

Incremental Slicing Revisited: Accelerated Volume Rendering
Of Unstructured Meshes
Prashant Chopra and Joerg Meyer*

Mississippi State University, Engineering Research Center

(a) 32 slices [0.09 secs] (b) 50 slices [0.15 secs] (c) 72 slices [0.17 secs] (d) 164 slices [0.42 secs]#
Figure 1: Four levels of detail of the 12,936 tetrahedral cells Spx dataset, rendered on an SGI R10000 194MHz, 2048 MB RAM, using our
accelerated incremental slicing method. The number in brackets behind the number of slices shows the actual slicing times for the
respective images. #The number of slices to render image (d) was computed using Nyquist’ s sampling theorem.

Abstract

We accelerate the incremental slicing method for near interactive
volume rendering of unstructured grids with conventional polygon
rendering hardware support. Our method uses less memory
compared to the method of Yagel et al. [25], with significant
improvements in rendering time. Using our method, a rendering
performance gain of at least 400% was achieved for some
datasets, e.g., the Blunt fin dataset. We completely eliminate
sorting of edges as a preprocessing step. Further, we introduce a
hierarchical z-region paradigm, which can be incorporated with
the dataset-input module to get the depth information of the cells
with no extra computational overhead. We argue that keeping an
active edge list and an active cell list as data structures is
redundant, because this information is inherent in the z-region
paradigm in our method. In pursuit of accuracy, we explore the
application of Nyquist’ s classical sampling theorem when slicing
the datasets, and conclude that images of comparable visual
quality can be obtained by relaxing this requirement, while
maintaining the rendering performance. Finally, we conclude with
the results of our method, and a discussion on how progressive
refinement of 2-manifold triangular meshes (for 2D slices of
cutting planes parallel to the view plane) can help to achieve
additional interactivity in a volume visualization system.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – surfaces and object
representations.

Keywords: volume rendering, multi resolution, level-of-detail,
unstructured meshes.

* { prash | jmeyer} @erc.msstate.edu
 http://www.cs.msstate.edu/~graphics

1 INTRODUCTION

The last decade has witnessed some successful attempts towards
interactivity in volume visualization systems. However,
interactive volume rendering still remains an active research
arena; because of continuous advances in computational systems
technology and methodology that have helped scientists run
numerical simulations of ever increasing complexity, outputting
high-dimensional datasets (e.g., time-varying volumetric datasets)
in the form of high order simplicial complexes (polyhedral
meshes), both homogeneous and heterogeneous. A nice example
is an earthquake simulation dataset (11,800,639 vertices,
69,448,288 tetrahedra), with associated vector attributes for 800
time-steps per node [1, 9, 10]. To interactively explore such
datasets still remains a challenge for the computer graphics
research community.

 Addressing these issues, a number of direct (near interactive)
volume rendering techniques for unstructured polyhedral meshes
have been explored and established in the recent past. A majority
of these techniques addresses the rendering of homogeneous
tetrahedral meshes. Two reasons explain this fact: one, the convex
shape of a tetrahedral element, and its faces, makes it suitable for
volume rendering on polygon-based rendering systems; and two,
that all the other higher order simplicial complexes can be broken
down to tetrahedra very conveniently. These near interactive
direct volume rendering techniques can primarily be classified
into two categories: object-space-based methods, and image-
space-based methods.

 The image-space-based methods fundamentally work by
letting individual rays (one per image-space element) intersect the
polyhedral elements, and then interpolating the attribute value at
the points of intersection based on the local neighborhood vertex
attributes. Such methods are computationally expensive, but yield
high-quality images by guaranteeing that the dataset is sampled
exactly.

 The object-space-based methods, however, consider each
object-space primitive (polyhedron) one by one, and shade a
corresponding image space element by composition, in either
back-to-front, or front-to-back order, from the view plane. Such
methods are an approximation of the computationally more
expensive image space methods, but are usually faster; and hence
have been subjects of interest in the area of interactive volume
rendering for quite some time. Despite being simpler than their
image-space counterparts, even these approximation methods
have not been able to achieve real-time volume rendering of large
volumetric datasets unless specific hardware support is present.
This is because a correct visibility ordering of the polyhedra is
still required to compose the shading elements in the correct order
to generate correct images.

