
3-D HAAR WAVELET TRANSFORMATION AND TEXTURE-BASED 3-D
RECONSTRUCTION OF BIOMEDICAL DATA SETS

PUJITA PINNAMANENI, SAGAR SALADI, JOERG MEYER
Mississippi State University

NSF Engineering Research Center, 2 Research Blvd., Starkville, MS 39759, USA
{pp2|saladi|jmeyer}@erc.msstate.edu

ABSTRACT
Enhanced biomedical image scanning technology and
growing network accessibility have created a need for
faster and more efficient data exchange over the Internet
and in closed networks. Researchers and biologists are
conducting experiments on large biomedical data sets and
want to share information with other scientists to progress
in their research. But the information they are dealing
with are large-scale data sets that occupy gigabytes of
space, which makes the storing of these data sets onto
one’s local hard drive very difficult. The size of these data
sets also makes them difficult to transmit over currently
existing network links. To overcome these difficulties,
those data sets are stored in large-scale data repositories,
from which they can be retrieved upon user’s request. The
challenge is to make the data accessible within a
reasonable amount of time at a reasonable quality without
losing detail or image resolution. We describe a
hierarchical storage scheme based on 3-D Haar wavelets,
and a fast 3-D rendering algorithm based on 2-D texture
mapping, which has been integrated with the Scalable
Visualization Toolkits, an alpha project of the National
Partnership for Advanced Computational Infrastructure
(NPACI).

KEY WORDS
Biomedical Data Sets, Haar Wavelet Transformation,
Texture Mapping

1. INTRODUCTION

Recent improvements in CT and MRI scanning
technology provide high-resolution imagery of the human
body, which needs to be distributed over networks and
rendered in real time. The data sets, which are created by
these scanning devices, are too large to fit in core memory
of current systems. Quadrupling the resolution in each
dimension (e.g., from 256 to 1024) increases the size of
the volume by a factor of 43 = 64. The size of these data
sets ranges from several hundreds of megabytes to about
one hundred gigabytes.
San Diego Supercomputer Center (SDSC) maintains a
large data repository (High Performance Storage System,
HPSS) to store those kinds of data sets. These data sets
are made accessible through our web-based Java interface
to closed user groups and to researchers all over the
world.

 The Scalable Visualization Toolkits developed at
SDSC support a variety of different file formats to store
multi-dimensional, multi-modal, time -varying data sets in
the data repository. For volumetric data sets, a file format
named vol has been implemented, which supports regular
3-D grids. A vol file can be encoded in three different
formats, namely vols, volb and volc. If the data set
contains scalar values, it is written as a vols format. This
format stores data as 8bit scalar values. The volb file
format has been implemented to store RGB and RGBA
(RGB-alpha, 32 bits). If no alpha value is present, the
respective component is set to zero. The volc file format
stores data as 64 bit RGB-alpha-beta values. The color
component values are truncated to 10 bits for red, 12 bits
for green, and 10 bits for blue. The alpha and beta
components are truncated to a short each. The vol file
format also supports chunked file format layouts in which
data is arranged in chunks, which supports sub-volumes
to be extracted. A chunked storage layout makes it easier
to access groups of voxels within a user-defined region of
interest. Our goal is to extract sub-volumes at different
levels of detail and to transmit them from the server (data
repository and Scalable Visualization Toolkit) to the
rendering client (Java applet). NPACI’s Scalable
Visualization Toolkits are designed to handle SDSC’s vol
file formats. They can handle large-scale data sets that do
not fit into a desktop machine or workstation’s memory
and usually cannot be rendered entirely in real time
without reducing the complexity. The internal access
strategies are transparent to the user. The Toolkit uses
caching schemes and chunked storage layouts to improve
performance.

