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ABSTRACT
In this work we investigate the impact of evolving mem-
ory system features, such as large on-chip caches, automatic
prefetch, and the growing distance to main memory on 3D
stencil computations. These calculations form the basis for
a wide range of scientific applications from simple Jacobi it-
erations to complex multigrid and block structured adaptive
PDE solvers. First we develop a simple benchmark to eval-
uate the effectiveness of prefetching in cache-based memory
systems. Next we present a small parameterized probe and
validate its use as a proxy for general stencil computations
on three modern microprocessors. We then derive an an-
alytical memory cost model for quantifying cache-blocking
behavior and demonstrate its effectiveness in predicting the
stencil-computation performance. Overall results demon-
strate that recent trends memory system organization have
reduced the efficacy of traditional cache-blocking optimiza-
tions.

1. INTRODUCTION
Stencil computations on regular grids are at the core of

a wide range of scientific applications. In these computa-
tions, each point in a multidimensional grid is updated with
contributions from a subset of its neighbors. These opera-
tions are then used to build solvers that range from simple
Jacobi iterations to complex multigrid and block structured
adaptive methods.

Reorganizing these computations to take full advantage of
memory hierarchies has been the subject of much investiga-
tion over the years. These have principally focused on tiling
optimizations [1, 2, 3] that attempt to exploit locality by
performing operations on cache-sized blocks of data before
moving on to the next block. In this work, we re-examine
stencil computations on current microprocessors in light of
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the growing performance gap between processors and mem-
ory, as well as the techniques (such as automatic prefetch
and large on-chip caches) hardware designers employ to mit-
igate this problem. Through a combination of techniques,
including the use of targeted benchmarks, a parameterized
probe, and analytical modeling, we revisit previously suc-
cessful optimizations and explain their effectiveness (or lack
thereof) for three dimensional problems on the current gen-
eration of microprocessors.

Our major observation is that improving cache reuse is no
longer the dominant factor to consider in optimizing these
computations. In particular, streaming memory accesses are
increasingly important because they engage software and
hardware prefetch mechanisms that are essential to memory
performance on modern microprocessors. Many of the grid
blocking strategies designed to improve cache locality ulti-
mately end up interfering with prefetch policies and thereby
counter the advantages conferred by those optimizations.

The rest of the paper details our methodology, experi-
ments, performance models, and conclusions. In Section
2 we motivate our investigation of modern microprocessor
prefetching behavior via the STriad microbenchmark. We
then derive a simplified analytical model in Section 3 that
accurately captures the memory overhead for a given data
access pattern. Section 4 presents the Stencil Probe bench-
mark and validates its use as a proxy for general grid com-
putations on three modern microprocessors. In Section 5,
we use the probe to re-examine cache-blocking optimiza-
tions that have been employed successfully for stencil com-
putations in previous generations of processor architectures.
Next, Section 6 presents a cost model for quantifying cache-
blocking behavior and demonstrates its effectiveness in pre-
dicting the performance of stencil-based computations. Sec-
tion 7 discusses the impact of architectural trends in the
context of our experimental and analytical results. Finally,
we conclude in Section 8 with a summary of our findings
and ideas for future work.

2. STANZA TRIAD
In this section we explore prefetching behavior of mod-

ern microprocessors using a simple microbenchmark called
Stanza Triad. An important trend in microprocessor ar-
chitectures is the attempt to tolerate the increased mem-
ory latency relative to clock frequency. Little’s Law [4] as-
serts that in order to fully utilize the total available band-
width of the memory subsystem, the number of data ele-
ments in-flight concurrently must be equal to the product
of the bandwidth and the latency of the memory subsys-



tem. This bandwidth-delay product has increased dramati-
cally in recent years. The primary remediation strategy for
hiding latency is prefetch – both compiler-inserted and au-
tomatic hardware prefetch streams. The goal of our work
is to demonstrate how the requirements for the efficient use
of prefetch can compete with, or even interfere with, tradi-
tional strategies employed for cache-blocking, compromising
their effectiveness.

To address this issue, we devised a simple microbench-
mark called Stanza Triad, which is used to evaluate the ef-
ficacy of prefetching on various architectures.

