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Abstract—Many methods for classification and gene selection with microarray data have been developed. These methods usually

give a ranking of genes. Evaluating the statistical significance of the gene ranking is important for understanding the results and for

further biological investigations, but this question has not been well addressed for machine learning methods in existing works. Here,

we address this problem by formulating it in the framework of hypothesis testing and propose a solution based on resampling. The

proposed r-test methods convert gene ranking results into position p-values to evaluate the significance of genes. The methods are

tested on three real microarray data sets and three simulation data sets with support vector machines as the method of classification

and gene selection. The obtained position p-values help to determine the number of genes to be selected and enable scientists to

analyze selection results by sophisticated multivariate methods under the same statistical inference paradigm as for simple hypothesis

testing methods.

Index Terms—Significance of gene ranking, gene selection, classification, microarray data analysis.
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1 INTRODUCTION

AN important application of DNA microarray technolo-
gies in functional genomics is to classify samples

according to their gene expression profiles, e.g., to classify
cancer versus normal samples or to classify different types
or subtypes of cancer. Selecting genes that are informative
for the classification is one key issue for understanding the
biology behind the classification and an important step
toward discovering those genes responsible for the distinc-
tion. For this purpose, researchers have applied a number of
test statistics or discriminant criteria to find genes that are
differentially expressed between the investigated classes
[1], [2], [3], [4], [5], [6], [7]. This category of gene selection
methods is usually referred to as the filtering method since
the gene selection step usually plays the role of filtering the
genes before doing classification with some other methods.
Another category of methods is the so-called wrapper
methods, which use the classification performance itself as
the criterion for selecting the genes and genes are usually
selected in a recursive fashion [8], [9], [10], [11], [12]. A
representative method of this category is SVM-RFE based
on support vector machines (SVM), which uses linear SVM
to classify the samples and ranks the contribution of the
genes in the classifier by their squared weights [10].

All these selection methods produce rankings of the

genes. When a test statistic, such as the t-test, F-test, or

bootstrap test, is used as the criterion, the ranking is

attached by p-values derived from the null distribution of

the test statistic, which reflects the probability of a gene

showing the observed difference between the classes simply
due to chance. Such p-values give biologists a clear
understanding of the information that the genes probably
contain. The availability of the p-value makes it possible to
investigate the microarray data under the solid framework
of statistical inference and many theoretical works have
been built based on the extension of the concept of p-value,
such as the false discovery rate (FDR) study [13].

Existing gene selection methods that come with p-values
are of the filtering category and are all univariate methods.
To consider possible combinatorial effects of genes, most
wrapper methods adopt more sophisticated multivariate
machine learning strategies such as SVMs and neural
networks. These have been shown in many experiments
to be more powerful in terms of classification accuracy.
However, for gene selection, the gene rankings produced
with these methods do not come with a measure of
statistical significance. The ranking is only a relative order
of genes according to their relevance to the classifier. There
is no clear evaluation of a gene’s contribution to the
classification. For example, if a gene is ranked 50th
according to its weight in the SVM classifier, it is only
safe to say that this gene is perhaps more informative
than the gene ranked at 51st. However, there is no way to
describe how significant it is and there is no ground to
compare the information it contains with a gene also
ranked as 50th by the same method in another experi-
ment. This nature of relative ranking makes it hard to
interpret and further explore the gene selection results
achieved with such advanced machine learning methods.
For example, it is usually difficult to decide on the proper
number of genes to be selected in a specific study with
such machine learning methods. Most existing works
usually select a subgroup of genes with some heuristi-
cally decided numbers or thresholds [6], [8], [10]. The
advanced estimation techniques, such as FDR, based on
significance measures do not apply for such methods.
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Evaluating the statistical significance of the detected
signal is the central idea in the paradigm of statistical
inference from experimental data. There should be an
equivalent study on those machine-learning-based multi-
variate gene selection methods which produce ranks
according to their own criteria. Strategies such as permuta-
tion can be utilized to assess the significance of the
classification accuracy, but they do not measure the
significance of the selected genes directly. Surprisingly, this
question has not been addressed by the statistics or
bioinformatics community in existing literature. We there-
fore propose that the question be asked in this way: For an
observed ranking of genes by a certain method, what is the
probability that a gene is ranked at or above the observed
position due to chance (by the same method) if the gene is,
in fact, not informative to the classification? (“Being
informative” is in the sense of the criteria defined or
implied by the classification and ranking method. It may
have different meanings for different methods.) We call this
problem the significance of gene ranking or feature ranking.
We raise this problem in this paper and describe our
strategy toward a solution. The problem is discussed in the
context of microarray classification of cancer samples, but
the philosophy and methodology is not restricted to this
scenario.