 The object-space-based methods can further be categorized
into projection-based, and slicing-based methods. In this paper,
we focus on these two categories. We discuss the advantages of
one over the other, and why the domain of slicing-based methods
is still an attractive alternative when approximate volume
rendering is required. We show how a high level of interactivity is
possible in volume rendering by simply exploiting conventional
polygon-based rendering hardware, by proposing alternate data
structures to eliminate computational and storage redundancy, and
by minimizing the overheads to the rendering pipeline in the
original slicing tetrahedra work by Yagel et al. [25].

 Essentially, we present an improved slicing tetrahedron
algorithm for interactive 3D image processing of unstructured
volumetric meshes.

2 RELATED WORK

We classify recent publications on object-space-based methods in
the area of near-interactive volume rendering (i.e., frame rates >
0.1 fps) broadly into two categories: projection-based methods [2,
3, 16, 17, 19, 23, 24], and slicing based methods [6, 21, 25].
(These categories do not take into account the methods that
exploit special purpose hardware for volume rendering [13, 14,
20, 24].)

2.1 Projection-based Methods

Correct and fast visibility sorting techniques have for long been
the subjects of research in this category. A number of attempts
have been made in recent years to develop a general sorting
algorithm, which is fast, accurate, and can be employed to a
different number of datasets, i.e., is not restricted to a particular
type of datasets.

 Shirley and Tuchman [19] were amongst the first to attempt
the use of polygon-rendering hardware support for approximate
volume rendering of tetrahedral meshes. They employ visibility
sorting based upon Williams’ method [22], and project tetrahedra
one by one in back to front order. However, the visibility-sorting
algorithm by Williams [22] does not function correctly for all the
kinds of datasets. It has limitations, for instance, it cannot
guarantee correct visibility ordering for datasets with cycles.
Further, it is not an accurate projection method, and was improved

by subsequent publications that focused on correct and faster
sorting of the elements [2, 18, 23].

 Stein et al. [20] attempted to improve the visual quality of
these approximations by employing hardware texture support, and
a more accurate sorting algorithm that was bound by a time
complexity of O(n2). Williams et al. [23] came up with an
accurate sorting and projection algorithm, with still improved time
performance. Visibility sorting performance was further improved
by exploiting the spatial coherence between tetrahedral cells with
respect to a sweep-plane [16, 17].

 Some methods tried to achieve interactivity by employing
accurate and fast sorting techniques for Delaunay meshes [24].
However, not all numerical simulations output perfect Delaunay-
triangulated meshes, especially when a complex mesh has been
simplified using a decimation method that does not guarantee
Delaunay simplifications, which becomes even more difficult for
volumetric meshes.

 Most of the research in this category has been centered around
balancing the trade-off between speed and memory usage,
because many of the computationally efficient and accurate
projection algorithms require large amounts of memory which
makes them unsuitable for interactive rendering of datasets of the
order of a million elements. Although recent attempts like
zSweep by Farias et al. [3] have been shown to be memory
efficient, and still remain exact, projection-based methods are still
far from being real-time volume rendering systems without
dedicated hardware support [14, 20].

2.2. Slicing-based Methods

There have been only a few publications in this category,
probably because it is just another approximation of the
projection-based methods: the projections of the faces of a
polyhedral element are approximated by a polygon representing
its intersection with a sweep plane. However, Yagel et al. [25]
have shown that this method can render visually comparable
images faster by exploiting the conventional polygon rendering
hardware without having to explicitly store any kind of vertex or
face adjacency information unlike a majority of the projection-
based methods.

 Westermann [21] recently proposed an interactive volume-
rendering paradigm based upon slicing tetrahedra. However, an
implementation of this paradigm requires 2D texture support in
rendering hardware, which is the main source of speed up.

