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Abstract—Monitoring of large sites requires coordination between multiple
cameras, which in turn requires methods for relating events between distributed
cameras. This paper tackles the problem of automatic external calibration of
multiple cameras in an extended scene, that is, full recovery of their 3D relative
positions and orientations. Because the cameras are placed far apart, brightness
or proximity constraints cannot be used to match static features, so we instead
apply planar geometric constraints to moving objects tracked throughout the
scene. By robustly matching and fitting tracked objects to a planar model, we align
the scene’s ground plane across multiple views and decompose the planar
alignment matrix to recover the 3D relative camera and ground plane positions.
We demonstrate this technique in both a controlled lab setting where we test the
effects of errors in the intrinsic camera parameters, and in an uncontrolled,
outdoor setting. In the latter, we do not assume synchronized cameras and we
show that enforcing geometric constraints enables us to align the tracking data in
time. In spite of noise in the intrinsic camera parameters and in the image data, the
system successfully transforms multiple views of the scene’s ground plane to an
overhead view and recovers the relative 3D camera and ground plane positions.

Index Terms—video surveillance, multiple views, external camera calibration,
planar motion, tracking.
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1 INTRODUCTION

THIS paper presents a system for automatically building a global,
image-independent framework for modeling the activity in a large
site using video streams from multiple cameras. In a typical
outdoor urban monitoring scenario, multiple objects, such as
people and cars, move independently on a common ground plane.
The ground plane is thus a convenient 3D structure for anchoring a
global coordinate system for activity and scene modeling.
Transforming the activity captured by distributed individual video
cameras from local image plane coordinates to a common
coordinate frame then sets the stage for global analysis of the
activity in a scene.

In a related paper [11], we focused on classifying activities
recorded by a distributed set of sensors by considering patterns of
activity in an image-centered coordinate frame. Here, we focus on
the problem of coordinating the distributed sensors. In particular,
we consider the following question: given a set of cameras viewing
multiple objects moving in a predominantly planar pattern, how
can we track these objects across overlapping camera views and
establish the 3D positions and orientations of the cameras and the
plane of activity, for the ultimate purpose of classifying activities in
a global coordinate frame? Traditionally, the solution would rely
on matching static features in the various camera views, but in
general, finding static feature correspondences between very
different views is hard. To overcome this difficulty, we detect
objects moving simultaneously in cameras with partially over-
lapping views. We then use the object centroids as potential point
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correspondences and apply robust sampling methods to recover
the planar projective transformations (homographies) between
camera pairs. Using multiple camera pairs, we find a unique
solution up to a scale factor for the 3D camera configuration and
ground plane position and orientation.

The primary contribution of this work is to demonstrate that
using a collection of inexpensive video cameras viewing a scene
from unknown locations, it is possible to use only the tracks of
moving objects to discover the full 3D relative positions and
locations of the cameras and the dominant plane of activity in the
scene. This capability is important for a distributed visual
surveillance and monitoring system such as that described by
[5], [11], in which the aims are to record common patterns of
activity, gather statistics on commonly occurring events, detect
unusual events compared to normal activity, detect specific events
or people, all the while coordinating processing in distributed
sensors. To support such processing, we use our computed 3D
scene configuration to transform individual camera events to a
common frame by warping the planar parts of the scene to an
overhead view. This new image can then be used for activity
understanding in metric space: the speeds and relative distances
between objects in different parts of the scene can now be
compared in a planar Euclidean coordinate system, something
which cannot be done in a foreshortened camera view.

A number of authors have used ground plane constraints for
video and surveillance applications involving a single moving
camera. Bradshaw et al. [2] transform planar motion into an aerial
view using known ground plane features and then recover and
predict the planar trajectory of moving objects in the scene. Intille
and Bobick [6] use known measurements of lines on a football field
to transform a video sequence to an overhead view, thus allowing
them to track football players in the coordinate system of the field
rather than image coordinates. Other examples of using planar
constraints to recover structure and motion from a single moving
camera are found in [8] and [12]. Our system differs by using
multiple cameras to obtain an aerial view without depending on
known landmarks or manual registration. The synthesized over-
head view may be used for registration with aerial photographs or
site maps.

1.1 Overview of the Paper

Section 2 is a general overview of our approach to recovering the
3D configuration of multiple cameras using tracking data from
each camera’s video stream. Section 3 reviews the mathematical
background to our approach. We describe the details of our
working system in Section 4. We then present experimental results
for both laboratory scenes and challenging outdoor scenes.
Section 5.1 shows laboratory experiments on homography estima-
tion and Section 5.2 demonstrates how the system is used to track
objects (cars, people) over multiple views.

