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(a) 32 slices [0.09 secs]      (b) 50 slices [0.15 secs]                 (c) 72 slices [0.17 secs]                   (d) 164 slices [0.42 secs]# 
Figure 1: Four levels of detail of the 12,936 tetrahedral cells Spx dataset, rendered on an SGI R10000 194MHz, 2048 MB RAM, using our 
accelerated incremental slicing method. The number in brackets behind the number of slices shows the actual slicing times for the 
respective images. #The number of slices to render image (d) was computed using Nyquist’ s sampling theorem. 

 
Abstract 
 
We accelerate the incremental slicing method for near interactive 
volume rendering of unstructured grids with conventional polygon 
rendering hardware support. Our method uses less memory 
compared to the method of Yagel et al. [25], with significant 
improvements in rendering time. Using our method, a rendering 
performance gain of at least 400% was achieved for some 
datasets, e.g., the Blunt fin dataset. We completely eliminate 
sorting of edges as a preprocessing step. Further, we introduce a 
hierarchical z-region paradigm, which can be incorporated with 
the dataset-input module to get the depth information of the cells 
with no extra computational overhead. We argue that keeping an 
active edge list and an active cell list as data structures is 
redundant, because this information is inherent in the z-region 
paradigm in our method. In pursuit of accuracy, we explore the 
application of Nyquist’ s classical sampling theorem when slicing 
the datasets, and conclude that images of comparable visual 
quality can be obtained by relaxing this requirement, while 
maintaining the rendering performance. Finally, we conclude with 
the results of our method, and a discussion on how progressive 
refinement of 2-manifold triangular meshes (for 2D slices of 
cutting planes parallel to the view plane) can help to achieve 
additional interactivity in a volume visualization system. 
 
CR Categories: I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling – surfaces and object 
representations. 
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1 INTRODUCTION 
 
The last decade has witnessed some successful attempts towards 
interactivity in volume visualization systems. However, 
interactive volume rendering still remains an active research 
arena; because of continuous advances in computational systems 
technology and methodology that have helped scientists run 
numerical simulations of ever increasing complexity, outputting 
high-dimensional datasets (e.g., time-varying volumetric datasets) 
in the form of high order simplicial complexes (polyhedral 
meshes), both homogeneous and heterogeneous. A nice example 
is an earthquake simulation dataset (11,800,639 vertices, 
69,448,288 tetrahedra), with associated vector attributes for 800 
time-steps per node [1, 9, 10].  To interactively explore such 
datasets still remains a challenge for the computer graphics 
research community. 
      
     Addressing these issues, a number of direct (near interactive) 
volume rendering techniques for unstructured polyhedral meshes 
have been explored and established in the recent past. A majority 
of these techniques addresses the rendering of homogeneous 
tetrahedral meshes. Two reasons explain this fact: one, the convex 
shape of a tetrahedral element, and its faces, makes it suitable for 
volume rendering on polygon-based rendering systems; and two, 
that all the other higher order simplicial complexes can be broken 
down to tetrahedra very conveniently.  These near interactive 
direct volume rendering techniques can primarily be classified 
into two categories: object-space-based methods, and image-
space-based methods.  
      
     The image-space-based methods fundamentally work by 
letting individual rays (one per image-space element) intersect the 
polyhedral elements, and then interpolating the attribute value at 
the points of intersection based on the local neighborhood vertex 
attributes. Such methods are computationally expensive, but yield 
high-quality images by guaranteeing that the dataset is sampled 
exactly.  



 

 

 
 
 

 

     The object-space-based methods, however, consider each 
object-space primitive (polyhedron) one by one, and shade a 
corresponding image space element by composition, in either 
back-to-front, or front-to-back order, from the view plane. Such 
methods are an approximation of the computationally more 
expensive image space methods, but are usually faster; and hence 
have been subjects of interest in the area of interactive volume 
rendering for quite some time. Despite being simpler than their 
image-space counterparts, even these approximation methods 
have not been able to achieve real-time volume rendering of large 
volumetric datasets unless specific hardware support is present. 
This is because a correct visibility ordering of the polyhedra is 
still required to compose the shading elements in the correct order 
to generate correct images. 
 
     The object-space-based methods can further be categorized 
into projection-based, and slicing-based methods. In this paper, 
we focus on these two categories. We discuss the advantages of 
one over the other, and why the domain of slicing-based methods 
is still an attractive alternative when approximate volume 
rendering is required. We show how a high level of interactivity is 
possible in volume rendering by simply exploiting conventional 
polygon-based rendering hardware, by proposing alternate data 
structures to eliminate computational and storage redundancy, and 
by minimizing the overheads to the rendering pipeline in the 
original slicing tetrahedra work by Yagel et al. [25]. 
 