2 THE SIGNIFICANCE-OF-RANKING PROBLEM

Suppose a microarray data set contains m cases
X ¼ fxi; i ¼ 1; � � � ;mg. Each case is characterized by a
vector of the expression values of n genes
xi ¼ ½xi1; xi2; � � � ; xin�T 2 Rn; i ¼ 1; � � � ;m. Each gene is a
vector of their expression values across the cases gj ¼
½x1j; x2j; � � � ; xmj�T and we denote the set of all genes
a s G ¼ fgj; j ¼ 1; � � � ; ng. E ach c ase ha s a l a be l
yi ¼ f�1; 1g, i ¼ 1; � � � ;m indicating the class it belongs to
among the studied two classes, e.g., normal versus cancer,
or two subtypes of a cancer, etc. Among the n genes, usually
some are informative to the classification and some are not,
but we do not know which genes are informative and which
are not. For the convenience of description, we denote the
set of informative genes as IG and that of the uninformative
genes as UG. To simplify the problem, we assume that

IG \ UG ¼ � and IG [ UG ¼ G: ð1Þ

The goal is to build a classifier that can predict the classes ŷi
of the cases from xi and, at the same time, to identify the
genes that most likely belong to IG. The former task is called
classification and the latter one is called gene selection. In
the current study, we assume that there has already been a
ranking method RM which produces a ranking position for
each gene according to some criterion assessing the gene’s
relevance with the classification:

rj ¼ rank gjj ðxi; yiÞ; i ¼ 1; � � � ;mf g
� �

; j ¼ 1; � � � ; n ð2Þ

and we do not distinguish the specific types of the RM. The
ranking is obtained based on the samples, thus rj is a
random variable. The significance-of-ranking problem is to
calculate the following probability:

pðrjÞ ¼4 P rankðgjÞ � rjjgj 2 UG
� �

; ð3Þ

i.e., given a gene is uninformative to the classification
(according to RM’s criterion), what is the probability that it
is ranked at or above the observed ranking position by the
ranking method? We call this probability the p-value of a
gene’s ranking position or, simply, position p-value.

This significance-of-ranking problem is distinct from
existing statistics for testing differentially expressed genes
in several aspects. It applies to more complicated multi-
variate classification and gene selection methods. Even
when it is applied on gene ranking methods based on
univariate hypothesis tests like t-test, the position p-value is
different with the t-test p-value by definition. The t-test
p-value of a gene is calculated from the expression values of
this gene in the two sample sets by comparing with the
assumed null distribution model when the gene is not
differentially expressed in the two classes. The position
p-value of a single gene, however, is defined on its context,
in the sense that its value depends not only on the
expression of this gene in the samples, but also on other
genes in the same data set. A gene with the same expression
values may have different position p-values in different
data sets. The null distributions of ranks of uninformative
genes are different in different data sets and, therefore, the
foremost challenge for solving the problem is that the null
distribution has to be estimated from the specific data set
under investigation.

3 THE R-TEST SCHEME

The significance-of-ranking problem is formulated as a
hypothesis testing problem. The null hypothesis is that the
gene is not informative or gj 2 UG, the alternative hypoth-
esis is gj 2 IG (the gene is informative) since we have
assumption (1) and the statistic to be used to test the
hypothesis is the ranking position. As in standard hypoth-
esis testing, the key to solving the problem is to obtain the
distribution of the statistic under the null hypothesis, i.e.,
the distribution of the ranks of uninformative genes:

P rjg 2 UGð Þ: ð4Þ

For the extreme case when IG ¼ � (all the genes are
uninformative) and the ranking method is not biased, it is
obvious that the null distribution is uniform. In a real
microarray data set, however, usually some genes are
informative and some are not, thus the uniform null
distribution is not applicable. The null rank distribution in
a practical investigation depends on many factors, includ-
ing the separability of the two classes, the underlying
number of informative genes, the power of the ranking
method, the sample size, etc. The characteristics of these
factors are not well understood in either statistics or biology
and, therefore, we have to estimate an empirical null
distribution from the data set itself.