 Referring back to Yagel et al’ s algorithm [25], there are some
redundancies in the algorithm, which can be eliminated or
optimized to achieve even higher interactivity. For example, the
data structures to hold an active cell list or an active edge list can
be completely eliminated as shown in our method (please see
section 3.1). A cross-reference between these two data structures
has to be performed for every sweep, which can be avoided. A
computation of intersection polygons after all the edges for
current z-value (active edges) have been intersected is an
overhead, which can be avoided. Further, our method does not
require depth sorting of edges at all. In addition to these

improvements, we introduce two new features to the incremental
slicing tetrahedra algorithm:

- A hierarchical z-region data structure which
replaces the active cell list and active edge list
data structures; and

- A progressive refinement scheme for 2D slices

holding the intersection triangles. This scheme is
based upon decimation schemes for 2-manifold
triangle surface meshes, and provides another
method for level-of-detail (LoD) prototyping of
datasets during interactive exploration.

3 THE ACCELERATED ALGORITHM

3.1 Hierarchical Z-Region Paradigm

We introduce a method to improve the depth information data
structures and progressive refinement capabilities of the algorithm
by Yagel et al. [25]. This paradigm is similar to the bucket-sorting
method employed by Yagel. However, it allows us to eliminate
the following data structures and computational overheads:

- No edge sorting is required in our method.
Instead, each tetrahedral cell is assigned to one
or two z-regions depending upon the maximum
and minimum z-value of its vertices. This can be
done while reading the dataset, with no
additional computational cycles required.

- The z-region data structure inherently stores the

information of all the cells that are being sliced
by the current sweep plane; hence no additional
data structure such as an active cell list or an
active edge list is required.

- Since active cell and edge lists are no more

required, the cross-reference overheads (when
computing the intersection polygons once all the
active edges have been intersected by the current
sweep plane as required in [25]) are eliminated.

 The hierarchical z-region method is simply a segregation of the
finite volume of interest (enclosed between two sweep planes,
parallel to the viewing plane, with minimum and maximum depth
values) into regions of either equal or unequal widths.

3.2 Intersection Polygons

We assume that any input polyhedral mesh has first been broken
down to a tetrahedral mesh before rendering. In this case, an
infinite plane can slice a tetrahedral element in only two kinds of
geometric primitives with a finite area of intersection: a triangle,
or a quadrilateral. Both cases are shown in Figure 2. We discard
the cases of intersection when a plane passes through exactly one
edge or exactly one vertex because the resulting intersection
polygons have zero area.

 2(a) 2(b)

Figure 2: Two cases of intersection of a tetrahedron with a sweep
plane resulting in polygons of finite area. Note that the
intersection quadrilateral in 2(b) can be easily broken into two
triangles for rendering.

3.3 Nyquist Slicing

In pursuit of accuracy, we exploit the classical Nyquist Sampling
Theorem when slicing an unstructured mesh with sweep planes
parallel to the viewing plane. We make the following observation:
a volumetric mesh M is a discrete approximation of continuous
3D Euclidean space bounded by the mesh’s outer surfaces Si. In
such a discrete volumetric model, the values of the (scalar/vector)
attributes change only at discrete points: the vertices vi of the
mutually exclusive polyhedral cells ci that span this bounded
volume. Hence, we propose this hypothesis:

Let emin be the length of the shortest edge in an unstructured
volumetric mesh M. If M is to be sliced by a series of parallel
sweep planes Pi , no attribute changes would be left unsampled in
the bounded volume along the direction of sweep if the minimum
spacing ∆s between any two subsequent planes Pi and Pi+1 is not
more than and not equal to emin. We call this optimal spacing ∆so.

We conducted experiments with at least three datasets in
accordance of this hypothesis. A spacing value ∆so is expected to
give images of best visual quality, which is supported by the
results. We discuss the implications of this hypothesis further in
the conclusions.