     Essentially, we present an improved slicing tetrahedron 
algorithm for interactive 3D image processing of unstructured 
volumetric meshes.   
 
 

2 RELATED WORK 
      
We classify recent publications on object-space-based methods in 
the area of near-interactive volume rendering (i.e., frame rates > 
0.1 fps) broadly into two categories: projection-based methods [2, 
3, 16, 17, 19, 23, 24], and slicing based methods [6, 21, 25]. 
(These categories do not take into account the methods that 
exploit special purpose hardware for volume rendering [13, 14, 
20, 24].) 
 
 

2.1 Projection-based Methods       
       
Correct and fast visibility sorting techniques have for long been 
the subjects of research in this category.  A number of attempts 
have been made in recent years to develop a general sorting 
algorithm, which is fast, accurate, and can be employed to a 
different number of datasets, i.e., is not restricted to a particular 
type of datasets. 
  
     Shirley and Tuchman [19] were amongst the first to attempt 
the use of polygon-rendering hardware support for approximate 
volume rendering of tetrahedral meshes. They employ visibility 
sorting based upon Williams’  method [22], and project tetrahedra 
one by one in back to front order. However, the visibility-sorting 
algorithm by Williams [22] does not function correctly for all the 
kinds of datasets.  It has limitations, for instance, it cannot 
guarantee correct visibility ordering for datasets with cycles. 
Further, it is not an accurate projection method, and was improved 

by subsequent publications that focused on correct and faster 
sorting of the elements [2, 18, 23]. 
 
     Stein et al. [20] attempted to improve the visual quality of 
these approximations by employing hardware texture support, and 
a more accurate sorting algorithm that was bound by a time 
complexity of O(n2). Williams et al. [23] came up with an 
accurate sorting and projection algorithm, with still improved time 
performance. Visibility sorting performance was further improved 
by exploiting the spatial coherence between tetrahedral cells with 
respect to a sweep-plane [16, 17].  
 
     Some methods tried to achieve interactivity by employing 
accurate and fast sorting techniques for Delaunay meshes [24]. 
However, not all numerical simulations output perfect Delaunay-
triangulated meshes, especially when a complex mesh has been 
simplified using a decimation method that does not guarantee 
Delaunay simplifications, which becomes even more difficult for 
volumetric meshes. 
 
     Most of the research in this category has been centered around 
balancing the trade-off between speed and memory usage, 
because many of the computationally efficient and accurate 
projection algorithms require large amounts of memory which 
makes them unsuitable for interactive rendering of datasets of the 
order of a million elements.  Although recent attempts like 
zSweep by Farias et al. [3] have been shown to be memory 
efficient, and still remain exact, projection-based methods are still 
far from being real-time volume rendering systems without 
dedicated hardware support [14, 20].   
 
           

2.2. Slicing-based Methods      
 
There have been only a few publications in this category, 
probably because it is just another approximation of the 
projection-based methods: the projections of the faces of a 
polyhedral element are approximated by a polygon representing 
its intersection with a sweep plane. However, Yagel et al. [25] 
have shown that this method can render visually comparable 
images faster by exploiting the conventional polygon rendering 
hardware without having to explicitly store any kind of vertex or 
face adjacency information unlike a majority of the projection-
based methods.  
 
     Westermann [21] recently proposed an interactive volume-
rendering paradigm based upon slicing tetrahedra. However, an 
implementation of this paradigm requires 2D texture support in 
rendering hardware, which is the main source of speed up. 
   
     Referring back to Yagel et al’ s algorithm [25], there are some 
redundancies in the algorithm, which can be eliminated or 
optimized to achieve even higher interactivity. For example, the 
data structures to hold an active cell list or an active edge list can 
be completely eliminated as shown in our method (please see 
section 3.1). A cross-reference between these two data structures 
has to be performed for every sweep, which can be avoided. A 
computation of intersection polygons after all the edges for 
current z-value  (active edges) have been intersected is an 
overhead, which can be avoided. Further, our method does not 
require depth sorting of edges at all. In addition to these 



 

 

 
 
 

 

improvements, we introduce two new features to the incremental 
slicing tetrahedra algorithm: 
 

- A hierarchical z-region data structure which 
replaces the active cell list and active edge list 
data structures; and 

 
- A progressive refinement scheme for 2D slices 

holding the intersection triangles. This scheme is 
based upon decimation schemes for 2-manifold 
triangle surface meshes, and provides another 
method for level-of-detail (LoD) prototyping of 
datasets during interactive exploration. 