We propose to tackle this problem in two steps. First, we
identify a set of putative uninformative genes (PUGs) which
are a subset of UG. This is possible in practice because,
although we do not know UG, discovering a number of genes
that are irrelevant to the classification is usually not hard in
most microarray data sets. We denote the identified subset as
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U 0G. The next step is to estimate the null distribution of ranks

with the ranking positions of these PUGs.
From the original data set, we resample L new data sets

and apply the ranking method on each of them, producing,
for each gene L, ranks rlj; l ¼ 1; � � � ; L. In our implementa-

tion, we randomly resample half of the cases in the original

data set each time. Other resampling schemes such as
bootstrapping can also be used to obtain similar results

according to our experiments (data not shown). Since,

usually, the size of UG is much larger than that of IG (i.e.,
most genes are uninformative), if a gene tends to always be

ranked at the bottom in the L rankings, it is very likely that

the gene is an uninformative one. Thus, we define �rj as the

average position of gene j in the L rankings,

�rj ¼
1

L

XL

l¼1

rlj; j ¼ 1; � � � ; n ð5Þ

and select the bottom k genes with the largest �rj as the

PUGs to form U 0G, where k is a preset number. We rewrite

U 0G as U 0kG when we need to emphasize the role of k in this
procedure. We assume that U 0kG is a random sample of UG
and rlj, l ¼ 1; � � � ; L for gj 2 U 0kG is a random sample from the

underlying null distribution of the ranks of uninformative
genes. Thus, we have k � L observations of the null

distribution of ranks from which we estimate the null

distribution using a histogram. More sophisticated non-

parametric methods can be adopted to fit the distribution if

necessary. We denote the estimated null distribution as

P̂ rjg 2 UGð Þ ¼ Phistogramðrljjgj 2 U 0kG Þ: ð6Þ

With this estimated null distribution, the calculation of

the position p-value is straightforward: For gene i with

ranking position ri,

p̂ðriÞ ¼ P̂ ðr � rijg 2 UGÞ ¼ Phistogramðrlj � rijgj 2 U 0kG Þ: ð7Þ

Applying this on all the genes, we convert the ranking list to

a list of position p-values reflecting the significance of the

genes’ being informative to the classification.
This whole procedure for estimating the p-value of a

ranking is illustrated in Fig. 1. We name this scheme the

r-test and call the position p-value thus calculated the r-test

p-value.

4 COMPENSATION FOR BIAS IN THE ESTIMATED

PUGs

One important problem with the r-test scheme is the

selection of the PUGs. Ideally, the ranks used to select

PUGs and the ranks used to estimate null distribution

should be independent. However, this is impractical in that
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Fig. 1. The diagram showing the principle of r-test (pr-test). (a) A number (L) of new data sets is resampled from the original data set. A ranking is
generated for each new data set with the ranking method, resulting in a total of L rankings. (b) The genes are ordered by their average positions of
the L rankings. The horizontal axis is genes by this order and the vertical axis is ranking position in the resample experiments. For each gene, its
ranking positions in the L experiments are drawn in a box plot, with a short dash in the middle showing the median. (c) From the bottom (rightmost) of
the ordered gene list, k genes are selected as putative uninformative genes or PUGs. The box-plots of the ranks of the k PUGs are illustrated in this
enlarged image. The null distribution of ranks of uninformative genes is to be estimated from these ranks. (d) An example null distribution estimated
from PUGs. For each gene on the microarray, its actual ranking is compared with the null distribution to calculate the position p-value of the gene
being noninformative. For mr-test and tr-test, the average position in the L rankings is used in the calculation of the p*-value. In tr-test, the PUGs are
not selected from the bottom of the ranking, but rather from the genes with the largest t-test p-values.



there is actually only one data set available. In our strategy,
the same ranks are used to estimate both PUGs and the
distribution of their ranks. This is an unplanned test in the
sense that the PUGs are defined after the ranks are observed
[14]. The PUGs in U 0kG are not an unbiased estimate of UG. In
the extreme case when k is small, uninformative genes that
are ranked higher are underrepresented and the ranks of
U 0kG might represent only a tail of the ranks of UG on the
right. If this happens, it will cause an overoptimistic
estimation of the r-test p-values and result in more genes
being claimed significant. Therefore, we propose two
modified strategies to compensate for the possible bias.