3.4 The Algorithm

Our basic improved slicing tetrahedra algorithm is given below:

1. Determine the minimum and maximum z-values, zmin
and zmax, for the given dataset.

2. Divide the space between z = zmin and z = zmax into

numRegions sub-regions of uniform spacing

∆s = (zmax − zmin)/ numRegions.

This creates a virtual z-region between z = zmin and z =
zmax of numRegions sub-regions subZRegion[i] ,
i ∈ { 0, 1, 2, … , numRegions − 1} .

3. While reading the dataset, for each tetrahedron T:
Find the maximum and minimum z-stretch
values for T. Assign T into two sub-regions
subZRegion[i] and subZRegion[j] , i can be
equal to j, depending upon its minimum and
maximum z-stretch values. Flag it as
UNRENDERED.

4. zP = zmin.

5. for i = 0 to numSubRegions-1 do
a. Intersect current sweep plane with all the

elements T which were encountered for the
first time for a subZRegion[j] , j ≤ i.

b. Determine the case of intersection (Figure 2).
Send the triangle(s) of intersection to the
rendering pipeline. If T is encountered twice
for the current subZRegion[i] , flag it as
RENDERED.

c. zP = zP + ∆s/2

 It is to be noted that for this algorithm, the run-time storage
complexity for a polyhedral mesh of n elements is:

Polyhedral Mesh: O (n); z-region data structure: O (2*n).

Hence, we get rid of the extra data structures for keeping active
cell/edge list, and of the updating overheads thereof at the run-
time.

4 RESULTS

Tables 1 through 5 summarize the results obtained from sample
runs of the algorithm on three datasets. All execution times are for
an SGI R10000 194MHz with 2048 MB RAM, running Irix 6.5.
Datasets: Spx (courtesy Peter Williams, Lawrence Livermoore
National Laboratory), Delta wing: (courtesy NASA Ames
Research Center), and Blunt fin: (courtesy C. M. Hung and P. G.
Buning, 1990, NASA).

Dataset Tetrahedra Time(s) Avg slices/ tet

Spx 12,936 0.09 2.34
Blunt fin 187,395 1.00 2.00
Delta wing 1,005,675 1.43 1.11

Table 1: Summary of results from an implementation of our
algorithm on three datasets for numRegions = 32.

Dataset Tetrahedra Time(s) Avg slices/ tet

Spx 12,936 0.15 3.12
Blunt fin 187,395 1.42 2.58

Delta wing 1,005,675 1.74 1.18
Table 2: Summary of results from an implementation of our

algorithm on three datasets for numRegions = 50.

Dataset Tetrahedra Time(s) Avg slices/ tet

Spx 12,936 0.17 4.04
Blunt fin 187,395 1.85 3.29

Delta wing 1,005,675 2.04 1.26
Table 3: Summary of results from an implementation of our

algorithm on three datasets for numRegions = 72.

Dataset Tetrahedra Time(s) Avg slices/ tet

Spx 12,936 0.24 5.25
Blunt fin 187,395 2.69 4.19

Delta wing 1,005,675 2.53 1.36
Table 4: Summary of results from an implementation of our

algorithm on three datasets for numRegions = 100.

5 OPTIMIZATION

Progressive Refinement of Slices: Our algorithm can be
optimized for two levels of progressive refinement: progressive
increase in the number of sub-regions, and a progressive
refinement of the 2D slices of intersection triangles employing
one of the surface simplification algorithms [4, 5, 7, 8, 11, 12, 15].

numRegions Time(s) Avg slices/ tet

32 0.09 2.34
50 0.15 3.12
72 0.17 4.04
100 0.24 5.25
164* 0.42 8.02

Table 5: Summary of results from an implementation of our
algorithm on the Spx dataset (12,936 tetrahedra).

*Based upon Nyquist’ s Sampling Theorem (please see section 3.3).

Adaptive Slicing: This algorithm has been modified into one for
which ∆s is computed in accordance with Nyquist’s Sampling
Theorem (section 3.3). It can further be modified into an adaptive
slicing algorithm for which the spacing between any two
subsequent planes Pi and Pi+1 is not bound to be constant for all i
∈ { 0, 1, 2, … , numRegions−1} , i.e., ∆s can vary between ∆so and
a value computed upon the user input numRegions (hierarchical z-
region). Further, the z-region paradigm provides inherent clipping
capabilities.