2.1 Description
The Stanza Triad (STriad) benchmark is a derivative of

the STREAM [5] Triad benchmark. STriad works by per-
forming a DAXPY (Triad) inner loop for a size L stanza
before jumping k elements and continuing on to the next L
elements, until we reach the end of the array. This allows
us to then calculate the bandwidth for a particular stanza
length L. The minimum stanza length is always greater than
or equal to the cache line size of the microprocessor so that
cache-line filling efficiency is not a factor in performance. If
we set L to the array length, STriad behaves exactly like
STREAM Triad.

while i < arraylength
for L elements

Ai = scalar ∗ Xi + Yi

skip k elements

Figure 1: STriad pseudocode.

In an architecture with no prefetching, the bandwidth
should not be dependent on stanza length (as long as L >
linesize), since a cache miss will always be incurred at the
beginning of each cache line. Loop-overhead of shorter stan-
zas also will degrade performance, but by comparing our
bandwidth numbers to another set of runs with a fixed num-
ber of loops irrespective of stanza length, we determined that
this effect is relatively minor. In addition, if the bandwidth-
delay product is low enough that prefetch provides little
benefit, we will see a negligible performance improvement
as stanza lengths increase. If, however, the architecture
does utilize prefetching technology that effectively masks the
bandwidth-delay product, we expect to see improving per-
formance as stanza lengths increase and prefetching engines
become engaged.

2.2 Results
Table 1 shows the hardware characteristics of the three

prefetch-enabled microprocessors evaluated in out study: In-
tel Itanium2, AMD Opteron, and IBM PowerPC G5. We
also examine an older Intel Pentium3 system that has a
bandwidth-delay product that is too small to derive dra-
matic performance benefits from SSE2 prefetching of streamed
data. Notice that the modern processors have significantly
larger on-chip caches that operate at full CPU clock rate
(3MB, 1MB, 512KB respectively) compared with the Pen-
tium3 system (16KB on-chip, 512KB off-chip operating at
half the CPU clock rate). We ran the STriad experiments
on the architectures in Table 1, with a total problem size
of approximately 48 MB in order to ensure the arrays could
not fit in cache. We set k (the jump length) to 2048 which
is large enough to ensure no prefetch between stanzas, but

Itanium2 Opteron PowerPC G5 Pentium 3

clock speed (GHz) 1.3 2.0 2.0 0.45
peak GFLOPS 5.2 4.0 8 1.8
Mem BW (GB/sec) 6.4 6.4 6.4 0.8
STREAM GB/sec 3.85 3.25 2.26 0.26
L1 DCache (KB) – 64 32 16
L1 Line Size (B) – 64 128 32
L2 DCache (KB) 256 1024 512 512
L2 Line Size (B) 128 64 128 32
L3 DCache (MB) 3 None None None
L3 Line Size (B) 128 None None None
Compiler Used Intel 8.0 PGI 5.2 IBM xlc6/xlf8.1 gcc 3.3.4

Table 1: Summary of Machine Characteristics. L1
information for the Itanium2 is suppressed because
the L2 is the closest level of cache that can store FP
operands. The Pentium 3 (Katmai) is used for his-
torical comparison; note that the L2 cache on this
chip is off-chip and operates at half the core fre-
quency.

small enough to avoid penalties from TLB misses and DDR
precharge. Each data size was run multiple times, using
a clean cache each time, and we averaged the performance
to calculate the memory bandwidth for each stanza length.
Results are shown in Figure 2.

On the Opteron and G5 systems, we see a smooth increase
in bandwidth until STriad reaches peak. In contrast, the Ita-
nium2 demonstrates a two-phase increase in performance.
Although many Itanium2 chipsets do not support hardware
prefetch, our test system uses an HP chipset that prefetches
in hardware. The slow increase may be due to utilizing
only software-initiated prefetches until the number of missed
cache lines is sufficient to trigger the hardware prefetch; this
then allows the Itanium2 to rapidly increase overall band-
width until it also reaches peak at L = 32k. Unfortunately,
facilities (such as performance counters) to directly cap-
ture Itanium2 hardware prefetch behavior are not readily
available. Lastly, for historical comparison, we ran STriad
on a Pentium 3, a system where prefetch does not offer a
significant benefit — notice that the performance behavior
here is flat and independent of the stanza length. Finally,
it can be seen that (as expected) with increasing stanza
lengths, STriad performance asymptotically approaches the
measured STREAM Triad results.

