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Abstract—This paper describes an efficient image transforma-
tion method based on histogram information and some prior
knowledge of tissue expression in different modalities for regis-
tration of images from different image aquisition methods, such
as CT and MRI. The metric defined in this paper represents a
computationally efficient alternative to traditional, mutual infor-
mation based methods. The optimization step in the registration
algorithm can be carried out either by using a normalized cross-
correlation function or as a simple image subtraction, which
makes it suitable for hardware implementations.

I. INTRODUCTION

Arising from the clinical need for multimodal imaging, this
article describes a set of algorithms that form an integrated sys-
tem for automated large-scale image processing, multimodal
image registration and multi-source volume rendering. The
system has been developed to enable simultaneous processing
and rendering of image data from multiple medical imaging
sources. The algorithms described here satisfy real-time data
processing constraints, as required for clinical deployment.

This article is structured as follows. Section II describes
the difference between intermodal and intramodal registration
and provides examples of both techniques. Section III explains
how intramodality techniques can be used for intermodality
image registration. Section IV describes the pre-processing
step of segmenting the images in each modality and correlating
the scalar values for each cluster. Section V outlines the
registration process using cross-correlation as a similarity
measure, and section V shows the results obtained using this
method. Section VI summarizes the findings and outlines
future research goals and potential directions.

Fig. 1. Bone tissue highlighted (green) in a CT scan.

Fig. 2. Bone tissue highlighted (red) in an MRI scan.

II. PREVIOUS WORK

A. Registration of Different Modalities

This section addresses the problem of automated, intermodal
registration, such as the registration of CT and MR images.
In contrast to intramodal registration, intermodal registration
is a non-trivial task due to the fact that a given tissue type is
represented differently in the two modalities. Furthermore, the
histogram ranges associated with each tissue type may appear
in a different order. This means that a tissue that is expressed
as a high value (bright gray level) due to a high degree of
X-ray absorption (CT scan), may be represented by a low
value (dark gray level) due to low proton density (MRI scan).
The difference in the gray level representation comes from the
fact that different physical quantities are being measured. For
example, bone is visually represented as bright white (high
X-ray absorption) in CT scans (figure 1), and as a black
band (low proton density) in MRI scans (figure 2). Hence,
the correlation between corresponding pixels in each scan is
not linear (figure 3). This makes the task of aligning them,
without the use of stereotactic frames or markers, difficult.

As an alternative approach to intermodality registration,
a method that uses feature segmentation based on intensity
histograms [Gon02] of the two images is proposed here. The
idea is that if one of the scans is transformed to match the
gray value distribution of the other scan, then the similarity
measures used in intramodality registration techniques can
be used for intermodality registration. Section IV outlines
techniques to achieve a reasonable segmentation of the var-
ious tissue types and correlation of the same to achieve a
robust registration. The fact that the algorithm in the current
implementation uses several different tissue types to control
the alignment process and the correlation computations adds



Fig. 3. Bone tissue highlighted (red) in an MRI scan (same as in figure 2). CT
representation of bone (same es in figure 1) superimposed (green). Common
areas are represented in yellow.

additional robustness to the approach.
Combining multiple scans of the same specimen into a

single image or volume has numerous advantages in diag-
nostics, pre-surgical planning and radiation therapy planning,
especially when multiple modalities depicting various physical
properties of the scanned sample are involved. Some tissue
types may be better visible in one type of scan, others may
only appear in another scan.

Similar scans (e.g. multiple CT scans) can be registered by
using a simple differential function as a similarity measure
(intramodal registration). Combining images taken from dif-
ferent modalities (intermodal registration) is a much harder
problem. The main reason is the fact that the various tissue
types that occur in the images are represented in different
ways in different modalities and may appear in a permutated
order in the gray level spectrum. For example, a linear transfer
function maps the high X-ray absorption values of bone to an
intensity value that is visually represented as a bright white,
whereas the same linear transfer function would produce a
black pixel for the same location in an MRI scan due to the low
proton density of bone matter. Hence, the correlation between
corresponding pixels in each scan is not linear over the entire
range of values. Moreover, the intensity ranges associated with
a particular tissue type do not appear in the same order in a
histogram. This makes the task of aligning two images from
different modalities difficult.

B. Other Registration Methods

Three different, classical registration methods with different
prerequisites and application areas are presented here. The
Global Difference method is based on the assumption that
intensities in the two participating images are linearly cor-
related. This assumption makes the method not suitable for
intermodal registration, because absolute values, the spacing
between these values in an intensity histogram, and the order
of clusters in such a histogram vary due to the difference in the
way material properties and the physical quantities measured
by a particular scanning method differ.