6 CONCLUSION

We presented an accelerated slicing-based algorithm for
interactive volume rendering of unstructured polyhedral meshes.
Our algorithm eliminates redundant data structures for
maintaining depth information, and treats tetrahedral cells as
atomic volume-units when slicing, contrasting the original slicing
tetrahedra algorithm by Yagel et al. [25]. We showed how
maximum accuracy could be achieved by employing Nyquist’s
Sampling Theorem when slicing a dataset. Results show that low
accuracy images can be progressively refined to maximum
accuracy images obtained following Nyquist Slicing, allowing
flexible interactivity in a real-time volume visualization system.
We introduced an additional notion for levels of detail in slicing
based methods: progressive coding of the 2D polygon slices of
intersection.

ACKNOWLEDGEMENTS

Thanks to Peter Williams, Lawrence Livermore National Laboratory for the Spx
dataset; Ricardo Farias, Mississippi State University, for tetrahedral mesh
subdivision code. This work has been sponsored in part by the National Science
Foundation under award no. 6066047–0121989 for the SPUR (Seismic Performance
for Urban Regions) project [1, 9, 10]. SPUR Contributors: Gregory L. Fenves,
Bozidar Stojadinovic (UC Berkeley), Jacobo Bielak et al. (Carnegie Mellon
University), Tomasz Haupt, Purushotham Bangalore, Michael L. Stokes (Mississippi
State University).

REFERENCES

[1] Chopra, P., J. Meyer, and Michael L. Stokes. Immersive

Visualization Of A Very Large Scale Seismic Model. In
Sketches and Applications of SIGGRAPH’01 (Los Angeles,
California, August 2001), page 107. ACM SIGGRAPH,
ACM Press. August 2001.

[2] Comba, J., Klosowski, J., Max, N., Mitchell, J., Silva, C.,

and Peter Williams. Fast Polyhedral Cell Sorting For
Interactive Rendering Of Unstructured Grids. In Proceedings
of EUROGRAPHICS’99, Computer Graphics Forum (1999),
pages 369-376. Eurographics Association. 1999.

[3] Farias, R., Mitchell, J., and C. Silva. Zsweep: An Efficient

And Exact Projection Algorithm For Unstructured Volume
Rendering. In ACM/IEEE Volume Visualization
Symposium’00 (2000), pages 91-99. 2000.

[4] Garland, M. Multi-resolution modeling: Survey & Future

Opportunities. In EUROGRAPHICS’99, State of the Art
Report (STAR) (Aire-la-Ville, CH, 1999), pages 111-131.
Eurographics Association. 1999.

[5] Garland, M., and P. Heckbert. Surface Simplification Using

Quadric Error Metrics. In Proceedings of SIGGRAPH’97,
pages 115-122. ACM SIGGRAPH, ACM Press. 1997.

[6] Giertsen, C. Volume Visualization Of Sparse Irregular

Meshes. In IEEE Computer Graphics and Applications,
12(2) (March 1992), pages 40-48. 1992.

[7] Hoppe, Hugues. Progressive Meshes. In Proceedings of

SIGGRAPH’96 (New Orleans, Louisiana, August 1996),
pages 99-108. ACM SIGGRAPH, ACM Press. August 1996.

[8] Isenburg, Martin, and Jack Snoeyink. Face Fixer:

Compressing Polygon Meshes With Properties. In
Proceedings of SIGGRAPH’00 (New Orleans, Louisiana,
July 23-28, 2000), pages 263-270. ACM SIGGRAPH, ACM
Press. 2000.

[9] Meyer, J., and Prashant Chopra. Building Shaker:

Earthquake Simulation In A CAVETM. Work in progress,
IEEE Visualization’01 (San Diego, California, October
2001), Abstract, page 3. 2001.