3. MEMORY MODEL FOR STRIAD
Based on the measured STriad performance, we now for-

mulate a simple model to predict memory access overhead
for a given stanza length. We approximate the cost of ac-
cessing the first (non-streamed) cache line from main mem-
ory, Cfirst, by the overhead of performing an STriad with
a short (single cache line) stanza length. Cstream, on the
other hand, represents the cost of a unit-stride (streamed)
cache miss, as computed by performing an STriad where the
stanza length is maximized (set to the total array length).
The cost of streaming through L words of data, for a given
architecture containing W words per cache line, is calculated
as Cfirst + (d(L/W )e − 1) ∗Cstream. In other words, we as-
sume that after paying Cfirst to bring in the first cache
line from main memory, the remaining data accesses cost
Cstream due to enabled stream prefetching. Note that this
simplified approach does not distinguish between the cost of
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Figure 2: Performance of STriad on the four eval-
uated architectures. Each achieves within 10% of
STREAM Triad peak performance at L = 32k. Note
that each word is a 64-bit double.

loads and stores.
Figure 3 compares the performance between the measured

STriad experiments and our analytical model for the three
modern microprocessors evaluated in our study. Results
show that our simple performance model reasonably approx-
imates the memory access behavior of the G5 and Opteron.
However, a large discrepancy is seen for intermediate data
sizes on the Itanium2. This is due to the slow increase in
performance for stanza lengths between 128 and 2048 words
(possibly resulting from the combination of hardware and
software prefetching), which is not adequately captured in
our two-parameter cost model.

The Itanium2 shows two different performance regimes for
prefetch, rather than one, that likely reflect the two different
prefetching mechanisms employed by the system we evalu-
ated. The Hewlett Packard system employs a unique chipset
that includes automatic prefetch capabilities on the system
board that assist the Itanium2 processor’s software prefetch-
ing capabilities. In order to account for this effect, we use
a more sophisticated function to model STriad behavior on
the Itanium2. Figure 4 shows that by using a three-point
piecewise linear extrapolation, we can approximate STriad
behavior with much higher accuracy — especially for the Ita-
nium2 system. However, the simple two parameter model is
sufficient for the experiments reported in this paper.

4. STENCIL PROBE
As seen in Section 2, prefetching engines can dramatically

affect memory access performance on modern microproces-
sors. We now wish to apply these lessons to stencil-based
numerical computations. However, modifying full-scale ap-
plications in order to evaluate various optimization strate-
gies is an extremely time consuming endeavour; we therefore
develop a lightweight, flexible stencil-application benchmark
called the Stencil Probe.

This section first presents a high-level overview of stencil
computations, which are an important component of many
numerical algorithms. We then introduce the Stencil Probe,
a parameterized benchmark that mimics the performance
of stencil-based computations, and validate its effectiveness
at emulating the performance of two important numerical
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Figure 3: Performance of STriad versus our analyt-
ical model on the Itanium2, Opteron, and G5.
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Figure 4: Performance of STriad verus our three-
point piecewise linear model on the Itanium2,
Opteron, and G5.

applications. We will then use the Stencil Probe to explore
cache blocking optimizations for stencil computations in the
next section.

4.1 Stencil Computations
Stencil computations on regular grids are at the core of a

wide range of scientific codes. In these computations each
point in a multidimensional grid is updated with contribu-
tions from a subset of its neighbors. These “sweeps” (up-
dates of all points in the grid according to the computational
rule) are then typically used to build solvers for differential
equations.

The stencil applications we study come from the Chombo
and Cactus toolkits. Chombo [6] is a set of tools for com-
puting solutions of partial differential equations (PDEs) us-
ing finite difference methods on adaptively refined meshes.
We use a demo application, heattut, that is a simple heat
equation solver which doesn’t use Chombo’s more advanced
capabilities.

