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Abstract

We introduce a novel application of Support Vector Ma-
chines (SVMs) to the problem of identifying potential su-
pernovae using photometric and geometric features com-
puted from astronomical imagery. The challenges of this
supervised learning application are significant: 1) noisy
and corrupt imagery resulting in high levels of feature un-
certainty, 2) features with heavy-tailed, peaked distribu-
tions, 3) extremely imbalanced and overlapping positive
and negative data sets, and 4) the need to reach high posi-
tive classification rates, i.e. to find all potential supernovae,
while reducing the burdensome workload of manually ex-
amining false positives. High accuracy is achieved via a
sign-preserving, shifted log transform applied to features
with peaked, heavy-tailed distributions. The imbalanced
data problem is handled by oversampling positive exam-
ples, selectively sampling misclassified negative examples,
and iteratively training multiple SVMs for improved super-
nova recognition on unseen test data. We present cross-
validation results and demonstrate the impact on a large-
scale supernova survey that currently uses the SVM deci-
sion value to rank-order 600,000 potential supernovae each
night.

1. Introduction

One of the most important scientific discoveries of the
last decade is that that the universe is expanding at an in-
creasing rate [7, 8]. Type Ia supernovae play a critical role
in this discovery because they provide measurements of the
universe’s expansion history since the time they began emit-
ting light, several billion years ago. The scientific chal-
lenge of finding such supernovae stems from their rare oc-
currences (a few times each millenium in a typical galaxy),
short lifespans (several weeks), and the necessity of detect-
ing them as early as possible after explosion, before max-
imum brightness is reached. The computational challenge

lies in the large volume of data that must be rapidly and ac-
curately analyzed in order to find the 1 or 2 supernovae that
could appear on a given night out of hundreds of thousands
of potential candidates.

Current methods for finding supernovae do not employ
machine learning techniques. Existing systems typically
compute photometric and geometric features of subimages
thought to contain potential supernovae, threshold each of
these features, and send those subimages that satisfy all
thresholds to human scanners who reject or accept them for
follow-up studies. Due to high and variable image noise
levels and image processing artifacts, the majority of subim-
ages that pass the thresholds are false alarms that humans
must manually reject. The thresholds are frequently ad-
justed in an attempt to minimize the number of subimages
that must be viewed by humans while guaranteeing that no
real supernovae are rejected. These manually tuned thresh-
olds are brittle and often result in both missed supernovae
and too many false positives for human scanners to evaluate
daily.

There is an obvious need for supervised learning tech-
niques to replace thresholding schemes for recognizing
likely supernova candidates in digital sky surveys. Because
feature distributions may change significantly over time due
to the changing phase of the moon and frequent modifi-
cations to the data acquisition procedures (e.g., new tele-
scopes, equipment changes, calibrations, weather changes,
image processing improvements), there is a need for a sys-
tematic and principled way to adjust the decision criteria,
which classifier training provides. Support Vector Machines
are particularly appropriate because the high overlap be-
tween supernovae and non-supernovae in the computed fea-
ture space calls for a decision boundary that is nonlinear in
the original space. Because ongoing surveys contain a vast
and growing data set of labeled examples, supervised learn-
ing is a viable solution.

Statistical learning algorithms are still largely unused in
the domain of astronomical object recognition from large
digital sky surveys. Supervised learning techniques such



as SVMs and neural networks have been applied to galaxy
and star classification [6] and AGN (active galactic nucleus)
identification [12]. Previous work in applying SVMs to
large-scale, imbalanced data in other domains are found
in [2], who use replication to handle imbalanced data sets,
and [11, 3, 4, 5], who use SVMs in combination with mi-
nority class subsampling, incremental training, boosting,
and/or ensemble learning.

This work presents the first SVM application to the
recognition of supernovae from astronomical imagery. We
apply a novel feature transformation to handle peaked,
heavy-tailed feature distributions, and demonstrate the ne-
cessity of this transform for obtaining high recognition
rates. An incremental sampling and training strategy is
adopted to handle the extreme imbalance in positive and
negative samples (more than 10,000 negatives for every
positive, due to the rare occurrences of Type Ia supernovae
and the large sets of data gathered nightly). Positive data
are oversampled by replication, and negative data are under-
sampled by using misclassified negatives to iteratively re-
train the model and refine the decision boundary. We show
that incremental sampling improves the trade-off between
recognition rate and false positive rate, significantly reduc-
ing the daily human workload.

Section 2 describes the scientific mission of supernova
search, the software that generates the image data in our
study, and the features extracted from subimages to de-
scribe potential supernovae. Section 3 defines the fea-
ture transformation applied to peaked, heavy-tailed distri-
butions. Section 4 describes the sampling strategies used to
train and optimize the SVM. Section 5 describes empirical
studies showing performance improvements gained by fea-
ture transformation and incremental sampling and training.
Finally, Section 6 discusses the current impact of this work
on a large-scale supernova survey that uses our SVM deci-
sion value to rank up to 600,000 potential supernovae per
night.

2. Background

This section describes the scientific mission of the search
for supernovae and outlines the existing methods used by
astrophysicists to semi-automatically find potential super-
novae in large image sets captured on a nightly basis.