 
 
3 THE ACCELERATED ALGORITHM 
 

3.1 Hierarchical Z-Region Paradigm 
 
We introduce a method to improve the depth information data 
structures and progressive refinement capabilities of the algorithm 
by Yagel et al. [25]. This paradigm is similar to the bucket-sorting 
method employed by Yagel. However, it allows us to eliminate 
the following data structures and computational overheads: 
 

- No edge sorting is required in our method. 
Instead, each tetrahedral cell is assigned to one 
or two z-regions depending upon the maximum 
and minimum z-value of its vertices. This can be 
done while reading the dataset, with no 
additional computational cycles required. 

 
- The z-region data structure inherently stores the 

information of all the cells that are being sliced 
by the current sweep plane; hence no additional 
data structure such as an active cell list or an 
active edge list is required. 

 
- Since active cell and edge lists are no more 

required, the cross-reference overheads (when 
computing the intersection polygons once all the 
active edges have been intersected by the current 
sweep plane as required in [25]) are eliminated. 

 
     The hierarchical z-region method is simply a segregation of the 
finite volume of interest (enclosed between two sweep planes, 
parallel to the viewing plane, with minimum and maximum depth 
values) into regions of either equal or unequal widths.      
 
 

3.2 Intersection Polygons 
 
We assume that any input polyhedral mesh has first been broken 
down to a tetrahedral mesh before rendering. In this case, an 
infinite plane can slice a tetrahedral element in only two kinds of 
geometric primitives with a finite area of intersection: a triangle, 
or a quadrilateral. Both cases are shown in Figure 2. We discard 
the cases of intersection when a plane passes through exactly one 
edge or exactly one vertex because the resulting intersection 
polygons have zero area. 

 
  2(a)   2(b) 
 
Figure 2: Two cases of intersection of a tetrahedron with a sweep 
plane resulting in polygons of finite area. Note that the 
intersection quadrilateral in 2(b) can be easily broken into two 
triangles for rendering. 

 
3.3 Nyquist Slicing 
 
In pursuit of accuracy, we exploit the classical Nyquist Sampling 
Theorem when slicing an unstructured mesh with sweep planes 
parallel to the viewing plane. We make the following observation: 
a volumetric mesh M is a discrete approximation of continuous 
3D Euclidean space bounded by the mesh’s outer surfaces Si. In 
such a discrete volumetric model, the values of the (scalar/vector) 
attributes change only at discrete points: the vertices vi of the 
mutually exclusive polyhedral cells ci that span this bounded 
volume. Hence, we propose this hypothesis: 
  
Let emin be the length of the shortest edge in an unstructured 
volumetric mesh M. If M is to be sliced by a series of parallel 
sweep planes Pi , no attribute changes would be left unsampled in 
the bounded volume along the direction of sweep if the minimum 
spacing ∆s between any two subsequent planes Pi and Pi+1 is not 
more than and not equal to emin. We call this optimal spacing ∆so. 
 
We conducted experiments with at least three datasets in 
accordance of this hypothesis. A spacing value ∆so is expected to 
give images of best visual quality, which is supported by the 
results. We discuss the implications of this hypothesis further in 
the conclusions. 
  
 

3.4 The Algorithm 
 
Our basic improved slicing tetrahedra algorithm is given below: 
 

1. Determine the minimum and maximum z-values, zmin 
and zmax, for the given dataset.  

 
2. Divide the space between z = zmin and z = zmax into 

numRegions sub-regions of uniform spacing  
 
∆s = (zmax −  zmin)/ numRegions. 
 

This creates a virtual z-region between z = zmin and z =  
zmax of numRegions sub-regions subZRegion[i]  ,   
i ∈ { 0, 1, 2,  … , numRegions − 1} . 
 
 



 

 

 
 
 

 

3. While reading the dataset, for each tetrahedron T: 
Find the maximum and minimum z-stretch 
values for T. Assign T into two sub-regions 
subZRegion[i]  and subZRegion[j] , i can be 
equal to j,  depending upon its minimum and 
maximum z-stretch values. Flag it as 
UNRENDERED. 
 

4. zP = zmin. 
 

5. for i = 0 to numSubRegions-1 do   
a. Intersect current sweep plane with all the 

elements T which were encountered for the 
first time for a subZRegion[j] , j ≤ i.  

b. Determine the case of intersection (Figure 2). 
Send the triangle(s) of intersection to the 
rendering pipeline.  If T is encountered twice 
for the current subZRegion[i] , flag it as 
RENDERED. 

c. zP = zP + ∆s/2 
 
     It is to be noted that for this algorithm, the run-time storage 
complexity for a polyhedral mesh of n elements is: 
 

Polyhedral Mesh: O (n); z-region data structure: O (2*n). 
 