[10] Meyer, J., and Prashant Chopra. Strategies For Rendering

Large-Scale Tetrahedral Meshes For Earthquake Simulation.
SIAM/GD’01 (Sacramento, CA, November 2001), Abstract,
page 30. 2001.

[11] Popovic, J., and Hoppe, H. Progressive Simplicial

Complexes. In Proceedings of SIGGRAPH’97, pages 217-
224. ACM SIGGRAPH, ACM Press. 1997.

[12] Renze, K. J., and J. H. Oliver. Generalized Unstructured

Decimation. IEEE Computer Graphics and Applications 16
(6), pages 24-32. 1996.

[13] Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., and T.
Ertl. Interactive Volume Rendering On Standard PC
Graphics Hardware Using Multi-textures And Multi-stage
Rasterization. In SIGGRAPH/EUROGRAPHICS Workshop
on Graphics Hardware (2000), pages 109-119. 2000.

[14] Roettger, S., Kraus, M., and T. Ertl. Hardware Assisted

Volume And Isosurface Rendering Based On Cell Projection.
In Proceedings of IEEE VISUALIZATION’00, pages 109-
116. 2000.

[15] Schroeder, William J., Jonathan A. Zarge, and William E

Lorensen. Decimation Of Triangle Meshes. In Computer
Graphics 26(2), pages 65-70. 1992.

[16] Silva, C., and J. Mitchell. The Lazy Sweep Ray Casting

Algorithm For Rendering Of Irregular Grids. In Transactions
on Visualization And Computer Graphics (April – June
1997), 4(2), pages 142-157. 1997.

[17] Silva, C., Mitchell, J., and A. Kaufman. Fast Rendering Of

Irregular Grids. In Proceedings ACM Symposium on Volume
Visualization’96, pages 15-23. 1996.

[18] Silva, C., Mitchell, J., and Peter Williams. An Exact Time

Visibility Ordering Algorithm For Polyhedral Cell
Complexes. In Proceedings ACM Symposium on Volume
Visualization’96, pages 87-94. 1998.

[19] Shirley, P., and A. Tuchman. A Polygonal Approximation To

Direct Scalar Volume Rendering. In Proceedings of
SIGGRAPH’90, ACM Computer Graphics, 24 (5), pages 63-
70. ACM SIGGRAPH, ACM Press. 1990.

[20] Stein, C., Becker, B., and N. Max. Sorting And Hardware

Assisted Rendering For Volume Visualization. In ACM
Symposium on Volume Visualization’94, pages 83-90. 1994.

[21] Westermann, R. The Rendering Of Unstructured Grids

Revisited. In EUROGRAPHICS/IEEE TCVG Symposium on
Visualization’01. 2001.

[22] Williams, P. Visibility Ordering Meshed Polyhedra. In ACM

Transactions on Graphics, 11(2), pages 102-126. 1992.

[23] Williams, P., Max, N., and C. Stein. A High Accuracy

Volume Renderer For Unstructured Data. In IEEE
Transactions On Visualization And Computer Graphics,
4(1), pages 37-54. 1998.

[24] Wittenbrink, C. Cellfast: Interactive Unstructured Volume

Rendering. In IEEE Visualization’99, Late Breaking Hot
Topics, pages 21-24. 1999.

[25] Yagel, R., Reed, D., Law, A., Shih, P., and N. Shareef.

Hardware Assisted Volume Rendering Of Unstructured
Grids By Incremental Slicing. In ACM Symposium on
Volume Visualization’96, pages 55-63. 1996.

Figure 3: Two levels of detail of the 187,395 tetrahedra Blunt fin dataset. Left: numRegions = 32; right: numRegions = 72.

Figure 4: Three levels of detail of the 1,005,675 tetrahedra Delta wing dataset. Left: numRegions = 32; middle: numRegions = 50; right:
numRegions = 72.

Figure 5: Two levels of detail of the 12,936 tetrahedra Spx dataset. Left: numRegions = 32; right: numRegions = 164, computed based
upon Nyquist’s Sampling Theorem.