 When the data sets are transmitted over the network
they are transformed into a smaller representation, which
can be transmitted at higher speeds. We use the wavelet
transformation to transform the data sets. A wavelet
transformation converts data from the spatial domain into
a localized frequency domain [1]. Each cycle is associated
with a particular scale. The Haar wavelet is one of the
simplest wavelet transforms and can be used to create
different levels of detail. We have implemented the Haar
wavelet transformation in 3-D to explore the spatial
coherence between scalar values in the grid nodes in all
three dimensions. This results in better compression rates
on the server side and faster data transmission for volume
rendering [2, 3] on the client side.

 The wavelet representation is uncompressed and
decoded for a given level of detail on the client side. Once
the original information is reconstructed, it is rendered as
a 3-D volume using Java3D. The following sections will
describe the 3-D Haar wavelet method and the Java3D
rendering algorithm in greater detail. Examples are
provided to encourage the reader to reimplement this
method and compare the performance of our Java-based
implementation to other platforms. NPACI’s Scalable
Visualization Toolkits are also available in C/C++, which
might make this step easier.

2. BACKGROUND

Hierarchical volume rendering of biomedical data sets is
important to study user-defined regions of interest in
greater detail, while the rest of the data set is provided as
context information and can be rendered at a coarser level
of detail. Previous volume rendering algorithms have
been primarily based on OpenGL or Open Inventor. With
the advent of more reliable and powerful versions of
Java3D, it is now possible to develop web-based
rendering clients in Java [4, 5]. Cross-section extraction
can be done either on the server side [6] or on the client
side [7]. 2-D texture-based methods [8] have been
introduced to make use of advanced capabilities of
hardware-accelerated graphics pipelines [7, 9, 10]. Our
approach uses a Java3D-based texturing method, which is
portable and hardware-platform independent.

 Internet

 Intranet

Server Client

 Figure 1: Scalable visualization system

 Various image compression methods, e.g., RLE, LZW
(lossless), and JPEG (better compression, but lossy), have
been discussed in the past. Wavelet compression, which is
actually a combination of a transformation in the
frequency domain and compression of the detail
coefficients using one of the lossless methods, has proven
to be a powerful tool for 1-D signal processing and 2-D
image processing [11, 12]. In our method, we apply this

method to 3-D volume data, which results in better overall
compression rates. Multiwavelet image compression
techniques [13] and Multi-resolution Trees [14] have been
applied to biomedical data sets (CT, MRI), vector data
(fMRI, cryosections, oceanographic data) [15], and many
other applications, including for example Synthetic
Aperture Radar (SAR)[16], a remote sensing technology.

 In most cases, wavelet transformations have only been
discussed for the two-dimensional case. During the past
decade, volume rendering has gained importance because
hardware-accelerated graphics cards are readily available
on desktop systems. This inspired us to use the Haar
wavelet transformation technique for efficient data
transformation, and more importantly, faster
reconstruction of 3-D volumes on the client side.
Wavelets are local in both the frequency and the spatial
domain. This helps to preserve features and represent
functions with discontinuities and sharp edges in a more
compact way and still achieve a reasonable approximation
[11]. The detail coefficients usually have very small
values. Sometimes they can be neglected or discretized in
order to achieve better compression rates. The high
compression factor and efficient reconstruction methods
for 3-D sub-volumes make wavelets an excellent tool for
remote interactive rendering at multiple levels of detail.
Transformation techniques using wavelets have also
proved advantageous when evaluating the image quality
and comparing it to the quality of a 3-D rendering of the
original data set. Wavelets have proved to be faster in
terms of computational complexity as compared to other
transformation schemes such as the Fast Fourier
Transform (FFT). The following section provides a
comprehensive motivation and a step-by-step introduction
for a memory-efficient 3-D wavelet transformation and
subsequent level-of-detail rendering, which will be
discussed in later sections.