4.1 Modified r-Test with Average Ranks

In (7), the position p-value is calculated by comparing the
rank ri of gene gi obtained from the whole data set with the
estimated null distribution. Intuitively, when the sample size
is small, one single ranking based on a small sample set can
have a large variance, especially when all or most of the genes
are uninformative. We propose replacing the rank ri by the �ri
defined in (5), i.e., to use the average position of gene gi in the
L resampling experiments as the estimate of the true rank,
and to calculate the position p-value with this estimated rank
rather than the single observation of the rank:

p�ð�riÞ ¼ P̂ �ðr � �rijg 2 UGÞ ¼ Phistogramðrlj � �rijgj 2 U 0kG Þ: ð8Þ

The estimated null distribution is the distribution of single
ranks of putative uninformative genes, but the �ri to be
compared to it is the averaged rank and (8) is no longer a
p-value in the strict sense. Therefore, we name it p*-value
instead and call this modified r-test the mr-test for
convenience. Ideally, if a gene is informative to the
classification and the ranking method can consistently rank
the gene according this information on both the whole data
set and on the resampled subsets, we’ll have

�ri ¼ ri; for gi 2 IG; ð9Þ

in which case the p*-value will be equivalent to the original
r-test p-value for these genes. In practice, when the sample
size is small and the signal in some informative genes are
not so strong, we always have �ri � ri when ri is small;
therefore, the estimated ranks move toward the right on the
rank distribution comparing with the single-run ranks,
which, as an effect, can be a compensation to the bias in the
estimated null distribution. (For the genes ranked in the
lower half of the list, the averaged rank will move leftward,
but these genes are not of interest to us in this study since
we assume only a minority of the genes can be informative.)

4.2 Independent Selection of PUGs

The ultimate reason that may cause biased estimation of the
null distribution is that the PUGs in the above r-test scheme
are estimated from the same ranking information as that
being used for the calculation of the test statistics. A
solution is to select a group of PUGs that are an unbiased
sample from the UG. This is a big challenge because
estimating the rank position distribution of UG is the
question itself.

When the ranking method RM is a multivariate one such
as SVM-based methods, the ranking of the genes will not

directly depend on the differences of single genes between
the classes. We therefore can use a univariate statistic such
as the t-test to select a group of nondifferentially expressed
genes as the PUGs since these genes will have a high
probability of not being informative as they are basically the
same in the two classes. This selection will be less correlated
with the ranking by RM. Applying a threshold � on the
t-test p-value pt, we select the PUG set U 0�G as:

U 0�G ¼
4

gjjgj 2 G; ptðgjÞ � �
� �

ð10Þ

and estimate the null position distribution according the
ranking of the U 0�G genes by RM in the resampled data:

P̂ t rjg 2 UGð Þ ¼ Phistogramðrljjgj 2 U 0
�

GÞ: ð11Þ

The position p*-value of a gene ranked on average at �ri is
calculated as:

p̂�ð�riÞ ¼ P̂ tðr � �rijg 2 UGÞ ¼ Phistogramðrlj � �rijgj 2 U 0�G Þ:
ð12Þ

For the convenience of discussion, we call this strategy the
tr-test and call the primary r-test defined by (7) the pr-test.
We view the pr-test, mr-test, and tr-test as three specific
methods under the general r-test scheme.

It should be noted that if the ranking produced by RM is
highly correlated with t-test ranking, the result of tr-test will
be close to that of the original pr-test. On the other hand,
since insignificant genes evaluated individually may not
necessarily be uninformative when combined with certain
other genes, the PUGs selected by (10) may include
informative genes for RM. Therefore, the estimated null
distribution may bias toward the left end in some situations,
making the results overconservative. However, in the
experiments described below, it is observed that the tr-test
results are not sensitive to changes in the p-value cut-offs
used for selecting PUGs (10), which is an implication that
the method is not very biased.