Cactus [7, 8] is another modular open source framework
for computational science. It has been successfully used in
many areas of astrophysics, most notably in Numerical Rel-
ativity [9] and Relativistic Hydrodynamics [10]. The demo
code we use here, called WaveToyC, is an application exam-



Xt
i,j,k = Xt−1

i+1,j,k + Xt−1
i−1,j,k + Xt−1

i,j+1,k +

Xt−1
i,j−1,k + Xt−1

i,j,k+1 + Xt−1
i,j,k−1 − 6Xt−1

i,j,k/factor2

Figure 5: Inner loop for Chombo heattut. The Sten-
cil Probe’s inner loop was modified to match this.

ple that solves a 3D hyperbolic PDE by finite differencing.
The WaveToyC Cactus module (known as a thorn in Cactus
nomenclature) is written in C, and depends on infrastruc-
ture provided by the Cactus framework (known as the flesh
in Cactus nomenclature).

Xt
i,j,k = dt2

dx2 ∗
“
Xt−1

i+1,j,k + Xt−1
i−1,j,k

”
+ dt2

dy2 ∗
“
Xt−1

i,j+1,k + Xt−1
i,j−1,k

”
+ dt2

dz2 ∗
“
Xt−1

i,j,k+1 + Xt−1
i,j,k−1

”
+ factor ∗ Xt−1

i,j,k − Xt−2
i,j,k

Figure 6: Inner loop for Cactus WaveToyC. The C
version of the Stencil Probe was modified so its inner
loop matches this.

4.2 Stencil Probe Overview
The Stencil Probe is a small, self-contained serial mi-

crobenchmark that we developed as a tool to explore the
behavior of grid-based computations. As such it is suit-
able for experimentation on architectures in varying states of
implementation – from production CPUs to cycle-accurate
simulators. By modifying the operations in the inner loop
of the benchmark, the Stencil Probe can effectively mimic
the kernels of applications that use stencils on regular grids.
In this way, we can easily simulate the memory access pat-
terns and performance of large applications, as well as use
the Stencil Probe as a testbed for potential optimizations,
without having to port or modify the entire application.

4.3 Stencil Probe Validation
We modified the inner loop of the Stencil Probe to match

Chombo heattut and Cactus WaveToyC. The results for var-
ious grid sizes are shown in the Figure 7. Since both ap-
plications utilize array padding, we correspondingly pad the
array for the Stencil Probe experiments. We used the Per-
formance API (PAPI) [11] for cycle counts on the Itanium2
and Opteron machines, and Apple’s CHUD [12] tools for the
G5.

On the Opteron, the heattut version of the probe does
not match Cactus in terms of the absolute number of total
cycles. However, we see that the general performance trend
is the same for increasing grid sizes. The Chombo version
of the Stencil Probe matches actual performance closely on
the Opteron machine. Both the Chombo and Cactus ver-
sions of the probe mimic measured performance on the G5
reasonably well. Although the absolute numbers differ, the
performance as grid size increases follows the same general
trend. On the Itanium2, the probe shows the best perfor-
mance behavior for both both Cactus and Chombo, even in
terms of absolute cycle count.

Overall, these results show that the Stencil Probe is a
lightweight tool that can effectively match the performance

behavior for varying types of stencil methods and architec-
tural platforms. This allows us to use the Stencil Probe as
a proxy for testing architectural features and optimizations
for stencil-based applications. We explore one possible op-
timization, cache blocking, in the next section.

5. CACHE BLOCKING STENCIL CODES
There has been considerable work in memory optimiza-

tions for stencil computations, motivated by both the im-
portance of these algorithmic kernels and their poor perfor-
mance when compared to machine peak. Cache blocking is
the standard technique for improving cache reuse, because
it reduces the memory bandwidth requirements of an algo-
rithm. Unfortunately, there is limited potential for cache
blocking in a single stencil sweep, because each grid value is
used a small, constant number of times, which is simply the
number of points in the stencil operator.

In an attempt to improve the potential for reuse, several
researchers have looked at the idea of merging together mul-
tiple sweeps over a regular or irregular mesh [1, 3, 13, 14].
Such techniques have proven effective, although there are
many application domains in which they are not applicable.
The underlying assumption is that no other computation
needs to be performed between consecutive sweeps, whether
those sweeps are performing a timestep update, as in an
explicit method, or are part of an iterative solver, within
a single timestep. There are several reasons why this as-
sumption may not be valid: boundary values may need to
be updated based on some non-stencil computation; compu-
tation may proceed on a different grid level in a multigrid
code; or other physical phenomenon may need to be simu-
lated between timesteps. There are scenarios, such as the
application of multiple smoother steps in a multigrid code,
where sweeps can be combined, but it is by no means the
norm.