3. IMPLEMENTATION

3.1 EXTRACTION OF 2-D CROSS-
 SECTIONS FROM THE DATA SETS

The Scalable Visualization Toolkits are available both in a
Java and in a C++ version. We have used the Java version
to read the data as a sequence of 2-D cross-sections from
the file (standard storage layout). The data set represents a
CT scan of a human brain (ctbrain.vols) and consists of
512 x 512 x 231 elements. The size of the data set, which
is stored as a single file, is 60,555,264 bytes (approx. 57.8
GB). The data set is composed of 231 cross-sections, each
consisting of 512 x 512 pixels. The Scalable Visualization
Toolkit provides a method that reads a range of elements
from a data set, and returns their values in the host’s byte
order and word size. This method implements a decoder,
which reads the data from the data set and decodes its
format. The resulting byte stream is stored in an internal
buffer. The data set is too large to be read entirely into

Data Repository
(SDSC)

Extraction of 3-D
sub-volumes

(Scalable
Vis Toolkit)

Haar wavelet
transformation of
3-D sub-volume

Reconstruction
of 3-D sub-

volume using
Haar wavelets

Rendering of 3-D
sub-volume
using texture
mapping in

Java 3D

memory. Therefore, we are reading only two slices into
memory at each time, which is sufficient to apply our
localized 3-D wavelet scheme. As each cross-section of
the ctbrain.vols data set consists of 512 x 512 elements, a
total of 262,144 elements must be read from the data set
in each cycle (Figures 2 and 3).

 Figure 2: One of the 231 Figure 3: A single cross-
 cross-sections of the section of the ctbrain.vols
 ctbrain.vols data set data set

3.2 EXTRACTING SUB-VOLUMES FROM
 THE DATA SETS

There are situations where it is not possible to render the
entire data set at full resolution, or where the user might
not be interested in the whole data set. For example, a
biologist or physician might want to select a particular
region of interest for his experiment or analysis. To
handle such situations, sub-volumes of the data set need
to be extracted [17]. The Scalable Visualization Toolkits
implement methods to deal with a so-called chunked
storage layout scheme.

 One of these methods computes a one-dimensional
memory index corresponding to the given n-dimensional
grid coordinates in the data set. This index is used to read
the data from the data set by using the method that was
described in the previous section. The chunked file format
has been used to extract sub-volumes from a human brain
(ctbrain_c32.vols, Figure 4).

Figure 4: Cross-sections of different sub-volumes

3.3 3-D HAAR WAVELET
 TRANSFORMATION ALGORITHM

After the cross-sections have been extracted, the data sets
are transformed using the 3-D Haar wavelet
transformation. This transformation is one of the simplest
and basic transformations from the spatial domain into a
local frequency domain. In the discrete case, the integrals
can be reduced to simple arithmetic operations. This
applies to a one-dimensional signal as well as to the 2-D,
3-D, or higher-dimensional case. To give a better idea of

the actual implementation of the wavelet transformation,
we illustrate the procedure with a simple example [18].

Assume we have a one-dimensional image with an
eight-pixel resolution, where the pixels have the following
values:

7 5 3 9 3 7 5 3

 By applying the Haar wavelet transformation we can
represent this image in terms of a low-resolution image
and a set of detail coefficients. The transformed data
coefficients are obtained by averaging two consecutive
pixels, while the detail coefficients represent the
difference between the average and one of the two
consecutive pixe ls. So the above image will be
represented as follows after the first cycle:

Low-resolution image: 6 6 5 4
Detail coefficients: 1 –3 –2 1

 Now the original image can be represented as a low-
resolution image ((a+b)/2), which consists of four pixels,
and another four-pixel image, which contains the detail
coefficients ((a–b)/2). Recursively iterating this algorithm
leads to an image that is reduced by a factor of two for
each cycle.

 The detail coefficients are required to reconstruct the
image. Reconstruction of the original image involves
adding and subtracting the detail coefficients to and from
the low-resolution image data. This way the first part of
the image (the low-resolution part) can be transmitted
first, while the detail coefficients are added later to refine
the image.

 This simple 1-D scheme can be lifted to higher
dimensional cases. For a 2-D wavelet transformation, the
algorithm is applied in x-direction first, and then in y-
direction. Similarly, in 3-D wavelet transformation the
structures are defined in 3-D and the transformation
algorithm is applied in x-, y- and z-direction successively.
One cycle for an n-dimensional data set is defined as the
completion of the algorithm for all n directions. Details
about the data structures and our implementation are
discussed in the following section.