5 EXPERIMENTS WITH SVM ON REAL AND

SIMULATED DATA

5.1 r-Test with SVM Gene Ranking

Due to the good generalization ability of support vector
machines (SVM) [15], they are regarded as one of the best
multivariate algorithms for classifying microarray data [9],
[10], [16]. In the experiments for r-test in this work, we
adopted linear SVM as the ranking machine RM. The linear
SVM is trained with all genes in the data set, producing the
discriminate function

fðxÞ ¼ w� � xþ b�; ð13Þ

where w� ¼
Pn

i¼1 �
�
i yixi and ��i are the solutions of the

following quadratic programming problem:

Lp ¼
1

2
wk k2�

Xn

i¼1

�iyiðxi �wþ bÞ þ
Xn

i¼1

�i: ð14Þ

Following [10], the contribution of each gene in the classifier
can be evaluated by
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DLp ¼ ð1=2Þ
@2Lp
@w2

i

ðDwiÞ2 ¼ ðwiÞ2 ð15Þ

and, thus, the genes are ranked by ðwiÞ2. There are other
ways of assessing the relative contribution of the genes in a
SVM classifier [17], but, since the scope of this paper is not
to discuss the ranking method, we adopt the ranking
criterion given in (15) here. The ranking only reflects the
relative importance of the genes in the classifier, but cannot
reveal how important each gene is. The r-test converts the
ranking to position p-values (or p*-values) to evaluate the
significance.

5.2 Data Sets

Experiments were done on six microarray data sets: three
real data sets and three simulated data sets. The leukemia
data set [1] contains the expression of 7,129 genes (probe
sets) of 72 cases, 47 of them are of the ALL class and 25 are
of the AML class. The colon cancer data set [18] contains
2,000 genes of 62 cases, among which 40 are from colon
cancers and 22 from normal tissues. These two data sets
have been widely used as benchmark sets in many
methodology studies. Another data set used in this study
is a breast cancer data set [19] containing 12,625 genes
(probe sets) of 85 cases. The data set is used to study the
classification of two subclasses of breast cancer. Forty-two
of the cases are of class 1 and 43 are of class 2.

Simulated data sets were generated to investigate the
properties of the methods in different situations. The first
case is for an extreme situation where none of the genes are
informative. The simulated data set contains 1,000 genes
and 100 cases. The expression values of the genes are
independently generated from normal distributions with
randomized means and variations in a given range. The
100 cases are generated with the same model, but are
assigned arbitrarily to two fake classes (50 cases in each
class). So, the two classes are, in fact, not separable and all
the genes are uninformative. We refer to this data set as the
“fake-class” data set in the following description.

Each of the other two simulated data sets also contains
1,000 genes and 100 cases of two classes (50 cases in each
class). In one data set (we call it “simu-1”), 700 of the genes
follow N(0, 1) for both classes and the 300 genes follow
N(0.25, 1) for class 1 and N(-0.25, 1) for class 2. In the other
data set (we call it “simu-2”), 700 of the genes follow N(0, 1)
for both classes and the 300 genes follow N(0.5, 1) for class 1
and N(-0.5, 1) for class 2. With these two simulated data
sets, we hope to mimic situations where there are weak and
strong classification signals in the data.

All the data sets except simu-1 and simu-2 were
standardized to 0-mean and standard deviation 1 first
across the cases and then across the genes. This is to prevent
possible bias in the ranking affected by the scaling. In
practical investigations, this step might not be needed or
might need to be done in some other way according to the
specific situation of the data and the specific ranking
methods to be adopted.

The six data sets used in our experiments represent
different levels of separability of the investigated classes.
For the leukemia data set, almost perfect classification
accuracy has been achieved [1], [9], [10], so it represents a

relatively easy classification task. For the colon cancer data

set, the samples can still be well separated, but with some

errors [10], [18]. The two subclasses studied in the breast

cancer data set are hardly separable as observed in this data

set, but it is believed that there could be some degree of

separability [20], [21]. The fake-class simulation represents a

situation where the two classes are completely nonsepar-

able and the simu-1 and simu-2 simulation represents an

ideal situation where separation is defined on a subset of

the genes and the uninformative genes are i.i.d. To check

the classification accuracy that can be achieved on these

data sets, we randomly split them into independent training

and test sets and applied linear SVM on them. These

experiments were done 200 times for each data set and the

classification accuracy obtained at different gene selection

levels is summarized in Table 1. It can be seen that the

accuracies are consistent with the reports in the literature

and with the design of the simulations. (Note that the error

rates reported here are independent test results based on

only half of the samples for training, so they are larger than

the cross-validation errors reported elsewhere. The scope of

this paper is not to improve or discuss classification

accuracy.)
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Separability of the Classes of the Six Data Sets



5.3 Number of Significant Genes According to the
mr-Test and tr-Test

We systematically experimented with the SVM-based
pr-test, mr-test, and tr-test methods on the six data sets
and studied the number of genes claimed as significantly
informative with each method at various significant levels.
The results of the pr-test are affected by different choices of
the number k of selected PUGs (data not shown), indicating
that the pr-test can be very biased unless we know the
accurate number of informative genes. Therefore, we focus
on the mr-test and tr-test in the following discussion.