There are some important practical issues that we address. Our
ultimate intent is to use a large number of camera surveillance
units. To that end, we would like to use off-the-shelf, mass
produced components without having to laboriously calibrate each
unit. Instead, we use the specifications given by the camera
manufacturers.

In reality, an individual camera will not precisely match the
given specifications due to errors in the manufacturing process.
More importantly, these manufacturing errors will vary from one
camera to another. In Section 5.3, we test whether the recovery of
3D camera position and orientation is robust to these errors. We
find that variability in the error of the intrinsic parameters has a
higher impact than the error itself. Fortunately, the camera
manufacturing errors in standard cameras are never large enough
to significantly affect the 3D recovery.



Finally, Section 5.4 demonstrates the system in its entirety on an
outdoor scene viewed from three stationary cameras. In this
situation, many of our theoretical assumptions do not hold in
practice: the ground is not perfectly planar, the centroids of objects
in multiple images do not correspond to exactly the same point in
space, and the cameras are not perfectly calibrated. In spite of these
difficulties, we find that good structure and motion estimates can
be obtained. The recovered estimates of relative camera and plane
position are illustrated in this section.

2 OVERVIEW OF OUR METHOD

Our system assumes the following input:

e video sequences from several fixed cameras at unknown
positions and orientations, and approximate values of
intrinsic camera parameters,

and produces the following output:

e 3D positions and orientations of cameras and the ground
plane in a global reference frame, up to scale,

e alignment of the multiple cameras views into a single
planar coordinate frame, either the image plane of one of
the cameras, or an overhead view,

e unique global identifiers for all objects moving in the
scene.

The complete system has four principal steps for taking raw

individual video streams and building a global representation of
the scene:

1. Activity Tracking. Track moving objects in each video
camera and record image locations of their centroids.

2. Ground Plane Alignment. Robust recovery of homogra-
phies between camera pairs with respect to the common
plane containing the scene motion, typically the ground
plane.

3. Plane and Camera Structure. Three-dimensional recovery
of the unique camera and ground plane locations.

4. Overhead View Recovery. Transformation of image data
from multiple camera-dependent coordinate frames into a
single 2D Euclidean coordinate frame.

The first step is performed using the tracking technique
described in [10]. This paper presents steps 2, 3, and 4. We now
describe the general ideas behind the methods, while a more
detailed system description is given in Section 4.

2.1 Ground Plane Alignment

The geometry of multiple views is well-understood. For two views
there exist geometric constraints that relate corresponding points
in the two views to the 3D camera geometry. For a set of 3D points
in general position, these take the form of the epipolar constraints.
For a set of coplanar points, the constraints take the form of a
homography. As originally shown by Tsai and Huang [13], the
homography can be decomposed into the 3D relative positions and
orientations of the two cameras and the scene plane, and these may
be recovered up to a two-way ambiguity. Given a third image of
the coplanar points, the positions and orientations of the cameras
and plane may be uniquely determined.

The remaining hard problem is how to find corresponding
points across multiple views. The views of the scene from the
various cameras might be very different, so we cannot base the
decision solely on the color or shape of objects in the scene. Fig. 1
shows two views of a parking lot. One image was taken from
inside a building through tinted glass. The other image was taken
from an open air parking garage located at the opposite side of the
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Fig. 1. (a), (b) Two views of a scene from different locations together with the
tracks of cars and people over a six minute period.

intersection using a different make of camera with different
geometric and photometric properties.

The scene in Fig. 1 has a dominant plane, the ground plane,
with many nonplanar structures; thus, we might consider using
the methods of Irani et al. for robust alignment of dominant planar
patches [7]. However, these methods are based on spatio-temporal
image gradients and, hence, require the matching image points to
be close enough so that gradient based techniques using constant
brightness constraints can be used.

Both Cham and Cipolla [3] and Zoghlami et al. [16] use feature-
based approaches to fit planar models to images taken from the
same location but with large changes in orientation and/or
intrinsic parameters. The former use a coarse-to-fine search
technique, and the latter exhaustively search all possible feature
correspondences in an image pair to determine the correct
homography for aligning the two views. While in their cases, a
homography is the correct model for all image points, in our case,
the camera locations are often far apart (Fig. 1) and the scene is not
planar, so most static features are simply not coplanar and, hence,
should not be fit to a homography. For these reasons, we do not
use static features to align images.