 As mentioned earlier, very large-scale data sets are
considered for this transformation technique. Therefore
the algorithm must be scalable. In order to obtain
scalability, we use the file system to buffer intermediate
steps for each cycle, before we proceed to the next level.

 The array sizes are expressed in powers of two. More
precisely, this means that the original resolution of the
images is converted into the next larger power of two, and
the array dimensions are adapted accordingly. For the
above data set, the 3-D array defined is 512 x 512 x 256.
If the buffer would be too large, it can be reduced to two

adjacent slices, which are required to do the last step of
the 3-D cycle. While loading the slices into the 3-D array,
care is taken to fill in the extra space allotted by zeros.

 Figure 5: Original Volume Figure 6: First run: x-direction

 For the first cycle, the transformation algorithm is first
run along the x-direction, row by row, for each of the 231
slices. A line buffer would be sufficient to perform this
operation, but we prefer to use a 2-D buffer for faster
access and more efficient file transfer from the Scalable
Visualization Toolkits.

 As shown in the image above (Figure 6), the image
array is split into two halves containing the transformed
data and the detail coefficients. The transformed data
coefficients are low-pass filtered while the detail
coefficients are high-pass filtered. After transforming the
data set in x-direction, this 3-D array is then transformed
along the y-direction. The resulting 3-D array is shown in
Figure 7.

HHH

 Figure 7 : Second run: y-direction Figure 8: Third run: z-direction

 Finally, the 3-D array is transformed along the z-
direction and the resulting 3-D array is represented as
shown in Figure 8.

 The final array structure gives us a low-resolution
version of the 3-D volume (the LLL segment) in one sub-
octant, and the detail coefficients, which are used for the
reconstruction, in the other seven sub-octants and in the
sub-octants of the next higher levels. The indexing of the
array is defined such that the transformed coefficients are
stored in the upper-left-front corner for each successive
cycle. For each cycle, the size of the volume is reduced by
a factor of eight. During consecutive cycles, only the
upper left portion of the transformed volume is
considered, leaving the detail coefficients intact. The
number of cycles m = ld (max(x_size, y_size, z_size)) is
limited by the size of the data set. If a cycle cannot be
completed, because one dimension is smaller than the
others, a null transformation can be used. In our
implementation, we simply stop the cycles. Usually the
limit l is chosen so that l < m.

3.4 3-D RECONSTRUCTION USING
 TEXTURE MAPPING

The rendering algorithm uses three sets of perpendicular
2-D cross-sections, which are mapped onto polygonal 2-D
planes. The algorithm is implemented in Java3D.
Rendering on the client side makes it possible to
implement interactive features, such as rotating, scaling,
and selecting a region of interest. The wavelet
reconstruction algorithm is fast enough to decode the
textures on the fly, and as new data streams in, it is
automatically added to the texture planes. The texture
planes always have the same size. If the resolution of the
current cross-section is lower than the actual size of the
texture plane, pixels are simply duplicated. Interpolation
of pixel values would give a slightly better visual
impression, but those operations are prohibited due to
performance limitations. Artifacts due to limited
resolutions are only temporary and are usually
compensated very quickly by adding the next level of
detail as soon as it has been transmitted by the server.

 Figure 9: Texture images mapped onto a stack of polygons

 A TextureLoader utility class in Java3D is used to load
the texture images. The 2-D cross-sections are then
mapped onto an aligned series of parallel polygons in
back-to-front order. Interesting effects can be obtained by
making the polygons semi -transparent [19]. Fast blending
between an opaque view and a simulated X-ray image is
possible (Figures 10 and 11).

Figure 10: Back-to-front: Figure 11: Simulated X-ray
 A 3-D view of the ear view

 Instead of using per-plane transparency, we can also
use per-pixel transparency. Background pixels can be
eliminated, keeping the rest of the slice intact, or the brain
can be made transparent in order to extract and highlight
the bone (see Figures 14 and 15). The transparency
transfer function determines the appearance of the 3-D
reconstruction.