Table 2 shows the number of significant genes according
to the mr-test at different p*-value levels, with different
choices of ks on the six data sets. Comparing with the pr-test
results, the mr-test results are less sensitive to changes in
the number k. This is especially true when there are ideal
classification signals, as in the simu-2 data, where we can
see a more than 10-fold change of k causes only little
variance in the estimated gene numbers. With p*-value
levels from 0.001 to 0.1, the estimated significant gene
numbers are all around the correct number (300). The
claimed significant genes are all those true informative
genes in the model when the estimated genes are less than
300. For the situations where the number of estimated
informative genes is larger than 300, all the true informative
genes are discovered. When the data are less ideal, we see
that the results are stable within a smaller variation of k.
More experiment results with larger variations in the choice
of k are provided in the supplemental material, which can
be found on the Computer Society Digital Library at http://
computer.org/tcbb/archives.htm. From Table 2, it can also
be observed that the number of significant genes is not

directly correlated with the classification accuracy. For
example, the breast cancer data and fake-class data both
look nonseparable according to the classification errors
(Table 1), However, for the breast cancer data, more than
200 genes are identified as significantly informative among
the 12,625 genes (� 1:6%) at the p*-value = 0.01 level, but,
for the fake-class data, this number is only about 0.4 percent
of the 1,000 genes.

Results of the tr-test with different t-test p-value cut-offs
are shown in Table 3. It can be seen that different cut-offs
result in different numbers of PUGs, but the variation in
estimated position p*-values due to PUG number difference
is even smaller than in the mr-test. This implies that the
tr-test results are not biased by the selection of PUGs since,
if the PUG selection was biased, different numbers of PUGs
at t-test p-value cut-offs would have caused different
degrees of bias and the results would have varied greatly.
Comparing between Table 2 and Table 3, as well as the
results in the supplemental material, which can be found on
the Computer Society Digital Library at http://computer.
org/tcbb/archives.htm, we observe that, for the mr-test,
although there is a range of k for each data set in which the
results are not very sensitive to variations of k, this range
can be different with different data sets. On the other hand,
for the tr-test, within the same ranges of cut-off t-test p-
values, results on all the data sets show good consistency
with regard to variations in the cut-off value. This makes
the tr-test more applicable since users do not need to tune
the parameter specifically to each data set.

Comparing the number of genes selected by the tr-test
and mr-test (Table 2 and Table 3), it is obvious that the
tr-test is more stringent and selects much fewer genes than
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the mr-test on the real data sets. The differences are smaller
on the simulated data. Similarly to the results of the mr-test,
almost all the informative genes in simu-2 data can be
recovered at p*-value levels from 0.001 to 0.05 and there are
only a very few false-positive genes (e.g., the 307 genes
selected at p*-value = 0.05 contains all the 300 true-positive
genes and seven false-positive genes). This shows that the
SVM method is good in both sensitivity and specificity in
selecting the true informative genes for such ideal case, and
both of the two r-test methods can detect the correct
number of informative genes at a wide range of significance
levels. For simu-1 data, not all the informative genes can be
recovered in the experiments. This reflects the fact of the
large overlap of the two distributions in this weak model.
Many of original 300 “informative” genes are actually not
statistically significant in the contexts of both univariate
methods and multivariate methods.

For the real data sets, there are no known answers for the
“true” number of informative genes. The mr-test uses the tail
in the ranking list to estimate the null distribution for
assessing the significance of the genes on the top of the list,
therefore there is a higher possibility of the p*-values being
underestimated, although this has been partially compen-
sated by using the average rank positions. Thus, the number
of genes being claimed significant by mr-test might be
overestimated. In this sense, the tr-test scheme provides a
more unbiased estimation of the null distribution, which is
supported by the decreased sensitivity to PUG numbers.
With the tr-test, at the 0.05 p*-value level, we get about
410 significant genes from the 7,129 genes (5.75 percent) in the
leukemia data. On the other two real data sets, the results tend
to be too conservative: about 13 out of 2,000 genes
(0.65 percent) in the colon cancer data and 50 out of
12,625 genes (0.4 percent) in the breast cancer data are
claimed as significant at this level.