On the other hand, we have a rich set of additional information:
the positions of moving objects tracked over time in multiple
images. We use the image centroids of tracked objects as features
for fitting the planar model. Objects whose tracks move simulta-
neously in two camera views are likely to correspond to the same
3D object. The correspondence problem is now easier because there
are often far fewer moving objects than there are static scene
features, and there are only several possible point pairings per
frame. In addition, there are many frames available to provide data
for fitting the homography. Using robust sampling methods, we
find a subset of tracked image centroids between two images that
best fits the homography that brings into alignment two views of
the ground plane. Of course, in a scene with dense crowds of
moving people, we would again be faced with the traditional
correspondence problem; fortunately, even in busy urban inter-
sections, we are able to track individually moving objects and
obtain reliable data during periods of lower density traffic. For the
motion of crowds and dense masses, the problem of tracking
individual objects is still an open research problem.

Note that the centroids of most 3D objects being tracked, e.g.,
people, cyclists, and cars, lie on a plane about one meter above the
ground, and that the tracked image centroids are not necessarily
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images of precisely the same 3D point in the scene. However, in
practice the computed homography still very nearly aligns the
scene’s ground plane in two images (see Fig. 4). Since our method
registers the dominant plane in the two views, the gradient-based
algorithm of [7] may now be applied, and we have obtained
improvements to the plane alignment by adding this as a final step.

Our work is related to the work of Azarbayejani and Pentland
[1] who track blobs (two hands and a face) in two views of an
indoor environment and derive the epipolar geometry. They
leverage the fact that the three moving body parts can be uniquely
identified, and in addition they start with an initial guess for the
relative camera positions.

2.2 Plane and Camera Structure Recovery

Now suppose three cameras have overlapping fields of view. We
choose one camera to be the reference camera and compute the
homographies aligning its view of the ground plane with each of
the other two views. For each homography, it is known that the 3D
camera and plane configuration may be recovered up to a two-fold
ambiguity, and that the third camera resolves the ambiguity. The
mathematical foundations of planar structure and motion recovery
from image point correspondences were initially presented by
Tsai et al. [14] and further developed by Weng et al. [15]. They
demonstrate for a given camera pair the existence of two possible
solutions, one true and one false, for the relative 3D camera and
plane locations. They then discuss the theoretical existence of a
unique, closed-form solution given three views of the plane. These
key mathematical results are presented in Section 3 using the
notation of Faugeras [4].

In theory, the unique 3D solution is found by observing that the
false solutions from two camera pairs generally disagree, while
their true solutions agree. In practice, noisy data prevent these
“true” solutions from agreeing precisely, but they can still serve to
prune out the false solutions. This holds in our experimental
setting: Multiple camera pairs with overlapping views provide
different 3D solutions, but by favoring consistency between the
ground plane normals recovered from each camera pair, we

automatically eliminate false solutions.

2.3 Determining the Overhead View

Given the 3D position and orientation of the ground plane in the
coordinate frame of one of the cameras, we can construct
homographies that map the image planes from each camera into
a common 2D Euclidean coordinate system embedded in the
global 3D coordinate system. Now, planar activity observed from
multiple video streams can be merged and globally analyzed.

3 MATHEMATICAL BACKGROUND

We represent points as members of projective spaces using
homogeneous coordinates. An image point x = (z,y,1) is an
element of the projective space IP? and a scene point X =
(X,Y,Z,1) is an element of the projective space IP?, where =
denotes equality up to a scale factor.

It is known that when a set of 3D points are coplanar, their
images under two perspective projections are related by a planar
projective transformation or homography, i.e., for all scene points
X lying on the plane II,

X9 = HX17 (1)

where x; and x, are the two images of X, and H is the 3 x 3
homography matrix.

The homography H may be expressed up to a scale factor in
terms of the cameras’ internal parameter matrices, the parameters
of the plane IT and the cameras’ relative positions and orientations.
Let M; and M, be the internal camera matrices of camera 1 and
camera 2. Let (f,d) be the parameters of IT in the coordinate
frame of camera 1, i.e., X'n = d for all points X € II. Following the
convention in [4], express (R, t), the 3D rotation and translation of
camera 1 with respect to camera 2, in the coordinate frame of
camera 2. Tsai et al. showed in [14] that the homography H may be
decomposed as

H =~ M,(dR + tal )M . 2)

Furthermore, they showed that given H, M;, and My, in general it
is possible to recover two physically plausible solutions for
(R,t,n,d), up to a scale factor. Finally, they showed in [13] that
three cameras can serve to disambiguate the two solutions: given
the two homographies that align a scene plane between a reference
image and two other images, there is a unique solution for the
relative positions and orientations of all three cameras and the
scene plane.

4 THE SYSTEM IN DETAIL

4.1 Tracking and Prefiltering

Our system tracks moving objects in multiple cameras using the
tracking system developed by Stauffer in [10]. Since we are dealing
with static cameras under real world lighting conditions, the
program uses adaptive background subtraction to detect moving
foreground objects. For each camera, the tracking system is run on
a separate processor and delivers a low-level description of each
object tracked over multiple frames until it disappears from that
camera’s view. Each tracked object is given a unique identifier.

