented toward
high-performance computing application requirements.
The Advanced Collaborative Environments Research

Group (http://calder.ncsa.uiuc.edu/ACE-grid/main.
html) of the Global Grid Forum (http://www.gridfo-
rum.org) is defining the security requirements for this
sort of component architecture.

Fundamental graphics and visualization
algorithms

The hallmark of grid-based deployments is a focus on
remote visualization. Typical past approaches to remote
visualization have focused on one of two broad meth-
ods. The first approach performs all visualizations on
the server and sends image data (or X-protocol streams)
to the client. This approach works best with a large data
set. The alternative approach transfers subsets of the
large scientific data from the server to the client work-
station, where visualization occurs completely on the
desktop machine. This approach works best when inter-
activity is most important. However, these requirements
can change dynamically at runtime, as we show in the
“Performance Modeling and Pipeline Partitioning” side-
bar. New trends in graphics and visualizations have pro-
duced a new group of algorithms that will become
increasingly important for future grid-based visualiza-
tion systems. These latency tolerant algorithms seek to
maintain interactivity on the desktop, while perform-
ing visualization of large data sets. Visapult2 is an exam-

IEEE Computer Graphics and Applications 7

Performance Modeling and Pipeline
Partitioning

Most remote and distributed visualization
applications use a static partitioning of the
visualization pipeline in the hopes that such
partitioning works well for all situations. The
example in this sidebar illustrates the importance
of dynamic partitioning for distributed
visualization applications. Figure A shows the
components of three potential visualization
pipeline configurations that create an image of an
isosurface. The links between the blocks indicate
data flow.

The three pipeline configurations shown in
Figure A use different resources to create the same
finished product. The desktop-only pipeline
places the isosurface and rendering components
on the desktop machine. The cluster isosurface
pipeline places a distributed-memory
implementation of the isosurface component on
the cluster and transfers triangles over the
network to a serial rendering component on the
desktop. The cluster render pipeline performs
isosurface extraction and rendering on the cluster,
then transfers images to the desktop for display.
The colors in Figure B’s bar graph (next page)

Read
data

Desktop
isosurface

(A)

Disk
read

Disk
read

Desktop
render

(B)

Shared
memoryryoryry
transfsfersfsf

Eight-processor-
cluster render

(E)

edShareee
orymemooo
ertransfee

Shared
memory
transfer

Desktop
display

Desktop-only pipeline

Eight-processor-
cluster isosurface

(D)

Cluster isosurface pipeline

Cluster render pipeline

Gigabit
Ethernet (C) EEE Gigabit

 Ethernet (F)))

A Components and data flow for our hypothetical example. Arrows indicate potential data flow paths. There
are three potential partitionings in this graph. Letter annotations indicate the component in figures B and C.

continued on p. 8

ple of pipelined-parallel image-based rendering-assist-
ed volume rendering,3 while the TeraScale Browser4

uses multiresolution methods and pipelined data
caching for interactive, latency-tolerant visualization.
More algorithms of this type should be integrated into
a common framework to perform interactive, desktop
visualizations of large, remotely located data sources
using distributed visualization components.

Distributed execution and dynamic scheduling
Most contemporary component-based visualization

systems, which manage component launching and data
movement, are typically suited for single platform use.
As such, it’s likely these systems won’t prove effective in
grid environments. A common practice is a manual stag-
ing of components on machines into an execution
pipeline. This approach is impractical in grid environ-
ments where a single application might use hundreds
or thousands of resources. A better approach is a data-
base or directory service that distributes and tracks com-
ponents—both executables and running instances—on
heterogeneous resources. Services of this sort could
exist in grids based on the Globus architecture’s moni-
toring and discovery service (http://www.globus.
org/mds), which is essentially a lightweight-directory-
access-protocol-based hierarchy of resources for a given
virtual organization.

End-to-end performance
The practice of static pipeline configuration for dis-

tributed resources offers no guarantee of better perfor-
mance than when running all components on a single
machine. While an individual component’s performance
in a system is straightforward to quantify, we need to
model overall system performance for distributed com-
ponents to effectively use all resources. To select a rea-
sonable pipeline arrangement, we need to predict
performance of candidate pipelines before we launch
them. Such modeling is nontrivial, and will have a pro-
found impact on future system architectures. Because
underlying resources change dynamically in typical grid
computing environments and visualization algorithm
performance depends on parameter and data choices,
distributed visualization architectures must continu-
ously monitor runtime performance to dynamically
select resource uses, work distributions, and algorithm
alternatives. The Grid Application Development
Software project (http://hipersoft.cs.rice.edu/grads/
gradsoft.htm) is grappling with performance prediction
for distributed applications. Other efforts like the EU
GridLab (http://www.gridlab.org) project seek to cre-
ate application programming interfaces that hide the
complex, dynamic nature of grid resources from appli-
cation developers. The impact of such dynamic selec-
tion on performance is illustrated in the sidebar.

Visualization Viewpoints

8 March/April 2003

correspond to the groupings of components
shown in Figure A. To measure performance for
each of these pipelines, we make the following
optimizing and simplifying assumptions:

� All triangles produced by the isosurface
component are triangle strips. A single vertex
represents each incremental triangle of the
strip and consumes 24 bytes (six 4-byte floats
comprising vertex and normal information).

� All graphics hardware can render 50 million
triangles per second. An eight-
node system can render 400
million triangles per second.
� Isosurface creation takes 1

second on the desktop, and
0.125 seconds on the eight-
node system.