Hence, we get rid of the extra data structures for keeping active 
cell/edge list, and of the updating overheads thereof at the run-
time. 
 

4 RESULTS 
 
Tables 1 through 5 summarize the results obtained from sample 
runs of the algorithm on three datasets. All execution times are for 
an SGI R10000 194MHz with 2048 MB RAM, running Irix 6.5. 
Datasets: Spx (courtesy Peter Williams, Lawrence Livermoore 
National Laboratory), Delta wing: (courtesy NASA Ames 
Research Center), and Blunt fin: (courtesy C. M. Hung and P. G. 
Buning, 1990, NASA). 
 

Dataset Tetrahedra Time(s) Avg slices/ tet 
 

Spx 12,936 0.09 2.34 
Blunt fin 187,395 1.00 2.00 
Delta wing 1,005,675 1.43 1.11 

Table 1: Summary of results from an implementation of our 
algorithm on three datasets for numRegions = 32. 

 
Dataset Tetrahedra Time(s) Avg slices/ tet 

 

Spx 12,936 0.15 3.12 
Blunt fin 187,395 1.42 2.58 

Delta wing 1,005,675 1.74 1.18 
Table 2: Summary of results from an implementation of our 

algorithm on three datasets for numRegions = 50. 
 

Dataset Tetrahedra Time(s) Avg slices/ tet 
 

Spx 12,936 0.17 4.04 
Blunt fin 187,395 1.85 3.29 

Delta wing 1,005,675 2.04 1.26 
Table 3: Summary of results from an implementation of our 

algorithm on three datasets for numRegions = 72. 

Dataset Tetrahedra Time(s) Avg slices/ tet 
 

Spx 12,936 0.24 5.25 
Blunt fin 187,395 2.69 4.19 

Delta wing 1,005,675 2.53 1.36 
Table 4: Summary of results from an implementation of our 

algorithm on three datasets for numRegions = 100. 
 

5 OPTIMIZATION 
 

Progressive Refinement of Slices: Our algorithm can be 
optimized for two levels of progressive refinement: progressive 
increase in the number of sub-regions, and a progressive 
refinement of the 2D slices of intersection triangles employing 
one of the surface simplification algorithms [4, 5, 7, 8, 11, 12, 15]. 

 
 

numRegions Time(s) Avg slices/ tet 
 

32 0.09 2.34 
50 0.15 3.12 
72 0.17 4.04 
100 0.24 5.25 
164* 0.42 8.02 

Table 5: Summary of results from an implementation of our 
algorithm on the Spx dataset (12,936 tetrahedra).  

*Based upon Nyquist’ s Sampling Theorem (please see section 3.3). 
 

Adaptive Slicing: This algorithm has been modified into one for 
which ∆s is computed in accordance with Nyquist’s Sampling 
Theorem (section 3.3). It can further be modified into an adaptive 
slicing algorithm for which the spacing between any two 
subsequent planes Pi and Pi+1 is not bound to be constant for all i 
∈ { 0, 1, 2,  … , numRegions−1} , i.e., ∆s can vary between ∆so and 
a value computed upon the user input numRegions (hierarchical z-
region). Further, the z-region paradigm provides inherent clipping 
capabilities. 

 
6 CONCLUSION 
 

We presented an accelerated slicing-based algorithm for 
interactive volume rendering of unstructured polyhedral meshes. 
Our algorithm eliminates redundant data structures for 
maintaining depth information, and treats tetrahedral cells as 
atomic volume-units when slicing, contrasting the original slicing 
tetrahedra algorithm by Yagel et al. [25]. We showed how 
maximum accuracy could be achieved by employing Nyquist’s 
Sampling Theorem when slicing a dataset. Results show that low 
accuracy images can be progressively refined to maximum 
accuracy images obtained following Nyquist Slicing, allowing 
flexible interactivity in a real-time volume visualization system. 
We introduced an additional notion for levels of detail in slicing 
based methods: progressive coding of the 2D polygon slices of 
intersection.  
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Figure 3: Two levels of detail of the 187,395 tetrahedra Blunt fin dataset. Left: numRegions = 32; right: numRegions = 72. 

 

                 
Figure 4: Three levels of detail of the 1,005,675 tetrahedra Delta wing dataset. Left: numRegions = 32; middle: numRegions = 50; right: 
numRegions = 72. 
 

     
Figure 5: Two levels of detail of the 12,936 tetrahedra Spx dataset. Left: numRegions = 32; right: numRegions = 164, computed based 
upon Nyquist’s Sampling Theorem. 
 
 