For homography estimation, spurious foreground motion is
filtered out by discarding objects that disappear after only a few
frames and objects that do not move a minimum distance in the
image. This removes distracting motion such as trees blowing in
the wind. For each salient tracked object, only its centroid in the
image and a time stamp generated from the computer clock for the
frame in which it was detected are used for homography
estimation.

4.2 Homography Estimation

The input to the homography estimation is two lists, {(x,¢)} and
{(x/,t)}, from cameras 1 and 2, respectively. At each time step,
every moving object in a camera contributes an entry to a list: the
image coordinates x of the object’s image centroid and the time
stamp ¢ of that frame. Each list is sorted by time.

Let us first assume that we know the offset between computer
clocks and hence the time stamps from the two tracking sequences
and that we have compensated for this offset. We create a list of all
possible point pairings for which |t —t'| < t., where ¢, is a small
time window, typically the frame processing time of the slower
computer. We now have M pairs of possibly corresponding image
points: {(x;, x’,)}f‘il Of course, we will also have generated many
false pairs. For example, if we have two moving objects in each

1. The matrix of intrinsic parameters for camera ¢ is of the form

i 0w
M;=|0 fz Vi
0 0 1
principal point. All intrinsic parameters are taken from the camera

where f; is the focal length and (u;,v;) is the

manufacturer specifications.



scene at a given time instant, we will have four pairs when only a
maximum of two pairs can be correct.

Most of the objects in the scene are moving on the ground plane
and, therefore, a homography from the coordinates in image 1 to
image 2 is a good model. We now proceed with the least median of
squares (LMS) algorithm for homography estimation:

1. From the M possible pairs, randomly pick NV pairs (we use

N =4), {(xj,x;)}?;l, and use these to find a homography
matrix H from image 1 to image 2 by computing

. N
H =" IV (Hx,) - V)|
j=1

where A is the normalization operator forcing the third
homogeneous coordinate to 1.

2. For each of the M pairs (x;,x}), use the homography H
from step 1 to project the point x; from image 1 to the
pointAI:Ix,ﬂ, in image 2. The error for a single pair is
IV (Eix,) — M () |1

3.  From the M error terms computed in step 2, we find the
lowest 20 percent of the errors and pick the largest of these
to be the “LMS score” for this test. We choose 20 percent as
a threshold because we expect less than half of the possible
point pairings to be correct. (A typical least median of
squares method would use a threshold of 50 percent.)

4. Repeat steps 1 to 3 K times, saving the random choice of N
pairs and the corresponding homography that give the
lowest LMS score.

5. After K tests, we conclude that the choice of H that gave
the lowest LMS score was computed from a set of NV
correct and nondegenerate point pairings. We also assume
that the 20 percent of the points that gave the smallest error
for this choice are likely to be correct point pairings. We
now recompute the homography as in step 1, but using all
of the top 20 percent point pairs. The resulting homo-
graphy gives us the ground plane alignment between the
two images.

4.3 Why Silhouette Centroids?

The recovery of the ground plane homography requires solving the
point correspondence problem between two views of points on the
plane. Ideally, we would like to obtain points that lie directly on the
ground plane, such as the points of contact between the moving
objects and the ground. However, the centroids of silhouettes are
often more stable and more robust to potential errors in the
segmentation of the moving objects than are the lowest points of the
object silhouette. In addition, use of the lowest point requires an
assumption about the rough orientation of the cameras with respect
to the ground, while using the centroid does not.

One potential problem with using image centroids of tracked
objects is that they usually correspond to 3D points slightly above
the scene’s ground plane. Moreover, they do not correspond to
precisely the same 3D scene point. We have performed simulations
to measure this discrepancy for the silhouette centroids of simple
object shapes, e.g., ellipsoids and Ls. We make the assumption that
the distance between the camera and the object is large compared
to the size of the object, and then measure the distances between
the optical rays through the image centroids from many different
views. Our results show that the error is less than 10 percent of the
length of the 3D object. Thus, for an object whose image covers
roughly 10 x 10 pixels, the error in the image of its centroid is
about one pixel, which is negligible compared to potential
segmentation errors. In urban scene monitoring, the distance from
the camera to the ground plane is indeed very large compared to
the mean and variance of the heights of moving objects, so the
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Fig. 2. Least median of squares score for different time stamp offsets.

object height differences do not greatly affect the ground plane
alignment.

We have found that the estimate of the ground plane
homography using tracked points very nearly registers the two
views of the ground plane on outdoor video sequences (Fig. 4b).
Furthermore, our registration permits the subsequent application
of gradient-based planar alignment such as that of Irani et al. [7] to
correct for slight misalignments due to using the image centroids.
Fig. 4c shows the improvements we obtained by using this method
as a refinement step.