Our work considers the more challenging problem of im-
proving memory performance within a single sweep. While
the potential payoff for a given optimization is lower, the
techniques are more broadly applicable. In prior work, Rivera
and Tseng [2] conclude that blocking of 2D applications is
not likely to be effective in practice. Our analysis in Sec-
tion 7 agrees with and further quantifies this result, showing
that enormous grids are necessary for 2D cache blocking to
be effective on current machines.

J

K

K
K−1

TI

TJ

I

K+1

Figure 8: Partial 3-D blocking using a series of 2D
slices stacked up in the unblocked dimension, K.
Here I is the unit-stride dimension.



Figure 7: Stencil Probe validation for Chombo and Cactus. The trend of performance emulation with
increasing grid sizes shows that the Stencil Probe is a suitable proxy for stencil-type applications.

Rivera and Tseng [2] proposed a blocking scheme for 3D
stencil problems that attempts to alleviate the tiny block
sizes that result from traditional 2D blocking schemes when
applied to three dimensions. Subdividing a 3D grid into
cache blocks results in many small blocks because blocksize3

doubles must fit in the cache, as opposed to blocksize2 dou-
bles when blocking in 2D. These small blocking factors cause
poor spatial locality because array elements are often ac-
cessed in a non-contiguous fashion. Rivera and Tseng at-
tempted to sidestep this limitation by blocking in the two
least significant dimensions only (partial 3D blocking). This
results in a series of 2D slices that are stacked up in the un-
blocked dimension, as shown in Figure 8.

Figure 9: Summary of results of partial 3D blocking
for various grid sizes. An exhaustive set of block
sizes were examined for each architecture with the
best results shown relative to the unblocked version.
The optimal block size is shown in the text box.

In order to test the effectiveness of partial 3D blocking,
we ran problem sizes up to the largest that would fit in the
physical memory of our machines. In Figure 9 we see the
best-case cache-blocked results relative to the unblocked ver-
sion for grid sizes of 1283, 2563, and, where applicable, 5123.
The partial 3D blocking speeds up our stencil computation
for grid sizes larger than 2563 on the G5 and the Opteron,
while on the Itanium2, speed ups are only seen for a grid size
of 5123. Observe that in all cases where blocking confers an
advantage, the Ith blocking dimension is equal to the grid
size (i.e. maximized).

To further validate the Stencil Probe as well as our ex-
perimental results showing speedups at large grid sizes, we
modified Cactus WaveToy and Chombo heattut to use par-
tial 3D blocking. In Figure 11 we see the results of our mod-
ification. We acheived a minimum speedup of 10%, while

0.6
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1
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1.2
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1.4

1.5

1.6

Application Speedup from Rivera Blocking

Figure 11: Summary of application performance
with partial 3D blocking. In all cases, the appli-
cation benefitted from the optimization, yielding a
minimum of a 10% speedup. The average speedup
was 22%.

the average was 22%. We do not expect our applications to
reproduce the percentage speedup of the Stencil Probe be-
cause applications have much more overhead; however, the
fact that each application produced a non-negligible speedup
with partial 3D blocking further validates both the Rivera
blocking strategy as well as the ability of the Stencil Probe
to function as a testbed for stencil code modifications.

In order to understand which blocking factors are the most
effective for a given architectural configuration, we construct
a simple analytical model to predict the cost of memory
traffic for a stencil-based computation.

6. COST MODEL FOR CACHE BLOCKING
We now build on the prefetch-based memory model devel-

oped in Section 3 to capture the behavior of stencil compu-
tations using various cache-blocking arrangements, as seen
in Section 5.

Given an N3 grid we first approximate the lower and up-
per bounds on traffic between cache and main memory for a
given I × J × N blocking. Recall that a 3D stencil calcula-
tion accesses 6 columns in three adjacent planes. The lower
bound for traffic assumes perfect reuse, where all three I×J-
sized planes fit in cache — thus the grid is only transfered
twice from main memory (one read and one write). The
upper bound (pessimistically) assumes no cache reuse of the
I × J planes due to conflict and capacity misses; therefore,
for each sweep of a given plane, the ‘front’ and ‘back’ planes
required for the 7-point stencil calculation must be reloaded
from main memory. The upper bound thus requires the grid
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Figure 10: Comparison between partial 3D-blocking runs and the lower/upper bounds of our memory model.
Results show that our analytical approach is extremely effective in predicting blocked stencil performance.

to be transferred four times from main memory (three reads
and one write): twice the cost of the lower bound. Note that
this is not a strict upper bound, since we assume an opti-
mal number of loads and only consider the costs of memory
operations (ignoring registers, ALU, etc). Additionally, our
simplified performance model does not differentiate between
the cost of load and store operations.