 LHH

 LLH
HLH

L H

LL HL

LH HH

LLL HLL

LHL HLL

 To access and modify the RGBA pixel values of the 2-
D cross-sections, Java2D BufferedImage and ColorModel
classes have been used. The alpha components of the
pixe ls constituting the skull are set to zero (opaque), while
the alpha component of the remaining pixels is set to 255.
Java provides an efficient method for a binary test if a
pixel is fully transparent or fully opaque. During the
rendering process, the alpha component of each pixel is
checked. If the value is zero, the pixel is drawn,
otherwise, the pixel is not drawn. Using this method, it
was possible to achieve an additional performance gain.
To implement this, we used the RenderingAttributes class.

4. RESULTS

We applied our 3-D Haar wavelet transformation
algorithm to a CT scan of a human brain (512 x 512 x
231). The following images show a cross-section of the 3-
D volume at three different levels of detail (Figure 12).

1st cycle 2nd cycle

 3rd cycle 4th cycle

 Figure 12: Compressed images in successive cycles

 Each cycle reduces the size of the original volume by a
factor of eight (23). By applying a run-length encoding
scheme, we were able to obtain much better compression
rates for our 3-D algorithm than for a conventional 1-D or
2-D algorithm. The 3-D method makes it possible to
transmit a low-pass filtered sub-volume from a Unix-
based server system to a Java3D rendering client over
standard-bandwidth Internet and Intranet networks, and
then successively transmit more data to improve the
resolution and quality of the 3-D reconstruction.

1st cycle 2nd cycle

 3rd cycle 4th cycle

Figure 13: Compressed image data and
detail coefficients after four cycles

 Remember that the data set is stored on a server with
large storage capacity, while the Java3D-based rendering
client runs on a desktop machine. Results of the back-to-
front projection technique using Java’s binary
transparency test method are shown below.

Figure 14: 3-D reconstructed Figure 15: 3-D volume
 volume showing the bone

5. CONCLUSIONS

3-D Haar wavelet decomposition, lossless data
compression and efficient data reconstruction methods
have enabled the implementation of an interactive
rendering algorithm in Java3D. The image quality is
satisfactory for preview images and web-based rendering.
This paper has discussed the implementation of a scalable
decomposition algorithm for sub-volumes and a fast 3-D
reconstruction and rendering algorithm, which allows us
to combine different levels of detail in a 3-D image and
successively add detail information to the image without
the necessity to recompute the entire volume. The Java3D
implementation is platform-independent and fully
scalable. Future work will involve better rendering
algorithms, which will enhance the visibility of inner
sections of the data by using precomputed normals and
transparency, which is currently a problem in Java3D due
to limitations in 3-D texturing capabilities. The algorithm
will also be ported to use the C++ version of the Scalable
Visualization Toolkits in order to overcome some of these
limitations.

6. ACKNOWLEDGEMENTS

We thank Arthur J. Olson (The Scripps Institute, La Jolla,
CA) for providing the sample data sets. We also thank
David Nadeau and Jon Genetti (San Diego
Supercomputer Center, SDSC) for providing additional
information and the source codes of the Scalable
Visualization Toolkits. This project was funded by the
National Partnership for Advanced Computational
Infrastructure (NPACI) under award no. 10195430
00120410.

REFERENCES

 [1] Ingrid Daubechies, Ten Lectures on Wavelets
(Pennsylvania: Society of Industrial and Applied
Mathematics, 1992).

 [2] H. Mohammad Ghavamnia and D. Yang Xue,
Direct Rendering of Laplacian Pyramid
Compressed Volume Data, IEEE Visualization ’95
Proceedings, Atlanta, Georgia, 1995.

[3] Günter Knittel, High-Speed Volume Rendering
Using Redundant Block Compression, IEEE
Visualization ’95 Proceedings, Atlanta, Georgia,
1995.