� The image transfer assumes a
24-bit high-definition 1920/
1080p common-intermediate-
format frame buffer.

� Interconnects use a 1-Gbit
network with perfect perfor-
mance.

� The performance model does
not consider the cost of data
reads, scatter-gather oper-
ations, or displaying cluster-
rendered images on the
desktop.

Whereas Figure B shows the
absolute runtime of each
pipeline for varying numbers of
triangles, Figure C presents the
relative runtime of all compo-

Pi
p

el
in

e
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

1.01 1.10
2.00

11.00

0.03 0.32

2.09

19.73

0.51 0.64 0.75
1.88

0

5

10

15

20

25

0.5 5 50 500
Isosurface triangles (millions)

Desktop only
Cluster isosurface
Cluster render

B Absolute runtime for each pipeline. Desktop-only performance is the sum of components A
and B (letters refer to annotations in Figure A); cluster isosurface performance is the sum of
components D, C, and B; and cluster render performance is the sum of components D, E, and F.

continued from p. 7

Conclusion
Extending current visualization tools to grid-enable

them is a daunting challenge due to the breadth and depth
of issues. At one end of the spectrum, careful performance
analysis and optimization of the visual pipeline is needed
to effectively use remote and distibuted resources, espe-
cially in dynamic environments. At the other end of the
spectrum, we need new fundamental graphics and visu-
alization algorithms to implement latency-tolerant tools
suited for remote and distributed visualization settings.
We have only briefly mentioned a few of the numerous
issues related to implementing and deploying effective
grid-based solutions. The approach we favor leverages on
lessons learned from successful, contemporary visualiza-
tion packages. Specifically, the best solution is a new
framework that hides the complexity of implementing
fully grid-enabled distributed visualization tools built from
software components. Our vision is a distributed visual-
ization architecture that supports high-performance,
latency tolerant, and heterogeneous components to pro-
mote growth of visualization technology into grid envi-
ronments and unity within the visualization and
computational science communities. �

Acknowledgement
This work was supported by the Director, Office of Sci-

ence, Office of Advanced Scientific Computing

Research, Mathematical, Information, and Computa-
tional Sciences Division, US Department of Energy
under contract no. DE-AC03-76SF00098.

References
1. B. Hamann et al., NERSC Visualization Greenbook, Lawrence

Berkeley National Laboratory, 2002, http://vis.lbl.gov/
Publications/2002/VisGreenFindings-LBNL-51699.pdf.

2. W. Bethel et al., “Using High-Speed WANs and Network Data
Caches to Enable Remote and Distributed Visualization,”
Proc. IEEE/ACM SC2000, CD-ROM, IEEE CS Press, 2000.

3. K. Müller et al., “IBR-Assisted Volume Rendering.” Late
Breaking Hot Topics, Proc. IEEE Visualization, ACM Press,
1999, pp. 5-8.

4. V. Pascucci and R. Frank, “Global Static Indexing for Real-
Time Exploration of Very Large Regular Grids,”
Proc. IEEE/ACM SC2001, CD-ROM, ACM Press, 2001,
http://www.sc2001.org/papers/pap.pap114.pdf.

Readers may contact John Shalf or E. Wes Bethel at
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd.,
Mail Stop 50F, Berkeley, CA 94720, email {jshalf,
ewbethel}@lbl.gov.

IEEE Computer Graphics and Applications 9

nents for varying numbers of triangles. Each verti-
cal bar in Figure C sums the absolute runtime of all
components, producing 100 percent, and the size
of each colored segment in the bar shows relative
time consumed by that particular component. Each
component’s execution time is normalized by the
sum of all component execution times so we can
quickly determine which components, or network
transfers, will dominate the execution time. (Some
components are used in more than one pipeline
configuration.) The vertical bars in Figure C are
color-coded by component: green shades indicate
a desktop resident, red shades indicate network
transfers, and orange shades indicate a cluster
resident. We’ve arranged components vertically so
you can visually integrate groups of adjacent com-
ponents into their respective pipeline partitionings.
In the 500,000 triangles case, the cost of desktop
isosurface extraction dominates in the desktop-only
pipeline. In contrast, the cluster isosurface pipeline
would perform about six times faster. In the 500
million triangles case, the cluster render pipeline is
about five times faster than the desktop-only
pipeline, and about eight times faster than the
cluster isosurface pipeline.

This example illustrates how optimal pipeline
partitioning can change as a function of a simple
parameter change. Creating and deploying such
dynamic repartitioning strategies on the grid requires
consideration of many more variables than discussed
here and a more accurate performance model. Grid-
based services help measure and provide such

performance information to applications, but they
don’t perform the kind of dynamic partitioning
needed to support grid-based visualization. A
substantial body of new infrastructure work is required
to support effective grid-based visualization tools.

0

10

20

30

40

50

60

70

80

90

100

0.5 5 50 500
Isosurface triangles (millions)

Re
la

tiv
e

co
m

p
on

en
t

ex
ec

ut
io

n
tim

e
(%

)
Image transfer (F)
Eight-node render (E)
Eight-node isosurface (D)

Isosurface transfer (C)
Desktop render (B)
Desktop isosurface (A)

C Relative performance components in the three pipelines. Execution
time is normalized for all configurations. (Letters in the key refer to the
component annotations in Figure A.)