4.4 Time Calibration

Until now, we have assumed that the offset of the time stamps is
known. Let us first observe that if the time offset between two
video streams is incorrect, then in general the recovered set of
“matched” point pairs should no longer obey the homography
constraint because no pair of points actually corresponds to the
same 3D scene point. The scene objects have moved between the
two views, so when we apply the robust homography estimation
algorithm, we do not get a low LMS score. This observation is true
in practice and provides us with a method for determining the
correct time offset between two video streams. We perform a one-
dimensional search for the time offset that gives us the lowest LMS
score. Since the trough is very narrow (see Fig. 2) this search
requires testing at every 1 second interval. See Section 5.1 for more
details on the experimental results of time calibration.

There are clearly some motion patterns that will defeat this
method. For example, if the 3D objects move on two straight lines
at constant velocities, then a low LMS score may still be found for
incorrect time offsets. This situation rarely occurs in practice since
even traffic down a straight road is not always moving at a
constant velocity.

4.5 Three-Dimensional Recovery of Cameras
and Ground Plane

Now let us assume that we have three cameras with optical centers
C1, Cy, and C3 and internal camera matrices M;, M,, and M3. We
choose camera 2 to be the base camera. Let Hy; and Hs; be
homographies from image 2 to image 1 and from image 2 to
image 3 that align the scene’s ground plane, computed using the
technique in Section 4.2. Recall from (2) in Section 3 that each
homography can be decomposed in terms of the parameters of the
ground plane (n,d) and the internal parameters of the two
cameras:
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Hy = M, (dR, + t;a”)M;?
H23 = M3 ((le + tgflT)Mgl,

where (Ry,t;) denotes the 3D rotation and translation from
camera 1 to camera 2, and (Rj,t3) the 3D transformation from
camera 3 to camera 2.

For each camera pair, there are two solutions for the rotation,
translation, and ground plane normal, one illusive solution and
one true solution. In theory, a third camera yields a unique
solution for the plane parameters (1, d), since the two camera pairs
will have different illusive solutions but the same true solution. In
practice, the image data is imperfect so no single solution will
satisfy both equations exactly. However, even in the presence of
noise, the three cameras can still disambiguate between the two
solutions recovered from each pair of cameras. As discussed in [15]
and verified in our experiments, there is a particular solution from
the first camera pair that is closest to a particular solution from the
second camera pair in terms of the angle of the ground plane
normal, while the other pairings involving the illusive solutions
are significantly farther apart. These nearby solutions are estimates
of the true solution and are used to determine a single solution.

Let (Ry,t1,14,d;) be the camera and plane solutions recovered
from the first camera pair (camera 2 and camera 1), and let
(Rgs, t3, 03, d3) be the solutions found using the second camera pair
(camera 2 and camera 3). We prefer not to simply average these
solutions, but to assume that one camera pair’s solution is more
accurate than the other, due to better point matches and/or a
wider camera base line. Instead, we choose the ground plane
solution that best agrees with the other camera pair’s ground plane
alignment. The normal recovered from one pair is used to
reconstruct the homography estimated for the second camera pair
and vice versa. Let A3 be the homography from image 2 to image 3
reconstructed using (Rg, t3,n1,ds) and let Ay, be the homography
from image 2 to image 1 reconstructed using (R, t1, 103, d):

AQg >~ M3 (d3R3 + tgfl?)M;l
Ay = M, (diRy + ti0] )M,

We define an error measure on these reconstructed homographies
that measures the sum of squared distances between image points
projected using each homography: e = 3 |[|[Hax — Ay x||* and
€3 =, |[Hax — A23x|\2, where x ranges over all pixels in
image 2. The ground plane normal and distance from the camera
pair with the smallest error are chosen as the unique solution for
(71, d). Section 5.4 presents the results of recovering the 3D camera
and ground plane positions and orientations from multiple views
of activity in an outdoor scene.

4.6 Transformation to Overhead View

Finally, we would like to transform the ground plane points from
all three images into a single 2D Euclidean coordinate system. In
other words, we would like to find a homography for each camera
that maps its image of the ground plane to an image from a virtual
overhead camera.

We focus on finding G, the homography from the second
camera’s image plane to the overhead view. The homographies G
and Gg, from cameras 1 and 3 to the overhead view, may then be
formed by simply composing the image to image homographies
with Go: G| =2 GoHy» and G3; = GyHj3,, where Hyy & H;ll and
Hj, >~ H.

We define the homography G in terms of the recovered plane
parameters (1, d) using (2). Using this decomposition, G, can be
thought of as the image transformation of scene points lying in the
ground plane when a virtual rotation and translation are applied to
camera 2.