[4] M. Bailey, Interacting with Direct Volume
Rendering, IEEE Computer Graphics and
Applications, Vol. 21, Issue 1, 2001, 10-12.

[5] M. Meissner, U. Hoffmann, and W. Strasser,
Enabling Classification and Shading for 3D
Texture Mapping based Volume Rendering Using
OpenGL and Extensions, IEEE Visualization ’99
Proceedings, 1999, 207-526.

 [6] Jörg Meyer, Ragnar Borg, Bernd Hamann,
Kenneth I. Joy, and Arthur J. Olson, VR-based
Rendering Techniques for Large-scale Biomedical
Data Sets, Online Proceedings of NSF/DoE Lake
Tahoe Workshop on Hierarchical Approximation
and Geometrical Methods for Scientific
Visualization , Granlibakken Conference Center,
Tahoe City, CA, 2000, 73-76.

 [7] K. Engel, P. Hastreiter, B. Tomandl, K. Eberhardt
and T. Ertl, Combining Local and Remote
Visualization Techniques for Interactive Volume
Rendering in Medical Applications, IEEE
Visualization 2000 Proceedings, 2000, 449-452,
587.

 [8] H. Helminen, J. Alakuijala, J. Laitinen and S.
Sallinen, Constant Z Line Texture Mapping in
Interactive Visualization of Medical Images, IEEE
17th Annual Conference, Vol. 2, 1995, 1039-1040.

 [9] B. Cabral, N. Cam and J. Foran, Accelerated
Volume Rendering and Tomographic
Reconstruction Using Texture Mapping Hardware,
ACM Symposium on Volume Visualization , 1994,
91-98.

 [10] James E. Fowler, John van der Zwaag, Shivaraj
Tenginakai, Raghu Machiraju, and Robert J.
Moorhead, Decoding of Large Terrains Using a
Hardware Rendering Pipeline, Tech. Rep., MSSU-
COE-ERC-00-13, Engineering Research Center,
Mississippi State University, 2000.

 [11] Brani Vidakovic and Peter Müller, Wavelets for
Kids - A Tutorial Introduction, Institute of
Statistics and Decision Science, Duke University,
Durham, NC, 1991.

[12] Hongyang Chao and Paul Fisher, An Approach to
Fast Integer Reversible Wavelet Transforms for
Image Compression, The proceedings of
Guangzhou International Symposium on
Computational Mathematics, Guangzhou, P. R.
China, 1997.

 [13] Michael B. Martin and Amy E. Bell, New Image
Compression Techniques Using Multiwavelets and
Multiwavelets Packets, IEEE Trans. Image
Processing, Vol. 10, 2001, 500-510.

 [14] Jane Wilhelms and Allen Van Gelder, Multi-
dimensional Trees for Controlled Volume
Rendering and Compression, ACM Symposium on
Volume Visualization , 1994, 27-34.

 [15] Aaron Trott, Robert Moorhead II, and John
McGinley, Wavelets Applied to Lossless
Compression and Progressive Transmission of
Floating Point Data in 3-D Curvilinear Grids,
IEEE Visualization ’96 Proceedings, 1996.

 [16] Zhaohui Zeng and Ian G. Cumming, SAR Image
data Compression using Tree–Structured Wavelet
Transform, IEEE Trans. Geosciences and Remote
Sensing , Vol. 39, No. 3, 2001, 546.

 [17] P. Hastreiter, B.Tomandl, K. Eberhardt, and T.
Ertl, Interactive and Intuitive Visualization of
Small and Complex Vascular Structures in MR
and CT, Proceedings of the 2nd Annual
International Conference of the IEEE, Vol. 2,
1998,532-535.

 [18] Eric J. Stollnitz, Tony D. DeRose, and David H.
Salesin, Wavelets for Computer Graphics: A
Primer Part 1, IEEE Computer Graphics and
Applications, 1995.

 [19] K. Kreeger and A. Kaufmann, Mixing Translucent
Polygons with Volumes , IEEE Visualization ’99
Proceedings, 1999, 191-525.