The second method is called Geometric Features. It com-

pares outlines of objects, which can be identified by extracting
intensity gradients using a Laplacian or high-pass filter. This
method is based on the assumption that tissue gradients are
expressed similarly in both images. Unfortunately, this is not
the case for the same reason as for the absolute values, i.e.,
because of the differences in the physical quantities being
measured by the two incompatible image acquisition devices.

A third method is known as Mutual Information. This
technique computes the statistical dependence or information
redundancy between image intensities of corresponding pixels
in both images. No specific assumptions about feature expres-
sion are being made. This method is suitable for intermodal
registration and has been widely studied in the literature
[Mae97].

Mutual information (MI) works for different modalities
that contain the same information, but expressed differently.
It is typically computed as a summation of the product of
the mutual histogram for all intensities and the logarithm of
the ratio between the mutual histogram and the individual
histograms [Mae97]. The goal is to maximize MI.

Numerous attempts to accelerate the alignment process,
ranging from manual to semi-automatic to fully automatic
methods [Els94], [Els95], [Stu96], [Pen98], [Hil01], [Jen02],
[LoC03], have been proposed in the literature. These meth-
ods include histogram matching [Hua98], texture match-
ing [Ash95], intensity cross-correlation [Mai98], kernel-based
classification methods [Cri00], information divergence mini-
mization [Sto98] and optical flow matching [Lef01]. A good
survey can be found in [Bro92].

More recently developed fully automated methods essen-
tially revolve around entropy [Mey97], [But01], [Zhu02] and
mutual information (MI) [Vio95], [Wel96], [Plu03], [Wel96].
Even though they are more convenient than manual or semi-
automatic techniques, they are still time consuming and com-
putationally expensive. The general consensus on MI-based
techniques is that they provide the best results in terms of
alignment precision and are generally consistent with man-
ual, expert-based alignment procedures. However, the loss of
spatial coherence during the registration, which is due to the
different physical quantities being measured and the resulting
variations in the feature boundaries and gradients, is a potential
cause of inaccurate registration.

The idea of the method presented in this paper is that meth-
ods suitable only for intramodal registration (same imaging
device type) can be adapted to work also for intermodal reg-
istration (different imaging device types). The method can be
efficiently implemented using a look-up table and, depending
on the implementation of the intramodal registration algorithm,
is therefore potentially faster than the computationally expen-
sive MI method.

III. USING INTRAMODALITY TECHNIQUES FOR

INTERMODALITY REGISTRATION

As described before, we propose an alternate method for
registering CT and MRI scans, usually requiring intermodality
techniques. The method described here employs intramodality



Fig. 4. CT scan and intensity histogram.

methods to accomplish the alignment task. Our approach is
rather intuitive and inexpensive. We hypothesize that if we
convert one of the scans (e.g. MRI) to match the other (e.g.
CT) in terms of the scalar value representation of various
tissue types that occur in the images, then by applying a
similarity measure based on the correlation between corre-
sponding features and globally optimizing this parameter, we
can achieve alignment of the two different modalities at a
relatively cheaper cost, providing results comparable in quality
to those of intermodality registration techniques.

The task of converting the representation of the various
tissue types present in one scan into the representation given
by another scanning technology or modality involves the
use of feature segmentation followed by histogram matching
[Hua98]. By sorting the intensities of each image into clusters
corresponding to the intensity ranges of characteristic features,
we can approximately segment the scans into the various
compounds or tissue types. These individual segmentation
clusters can then be mapped onto relevant bins from the second
scan. A histogram matching of these segmented images, which
includes a permutation and adaptation of the bin widths in the
histogram, generates a transfer function that defines a mapping
between the original scan and the alternate scan.

IV. SEGMENTATION USING HISTOGRAM PERMUTATION

In order to correlate the individual representations of the
various anatomical structures in each scan, we use intensity
histograms. Figure 4 shows the intensity profile of a CT scan
(data specification: 512 x 512 grayscale image). Figure 5
shows the intensity profile of an MRI scan (data specification:
T1-weighted, 256 x 256 grayscale image) of a human head. All
images and histograms were stored in an 8-bit format (value
range [0...255]).

Histogram permutation is an approximation technique based
on known expressions of particular tissue types in various
modalities. Depending on the number of expected distinct fea-
tures (i.e. tissue types), we create bins of intensity clusters. For
example, we have one bin to store all the high intensity pixels
in a CT image which are characteristic of skull bone (high X-
ray absorption). This would map onto the bin containing the
low intensities from the skull in the MRI scan (low hydrogen
proton concentration in bone). Similarly, the gray matter, white
matter and cerebral spinal fluid (CSF) can be stored in one bin
corresponding to the uniform gray region of brain matter in
the CT.