Fig. 3 illustrates the virtual rotation and translation of camera 2
to a virtual camera with center C,, that gives an “aerial view” of the

Fig. 3. Rotation and translation of a virtual overhead camera centered at C, to
align the image plane of the camera centered at C, with the ground plane and
recover the corresponding homography G,.

scene. The ground plane parameters (n,d) are expressed in the
coordinate frame with origin C5, and the rotation and translation of
camera 2 relative to the virtual camera, (R,,t,), are expressed in
the coordinate frame with origin C,. In order to center the image
from the virtual camera on the image data viewed by camera 2, we
have chosen its origin to lie directly above the point on the ground
plane that is intersected by the optical axis of camera 2. We have
also chosen the height c of the virtual camera center, C,, from the
ground plane to be equal to the distance from C5 to the ground
plane along the optical axis. Fixing these parameters simply
amounts to choosing a translation and scaling within the image
plane of the overhead view.

To derive (R,,t,) in terms of the ground plane parameters in
3D Euclidean space, let z = (0,0, 1)” be the optical axis of camera 2,
and assume the orientation of the ground plane normal is
“downward.” The rotation from n to 2 is a rotation about the axis
w =1 x # with a rotation angle of § = cos™! (7). The resulting
rotation matrix is R, = elx?, where [w], is the antisymmetric
matrix such that for any vector v, [w], v = w x v [9]. Note that this
3D rotation implicitly chooses a 2D rotation within the image plane
of the virtual camera.

The virtual translation t, as expressed in the coordinate frame
of camera 2 is (i —z). We rotate this vector into the coordinate
frame of the virtual camera and scale it by the desired height c to
obtain t, = ¢R, (i — 2).

The homography from camera 2 to the aerial view image can
then be written as

Gy = My(dR, + t,a")M; L.

Finally, the homographies G; and Gj are constructed from G,
and all three homographies are used to warp images taken from
the cameras into a common overhead view. Sections 5.3 and 5.4
present results of these overhead warps on image streams taken in
both laboratory and outdoor settings.

5 EXPERIMENTS

5.1 Homography Estimation: Outdoor Experiments
Figs. 1a and 1b show two views of a parking lot together with
image centroids of all moving objects tracked over a period of six
minutes. The tracks in Fig. 1b appear more solid because the
camera was connected to a faster computer giving a higher frame
rate and, hence, more closely spaced image centroids. For these
data sets, M ~ 1300 possible point pairs were found using the
filtering technique described in Section 4.2.

The data in Fig. 1a was captured live. For technical reasons, the
data in Fig. 1b was captured on a video camera and brought back



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO. 8, AUGUST 2000

(d)

Fig. 4. Homography estimation and ground plane alignment. (a) Fig. 1a warped
towards Fig. 1b. (b) through (d) Edge maps for Fig. 1a warped to Fig. 1b using
various alignment methods and overlaid upon it. (b) Homography determined only
from tracking data. (c) Refined homography computed from gradient-based
alignment. (d) Homography found using manual correspondences, shown for
comparison.

to the lab for processing. The time stamp offset was, therefore,
about 34.5 minutes and the search algorithm is initialized at this
offset value. In general, the search algorithm is initialized to a zero
time stamp offset, under the assumption that the computers’ clocks
are correct to within a few seconds. Using the search algorithm, the
time stamp offset was found to be 2,082.9 secs (34.715 min). Fig. 2
shows the 20 percent LMS score for different time offsets. In all but
one case, the LMS algorithm found the best score in under

Fig. 5. Input views and tracking data from three cameras.

1,000 trials. In one case (offset = 2,083.2 secs), 1,611 trials were
required. The best score for 1,000 trials for this case is marked by a
+. The dot-dashed line shows a similar plot for the next six minute
block of tracking data from the two cameras.

Fig. 4a shows the image from Fig. la warped to the view in
Fig. 1b using the homography obtained from the tracking data
using the algorithm in Section 4.2. The results look qualitatively
correct. In order to highlight the differences, Fig. 4b shows the
edges from Fig. 4a overlaid onto Fig. 1b. The images are now
registered well enough to refine the homography using the
gradient-based planar registration of [7] (Fig. 4c). The refined
alignment compares favorably with that which is achieved using
manually selected feature points (Fig. 4d).

5.2 Combining Tracks from Multiple Views

After we have found the correspondences of the tracked data
between multiple views, we can track objects as they move from
one camera view to the next. Given the three sets of tracking data
in Fig. 5, we can align all three images using the estimated ground
plane homography. Fig. 6 shows some examples of tracks over
multiple views that the program has determined as belonging to
the same object. Fig. 6¢ shows an example of an error where two
cars were traveling close together (about two car lengths apart) and
were assigned the same unique identifier. We have chosen to align
the three views with the viewpoint of the middle camera because it
gives a clear view of the scene.