Having established lower (2X) and upper (4X) bounds
for the grid memory traffic, we now compute the cost of
transferring the appropriate stencil data for a given I×J×N
blocking. Given a system with W words per cache line,
a sweep through an N3 grid requires a total of Ttotal =
d(I/W )eN3

I
cache lines. Because the grid is accessed in a

blocked fashion, we compute the number of non-streamed

(non-prefetched) cache line accesses: Tfirst = N3

I
if I 6= N ,

or N3

IJ
if I = N 6= J , or N2

IJ
if I = J = N . The total number

of streamed (prefetched) cache lines is then the difference
between these two values: Tstream = Ttotal − Tfirst.

We now apply the cost model derived in Section 3, where
we established that non-streamed access to a cache line from
main memory requires a higher overhead (Cfirst) than sub-
sequently streamed cache lines (Cstream), due to the bene-
fits of prefetching. Thus the total cost of sweeping through
a 3D stencil in blocked fashion is approximated as Cstencil =
CfirstTfirst+CstreamTstream. The lower bound of the mem-
ory cost for the stencil computation is therefore 2Cstencil,
while is upper bound is 4Cstencil. Therefore, setting the
block size too small will incur a penalty on memory system
performance because prefetch is not engaged.

Figure 10 shows the lower and upper bounds of our cost
model compared with the measured results of the Stencil
Probe using Rivera blocking across a complete set (powers
of two) of I×J ×N blocking factors. Results show that our



analytical model performs extremely well in capturing the
behavior of the stencil computation for all three evaluated
architectures. The actual data does occasionally fall outside
of the computed lower/upper bounds, but it is clear from
the overall performance trends that our methodology is ef-
fective in quantifying the tradeoffs between cache blocking
and prefetching efficacy.

In the next section, we discuss trends in modern archi-
tectures in light of our analysis of partial blocking and the
impact of prefetch.

7. IMPACT OF ARCHITECTURAL TRENDS
It is important to understand our cache-blocking find-

ings in the context of evolving architectural trends. As sili-
con lithography techniques improve, processor architects are
able to migrate more levels of the cache hierarchy onto the
same chip as the microprocessor core. In addition to re-
ducing the latencies for cache misses at each level of the
hierarchy, this has also enabled the designers to operate on-
chip caches at the same clock frequency as the core. In these
cases, an on-chip L2 (and in the case of the Itanium, the on-
chip L3) can deliver operands to the core at the same rate
as the L1 caches.

Consider that the 360MHz Sun UltraSparc2i platform,
studied in the cache tiling work of Rivera and Tseng [2]
(described in Section 5), used a 16KB on-chip L1, but the
off-chip L2 operated at half the processor’s cycle time. Like-
wise, the Pentium II that was used to demonstrate another
effective blocking technique [1] operated the off-chip L2 at
half the clock rate of the on-chip L1. In contrast, all three
of the processors reviewed in this paper employ a cache hi-
erarchy that is entirely on-chip and operates at the same
clock frequency as the core — allowing each level of the
hierarchy to operate at the nearly the same effective band-
width. Since the on-chip cache sizes (operating at the same
clock rate as the core) have increased dramatically in recent
processor generations, block-sizes that improve bandwidth
locality have increased correspondingly.

The benchmark data in the previous sections suggests
that code optimizations should focus on creating the longest
possible stanzas of contiguous memory accesses in order to
maintain peak performance. These requirements are driven
by prefetch behavior, which are fully engaged via long stan-
zas of unit-stride stream accesses. Thus, in practical terms,
stencil computations must be blocked for the largest level
of cache hierarchy that operates at core bandwidth, as was
empirically and analytically demonstrated in Sections 5 and
6.