The bins thus correspond to a partitioning of the image into
characteristic tissue expressions. Initial bins were obtained and

Fig. 5. MRI scan and intensity histogram.

TABLE I
MAPPING OF MRI INTENSITIES TO CORRESPONDING CT INTENSITIES FOR

EACH FEATURE SPACE.

CT intensity MR intensity Feature

0 – 9 0 – 1 Background
10 – 60 175 – 255 Adipose
61 – 140 56 – 119 Soft tissue

141 – 255 2 – 55 Bone

refined using user interaction, and a table of mapping values
was generated (table I).

Having thus created the desired bins, we then generate a
transfer function to carry out the mapping between each seg-
ment (bin) of the MRI and the CT scan based on table I, using
the principles of histogram matching [Hua98]. This process of
selective histogram matching ensures a good approximation.

Figure 6 shows a graphical representation of the bins and
a typical permutation. It becomes obvious that bone, for
instance, is represented differently in different modalities, and
that the width of the bins varies. Therefore, the mapping is
not linear. A piece-wise linear transfer function is designed to
perform the permutation and scaling of the histogram bins.

After applying the transfer function, the MRI image now
contains intensity values that correspond to those found in
the CT scan. This means that the various tissue types are
now represented by a similar intensity value. Figure 7 shows
the original superimposed histograms of the CT and the
MRI scan before application of the transfer function. The
image shows that there is minimal overlap, which makes

Fig. 6. Mapping of CT histogram (green) onto MRI histogram (red). Bin
boundaries are shown in purple color.



image registration of features that are expressed differently
difficult. Figure 8 shows the superimposed histograms of the
CT and the transformed MRI scan. Obviously, there is a much
better match in the overall shape of the histogram, indicating
that the two images, even though generated by two different
modalities, will yield a much better registration of individual
features. Figures 9(a) and (b) show the corresponding images,
i.e., the original MRI image, and the new MRI image after
application of the transfer function. Figure 9(b) is now similar
to the original CT image, which is shown in figure 9(c) for
comparison.

The quality of the transformation can be evaluated by
subtracting either the histograms or the images. Using a low-
pass filter on the images or a quantization on the histogram
is necessary to obtain a reasonable measure of the quality,
because due to the difference in the image acquisition process,
the individual pixels or bin distributions will still be very
different, but the average distribution is similar.

Our registration algorithm takes as input a file that contains
the segmentation information, i.e., the number of clusters or
bins followed by the intensity range for each cluster. The
algorithm then optimizes a global similarity measure based
on correlation, as described in the following section.

V. CROSS-CORRELATION AND IMAGE REGISTRATION

The registration was done using an intensity-based similar-
ity measure. Optimization of a normalized cross-correlation
(NCC) function using Powell’s multi-dimensional line maxi-
mization [Jac77] formed the basis of the similarity measure.

R =

∑

n

k=0
[(r(k) − µ(r)) − (f(k) − µ(f))]

√

∑

n

k=0
(r(k) − µ(r))2 −

∑

n

k=0
((f(k) − µ(f))2

(1)

Equation 1 shows the NCC function. Here r and f represent
the reference and the floating image, respectively. µ(r) and
µ(f) represent the mean intensity values of the reference and
the floating image. In our case, the CT scan is the reference
image and the transformed MRI is the floating image. R

represents the metric used to determine the similarity between
the CT and the transformed MR image. R = 1 implies
maximum correlation, R = 0 implies no correlation, and
R = −1 implies an opposing relation between the intensities
from the two modalities. Powell’s multi-dimensional line max-
imization algorithm, which employs Brent’s one-dimensional
optimization algorithm, was used to determine the optimum
value for R in the X-Y plane.

Fig. 7. Overlap of CT (green) and MRI (red) scans and intensity profiles
before permutation and histogram matching.

Fig. 8. Overlap of CT (green) and transformed MRI (yellow) scans and
intensity profiles after histogram permutation and matching. Red indicates
the original MRI image and profile. The yellow intensity profile (transformed
MRI) is a better match than the red intensity profile (original MRI) to the
green one (CT scan).

Fig. 9. (a) Original MRI image. (b) Transformed MRI image. (c) Original CT
image. The transformed MRI (center) matches the geometry of the original
MRI (left) and the intensity profile of the CT scan (right).

A ”sum of squared differences” technique may also be
used for the registration process, since specific optimization
algorithms work very efficiently for the same. However, the
choice of NCC as a similarity measure was dictated by the fact
that tissue-type-based clustering is not an exact science due to
large variations in individual tissue expressions across patients.
In addition, noise, if not removed prior to the transformation,
is also transformed by the histogram matching process, has
a strong effect on the ”sum of squared differences” method
and interferes with the registration, especially when the noise
is not uniformly distributed or Gaussian. The NCC function
together with a low-pass filter ensure the robustness of the
algorithm.