It should be noted that the PUGs selected according to
the t-test may contain informative genes for SVM, which
considers the combined effects of genes. This will cause the
number of genes called significant by the tr-test to be
underestimated. This is especially true for data sets in
which the major classification signal exists in the combina-
torial effects of genes instead of differences in single genes.
The correct answer may be somewhere between the two
estimations of the tr-test and mr-test. When the signal is
strong, the two estimations will be close as we see in the
simu-2 data. In practice, one can choose which one to use
according to whether the purpose is to discover more
possibly informative genes or to discover a more manage-
able set of significant genes for follow-up investigations.

6 DISCUSSION

Statistical hypothesis testing is a fundamental framework for
scientific inference from observations. Unfortunately, exist-
ing hypothesis testing methods are not sufficient to handle
high-dimensional multivariate analysis problems arising
from current high-throughput genomic and proteomic
studies. Many new data mining techniques have been
developed both in statistics and in the machine learning
field. These methods are powerful in analyzing complicated
high-dimensional data and helped greatly in functional
genomics and proteomics studies. However, the analysis of
the statistical significance of data mining results has not been
paid enough attention. One reason might be that many
methods are rooted in techniques aimed at solving problems
in engineering and technological applications rather than in
scientific discoveries. As an example, many machine-learn-
ing-based gene selection and classification methods may
achieve very good performance in solving the specific
classification problems, but the results are usually of a
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TABLE 3
The Number of Genes Selected at Various Position p-Value Levels by tr-Test with SVM



“black-box” type and judging the significance of the features
being used for the classification was usually not deemed
important. This fact compromises their further contribution
in helping biologists to understand the mechanisms under-
lying the investigated disease classification.

This paper raises the problem of the significance of gene
rankings in microarray classification study and proposes a
solution strategy called the r-test that converts the ranking
of genes obtained with any method to position p-values
(p*-values) that reflect the significance of the genes being
informative. The concept of this question is important and
the formulation and solution are challenging for several
reasons as addressed in the paper. First of all, the definition
of a gene being informative to the classification may not yet
be completely clear for many classification methods. Even
under the same criterion, there may not be a clear boundary
between informative and uninformative genes. A biological
status may be affected by several genes with different levels
of contribution and it may affect the expression of many
other genes. Differences between individuals and instru-
mental noises may make the genes that have no relation
with the studied biological process show some relevancy in
the limited samples. All these (and other) complexities
make it hard to mathematically model microarray data. We
propose the r-test methods based on intuitive reasoning
under certain assumptions about the nature of the data. As
shown in the experiments, the methods provide reasonable
solutions, but the decision by the mr-test and tr-test method
can be very different for some situations. Theoretically,
rigorous methods are still to be developed.

Under the proposed r-test framework, the key issue is
the choice of putative uninformative genes or PUGs. Since
the null distribution has to be estimated from the data
themselves, avoiding bias in the estimation is the most
challenging task. Besides the methods used by the mr-test
and tr-test, we have also tried several other ways to tackle
the problem, including selecting the PUGs according to the
distribution of the ranks of all genes in the resample
experiments, deciding the number of PUGs recursively
according to the rank with an EM-like strategy, selection of
an independent set of PUGs by fold-change, etc. Different
resampling strategy has also been experimented with.
Among these efforts, the reported mr-test and tr-test give
the most satisfactory results. They both perform perfectly
on ideal simulations. For practical cases, the mr-test has a
tendency to be overoptimistic by claiming more significant
genes and the tr-test has a tendency to be conservative by
approving only a small number of significant genes. Note
that both r-test schemes do not change the ranking itself;
therefore, it is the role of the classification and gene
selection method (the RM) to guarantee that the ranking
itself is reasonable for the biological investigation. The r-test
only helps to decide on the number of genes to be selected
from the list at given significance levels. Since there is
currently no theoretical solution to completely avoid
estimation bias, one can make a choice between mr-test
and tr-test results by balancing between the two opposite
trends of possible biases according to the particular
biological problem at hand.
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