5.3 Camera and Plane Recovery: Laboratory Experiments

This section describes experiments to determine how manufactur-
ing errors in the camera’s internal camera parameter specifications
affect the estimation of the ground plane homography and its 3D
orientation. A single camera was mounted on the rotating arm of a
motion stage (Fig. 7). A planar checker board pattern was placed in
the camera view close to the axis of rotation of the motion stage.
Fig. 8 shows two images from the sequence used for the
experiments. The images were taken at 5° intervals. These images
show the effects of perspective foreshortening. We chose three
points known to form a 90° angle on the checker board. This angle,
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Fig. 6. Examples of tracks across multiple views being identified as a single object.
(a) A car enters at the the top left and exits at the bottom right. (b) A car pulls out of
a parking spot in the center of the image and exits top left. (c) An example of an
error: two vehicles traveling close together (about two cars lengths apart) were
assigned the same unique identifier.

when measured in the image in Fig. 8a is 80° and when measured
in Fig. 8b is 76°.

Six corresponding coplanar points were selected in the two
views. Using these points, we computed the least squares solution
to the homography between the images. Using the procedure
described in Section 4.5, the camera motion and plane normal were
computed using the internal camera parameters given in the
camera manual (lens focal length = 8mm, CCD diagonal = £"').

Checker Board Pattern

Motion Stage

Fig. 7. Diagram of the lab setup. The camera is mounted on the rotating arm of a
motion stage. The axis of rotation is parallel to the camera’s Y axis.

After computing the plane normal, a homography can be
computed which transforms each image to a perpendicular view.
The result of warping Fig. 8b is shown in Fig. 8c. This warp has
removed the foreshortening effects of the perspective projection
and the angles are now square (90.1°).

We now explore the effects of error in the internal camera
parameters specified by the manufacturers. In particular, we focus
on errors in focal length and principal point. It is important to
distinguish between the following two cases: 1) all the cameras are
identical, but there is an error in the common focal length and
principal point, as in the case of a single moving camera and

(©)

Fig. 8. (a), (b) Two images of a checker board pattern. The camera has rotated 5°
between images. The cameras’ optical axes are at angles of 25° and 30° relative to
the plane normal in (a) and (b), respectively. The six points marked with white
squares (three solid, three not solid), were used to compute the homography. The
three solid squares were used to measure the right angle. (c) Image (b) warped to
an overhead view. Note that now the angles of the checker board pattern are
rectified to 90°.



8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO. 8, AUGUST 2000

Effect of focal length error on the rotation estimate
T T T T

o

»~ o
> o o >
y
¥
/
H H H H

Estimated rotation (degrees)
N ; ¢
B

©

Cameras the same
Cameras different

1 1

)

e = 3 ;
Percent error in focal length

(@)

Effect of focal length error on right angle estimate

Pt - > s A . 1

g . : N

5 -

iﬂ';’imf > \\——71 \\ B

@ 2 : \

2 - L

Seol e V]

£ - |

5 ] \

e \

Besk i

© \

E i

ﬁ \

Wl |
—— Cameras the same | i
--- Cameras different

-2 o 2
Percent error in focal length

(b)
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Fig. 9. Effect of errors in focal length parameter on (a) the estimates of the rotation
angle (ground truth is 5°) and (b) the estimate of the right angle of the checker
board. Effect of errors in the principal point on (c) the rotation estimate and (d) the
right angle on the checkerboard pattern.

2) there are small variations between the cameras due to the
manufacturing process. In off-the-shelf, inexpensive cameras and
lenses we can expect to find a variation in focal length of
5-10 percent and a variation in principal point of up to 10 pixels.

In this experiment, we have a single camera, but we have

9th Floor Camera [0}

7th Lo Cameras” 6] D

9¢8

2nd Floor

Ground Level

P

S
Parking Lot
(Line of Cars)
(Not to Scale)

Fig. 10. Diagram of the camera setup for the outdoor experiment (see text).

simulated the effects of variation among different cameras by
changing the parameters in only one of the camera matrices.

Fig. 9a shows the effects of changing the focal length in one or
both of the camera matrices on the estimated camera rotation. As
we can see, the effect of changing the focal length in only one
camera is significantly larger. This pattern repeats itself when we
look at the effects of focal length on the estimate of the right angles
on the checker board and when we look at the effects of errors in
the location of the principal point.

We can conclude that variations in internal camera parameters
among the cameras, and in particular the principal point, can have
a potentially significant impact on the accuracy of the results.
Fortunately, even with an error in the principal point of +10 pixels,
which is typical for standard cameras, the effect on recovery of the
plane normal is less than 10°.