VI. RESULTS

Figure 10(a) shows the superimposed images of the CT and
the original MRI scans in their initial, unregistered position.
Note that the bone (bright red or bright cyan) is not aligned
(white, composition of red and cyan). Figure 10(b) shows the
registered set, again with no good match (few white pixels).
The hollow space (transparent) in the MRI is completely filled
by the skull (cyan) from CT. This means that the bone is hardly
visible in the given MRI scan.

Figure 11(a) shows the same results for a transformed MRI
image. Note that the bone (white, composition of cyan and
red) is much better visible now. Especially after registration
(figure 11(b)), the bone appears mostly white. This means that
it is visible in both images (CT and transformed MRI). This
property is most obvious for tissues that appear bright in the
current representation (bone), but it also applies to other tissue
types, as is shown in the following images. The assignment
of intensity ranges (histogram bin mapping) is arbitrary and
typically chosen to match one of the two modalities, in this
case the CT scan.



Fig. 10. CT (cyan) and original MRI (red). (a) unregistered, (b) registered.

Fig. 11. CT (cyan) and transformed MRI (red). (a) unregistered, (b)
registered. White regions indicate matched bone regions expressed similarly
in the CT and the transformed MRI scan.

Figures 12 and 13 were created using thresholding of the
pixels that indicate the highest structural similarity (bone
only). As stated before, not only the pixels with the highest
values (typically bone) can be used for a correspondence
analysis. Other tissue types can be used as well, as shown
in figures 14 and 15 (all tissue types).

The last image in each series (figures 13(b) and 15(b))
shows the largest number of pixels usable for correspondence
analyses. An analysis of the pixel count indicates that the
transformation using transfer functions and histogram permu-
tation increases the number of pixels that can be used for
correspondence analyses, therefore increasing the accuracy
and robustness of the method.

The algorithm can be very efficiently implemented using
look-up tables so that it was possible to run it on a laptop com-
puter. In comparison to other intensity-based techniques for
intermodality registrations that use entropy or MI calculations,
NCC computations are less expensive. The pre-processing
step is also inexpensive and is independent of the alignment
routine. Performance data of the various algorithms is difficult
to compare due to large variations in the implementations
and applications. Therefore, absolute timing measurements
were taken, which may serve as a guideline for similar
implementations.

The computation of the transformation of the original MRI
to its CT-look-alike took approximately 10 milliseconds, and
the alignment algorithm took 3.25 seconds for a single slice
(approx. 6 minutes for a typical data set of 113 slices) on
an IBM R40 Thinkpad with 256MB RAM and 1.4 GHz
PentiumM processor. The graphics card is an ATI Mobility
Radeon with 16MB memory.

VII. SUMMARY AND FUTURE WORK

This paper explained how histogram information of a
grayscale image can be adapted based on another image using
previous knowledge about the bins of the reference image
histogram. By transforming one image into the value range of

Fig. 12. CT and original MRI. (a) unregistered, (b) registered. (Bone only.)

Fig. 13. CT and transformed MRI. (a) unregistered, (b) registered. (Bone
only.) White regions indicate matched bone regions expressed similarly in the
CT and the transformed MRI scan.

the reference image using a non-linear mapping, intramodal
registration techniques, as opposed to computationally more
expensive intermodal techniques, can be used to align the im-
ages. Optimization of a normalized cross-correlation function
(NCC) is an efficient way to implement an intramodal image
registration algorithm.

As a simpler alternative to the NCC method, the correlation
between the images can be carried out by subtracting one
image from the other after applying an affine transforma-
tion. The minimum sum of the differences woudl indicates
optimal correlation. The simplicity of the two steps, affine
transformation and subtraction, make this method very suitable
for an implementation in hardware. Future work will include
an OpenGL-based implementation of these two steps using
GPU programming, where the two images will be loaded into

Fig. 14. CT and original MRI. (a) unregistered, (b) registered. (All tissue
types.)

Fig. 15. CT and transformed MRI. (a) unregistered, (b) registered. (All tissue
types.) White regions indicate matched regions of all tissue types expressed
similarly in the CT and the transformed MRI scan. The right image shows an
almost perfect match (all tissue types).



texture memory, the histogram transformation will be carried
out on one of the images, and then, after applying different
affine transformations, the two images will be subtracted.
Since the graphics processing unit (GPU) can carry out all
of these operations, a significant speed-up in determining
the optimal affine transformation for image registration is
expected.
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