Figure 12 describes the conditions where tiling may of-
fer a benefit for 2D and 3D stencil computations, based on
our analysis. Six microprocessor architectures are plotted
on this graph, based on the the largest tile size that would
derive a performance gain for stencil computations. This is
equivalent to the deepest level of cache capable of communi-
cating with the processor at full bandwidth. Two different
generations of microprocessors are plotted, where the ver-
tical position is based on the on-chip cache size, while the
horizontal position is based on the memory footprint for a
given sized 3D stencil (1283, 2563, and 5123). Any pro-
cessors that are below the top red line (bottom blue line)
may see a performance benefit from tiling for the 3D (2D)
problems. (Note that there is more opportunity for effective
cache-blocking for 3D computations than for 2D.) Proces-

sors above these lines will likely see a performance degrada-
tion from attempts to use a tile-based optimization strategy,
since all the appropriate data-sets already fit in the on-chip
caches without blocking. It can be seen clearly from this
graph that the growth of on-chip L2 and L3 caches have
dramatically raised the size of problems that would see any
benefit from cache-blocking for stencil computations.
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Figure 12: Conditions where tiling offers a potential
benefit for 2D and 3D stencil computations. The up-
per red line (lower blue line) shows the cache limit
for a given problem size that could benefit from 3D
(2D) blocking. Six microprocessor on-chip cache
sizes are plotted. Processors below the line may
benefit from cache blocking for the specified prob-
lem sizes (1283, 2563, 5123) whereas those above a
given line will generally not.

The predictions of Figure 12 can be compared against the
results presented Section 5. As Figure 9 shows, the G5 and
Opteron clearly benefit from blocking for 2563 and 5123 grid
sizes, while the Itanium only benefits from blocking for the
5123 problem size; however, no performance gain is seen for
any of the architectures for the 1283 problem size. This is
precisely the behavior predicted in Figure 12!

It is also important to understand the range of grid sizes
currently being utilized in large-scale scientific applications.
The grid sizes for Cactus are typically 803 per processor for
parallel General Relativity simulations, and will occasion-
ally be stretched to 1283 per processor, if the memory is
available. Chombo is an AMR code that uses adaptive hi-
erarchical meshes to refine the computation where needed.
Cells are selected for refinement on a per-cell basis, which
are then aggregated in order to create the largest possible
grid that can achieve a specified filling ratio of selected cells.
While larger grids can be formed, the typical grid size formed
by this strategy is 323 to 643 elements in size. Thus, it is our
observation that high-end stencil computations are currently
not run at a grid scale that would benefit from tiling, due to
the large on-chip caches of the underlying microprocessors.

8. CONCLUSIONS & FUTURE WORK
In this paper, we investigated the impact of trends in

memory subsystems on cache optimizations for stencil com-
putations. Our work is the first to consider the behavior
of traditional blocking strategies on prefetch-enabled micro-



processors. We offer several important contributions:

• Modern processors contain on-chip caches of sizes rel-
atively large in comparison to main memory size. This
means that cache blocking is now effective only for very
large (sometimes unrealistic) problem sizes.

• Prefetching, both in hardware and software, has re-
sulted in improved performance of long stride-1 ac-
cesses. This has the effect of making performance more
sensitive to discontinuities in the access patterns.

• A simple benchmark, STriad, that tests the effective-
ness of prefetch mechanism to hide memory latency.

• The introduction of a parameterized Stencil Probe,
that we verify captures the performance of real sci-
entific kernels, which we utilize to test cache blocking
optimization strategies on three advanced micropro-
cessors.

• Application of cache-blocking insights from the Stencil
Probe to two different applications, yielding significant
speedups.

• Derivation of simple analytical memory models for both
STriad and for partial 3D blocking on stencil grids.
The latter demonstrates the utility of prefetch, and
the importance of avoiding cache-blocking in the unit
stride direction.

In the future, we will extend our tests to other architec-
tures such as the Power5, which includes more sophisticated
software hints for controlling prefetching engines, as well as
vector machines that hide latency using deeply pipelined
vector register load/store requests. We also plan to utilize
the Stencil Probe for application tuning and the evaluation
of additional optimizations. In addition, we will further re-
fine our analysis by using detailed information from simu-
lators, allowing us to explore how changes in architectural
parameters affect stencil computations. Our long term goal
is to develop advanced prefetching methodologies that will
address the deficiencies of short stanza accesses as described
in this work.
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