(©)

Fig. 11. Example snapshots from three cameras viewing an outdoor scene with 10
minutes of tracking data (right). Moving cars and pedestrians are highlighted with
boxes. (a) Camera 1, (b) camera 2, and (c) camera 3.
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(b)

Fig. 12. (a) Lattice of measured distances when viewed in the input image. Note
how the four marked line segments appear to be the same length in the image
frame while their real lengths vary significantly. (b) Lattice of measured distances
in the mosaic image warped to an overhead view. The ground plane is aligned
across the three images.

5.4 Camera and Plane Recovery: Outdoor Experiments
The full system has been tested on video streams captured from three
cameras placed at the windows of different rooms in an office
building and viewing a busy parking lot. Cameras 1 and 3 are located
on the seventh floor of the building in opposite corners of one face,
and camera 2 is located on the ninth floor of the building in the center
of the same face (Fig. 10). The cameras form an approximately
isosceles triangle with a base of 57.4’ and height of 21.6'. The base of
the triangle is located 114.6’ above the ground plane. Fig. 11 shows a
snapshot from each camera. The line of parked cars in Fig. 1lc
corresponds to the parking lot labeled in Fig. 10. Note that multiple
cars and people are moving within each frame.

All three cameras are similar Phillips camera modules with "
CCDs. Cameras 2 and 3 have 4.8mm lenses. Camera 1 has an
8.5mm lens. Nominal focal lengths were computed using these
specifications. The principal point is taken to be the center of the
image. No internal camera calibration is performed.
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Overhead View of Reconstructed Camera and Ground Point Locations
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Fig. 13. (a) Overhead view of the reconstructed camera locations and lattice of
measured points. (b) Three-dimensional view of the reconstructed camera
locations and lattice of measured points.

The tracking algorithm tracks all moving objects in the video
streams from each camera for a period of 10 minutes; the resulting
tracks left by their image centroids are shown in Fig. 11. Using our
robust homography estimation on the tracked centroids, the
system finds homographies from camera 2, the reference camera,
to each of camera 1 and camera 3. These homographies are then
decomposed as described in Section 3 and the 3D camera and
plane positions and orientations are recovered.

To evaluate the success of the ground plane recovery, 14 points
in the scene’s ground plane were chosen and the actual Euclidean
distances between them were measured outdoors. Fig. 12a displays
the chosen points and measured segments in the image plane of
camera 2. Several of the measured distances are labeled. Note that
there is a significant foreshortening effect in the input images.
Fig. 12b shows the effect of warping these points with the same
ground plane homography used to warp the images. The
foreshortening effects are drastically reduced and the new
distances between points are now nearly proportional to the true
distances in the Euclidean plane. The mean error of the propor-
tions of the distances in the warped images is 10 percent, while the
mean error in the unwarped images is 32 percent.
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To display the results of the 3D recovery, Fig. 13 shows a sparse
3D reconstruction of the camera locations, ground plane, and
measured points and distances in the ground plane. Fig. 13a
displays an overhead view of the 3D model, showing that the three
recovered cameras lie along a line where we expect the side of the
building to stand (see Fig. 10). Fig. 13b shows a 3D view of the
same model: the relative heights of the cameras are also roughly
consistent with their known physical locations: the actual height
ratios are 0.8:1.0:0.8 and the reconstructed height ratios are
0.9:1.0:0.6.

The system correctly recovers the general locations and
orientations of the cameras using only the tracking data. We
believe these results can be further improved by a more general
placement of scene cameras. Note that due to infrastructural
reasons, all cameras in these experiments are positioned to one
side of the activity plane. Using more cameras placed in general
position throughout the active areas of the scene should yield more
robust 3D reconstructions.

6 CONCLUSIONS

This paper demonstrates a way to coordinate the monitoring of
activities across multiple sensors. The next step is to improve its
robustness by using a more general distribution and a larger
number of cameras throughout the scene. In particular, we may
want to use the recovered 3D camera positions to automatically
decide which camera pairs have narrow or wide baselines and
then use that information to improve the 3D camera and ground
plane recovery. Camera pairs with narrow base lines are typically
sensitive to error, while camera pairs with wide base lines are
likely to offer more stable and accurate 3D solutions.

To summarize, we have presented an unsupervised method for
coordinating the activities detected in a distributed, uncalibrated,
set of cameras into a single global coordinate frame. The method
uses tracking data from moving objects to solve the correspon-
dence problem between cameras. The system allows multiple
views to be coordinated to a single view or to a global, ground
plane view. This stage is an essential first step for systems that
classify activities in extended sites based on learned patterns of
common occurrences recorded from distributed sensors [11], [5].
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