The Nearby Supernova Factory (SNfactory) is an inter-
national project to obtain spectrophotometry data on a large
sample of Type Ia supernovae in a “nearby” redshift range
(0.03 < z < 0.08, or about 0.4 to 1.1 billion light years
away) in order to measure the expansion history of the uni-
verse [1]. Such stellar explosions are very rare, occurring
only a couple of times per millenium in a typical galaxy,
and remaining bright enough to detect for only a few weeks.
Previous studies of Type Ia supernovae led to the discovery

(b)

Figure 1: Example subimages from which geometric and
photometric features are computed for SVM training and
prediction. (a) Stacked reference images from previous
nights, showing a galaxy; (b) Newly captured image (note
different noise levels and image resolutions); (c) Subtrac-
tion of reference from new images, showing a supernova in
a host galaxy.

of the mysterious “dark energy” that is causing the universe
to expand at an accelerating rate.

To reduce the statistical uncertainties in previous experi-
mental data, extensive spectral and photometric monitoring
of more Type Ia supernovae is essential. The SNfactory col-
laboration has built an automated system consisting of spe-
cialized software and custom-built hardware that systemati-
cally searches the sky for new supernovae, screens potential
candidates, then performs multiple spectral and photomet-
ric observations on each supernova. These observations will
be stored in a database to be made available to researchers
world-wide for further study and analysis.

Each night, the SNfactory receives about 80 GB of wide
field CCD imaging data taken by the Quest-II camera on the
Oschin 1.2-m telescope on Mt. Palomar for the Near Earth
Asteroid Tracking (NEAT) project at JPL. Images are trans-
ferred from Mt. Palomar via the High Performance Wire-
less Research and Education Network (HPWREN) to the
High Performance Storage System (HPSS) at the National
Energy Research Scientific Computing Center (NERSC) in
Oakland, California. Each morning, SNfactory search soft-
ware running on NERSC’s 700-node computing cluster, the
Parallel Distributed Systems Facility (PDSF), matches im-
ages of the same area of the sky, processes them to remove
noise and CCD artifacts, then performs an image subtrac-
tion from previously observed reference images on each set
of matched images (Figure 1) [10].

A set of 19 features (Table 1) are computed on subimages
of each subtraction image in which bright, point-source-like
objects are detected. In the existing software, each feature
is thresholded from above and/or below, and subimages that
satisfy all thresholds are identified as containing a potential
supernova candidate and saved to a database. Several hun-
dred images containing one or more candidate subimages
are saved each night.



Feature Name

Feature Definition

apsig signal-to-noise ratio in aperture

perinc % flux increase in aperture from REF to NEW

pcygsig difference of flux in 2¥*FWHM of aperture and 0.7*FWHM; detects misaligned REF and NEW
images)

mxy x-y moment of candidate

fwx FWHM of candidate in x

fwy FWHM of candidate in y

neighbordist | distance to the nearest object in REF

newlsig signal-to-noise of candidate in NEW1

new2sig signal-to-noise of candidate in NEW2

sublsig signal-to-noise of candidate in SUB1

sub2sig signal-to-noise of candidate in SUB2

sub2minsubl weighted signal-to-noise difference between SUB1 and SUB2

dsublsub2 difference in pixel coordinates between SUB1 and SUB2 (motion measurement)

holeinref measure of negative pixels on REF in region of candidate

bigapratio ratio of sum of positive pixels to sum of negative pixels within aperture

relfwx REF image FWHM in x divided by NEW image FWHM in x

relfwy REF image FWHM in y divided by NEW image FWHM in y

roundness object contour eccentricity; ratio of powers in lowest order negative and positive Fourier contour
descriptors

wiggliness object contour irregularity; power in higher order Fourier contour descriptors divided by total power

Table 1: Definitions of features computed from image regions containing potential supernovae. Additional definitions: aper-
ture = subarea of image within which features are computed; REF = reference image of a piece of sky composited from
multiple nights; NEW1 (NEW2) = new images of same piece of sky; SUB1 (SUB2) = subtraction of NEW1 (NEW2) and
REF images; FWHM = full-width half-max; flux = integrated photon levels over image subarea, i.e., sum of all pixel values

within aperture.

These subimages are then visually scanned by humans,
a process that takes approximately 8 person-hours for each
night’s data. Of these visually scanned subimages, about
1% are flagged as containing potential supernova candi-
dates. These candidates are sent to the Supernova In-
tegral Field Spectrograph (SNIFS) on the University of
Hawaii 2.2-m telescope on Mauna Kea for spectrophoto-
metric screening and follow-up. The resulting image and
spectral data are stored in a database for scientific study.

The bottleneck in this process is the large amount of
manual labor required to find good supernova candidates.
Feature thresholds are often adjusted manually (known as
“tightening the cuts”) in order to reduce the number of bad
image subtractions sent to human scanners. However, this
results in the occasional loss of a good supernova candidate,
and due to their rarity, it is important to miss as few candi-
dates as possible.

3. Feature Transformation

Of the 19 features extracted from subimages (Ta-

ble 1), pcygsig,
mxy, new2sig,

10 features (apsig,
neighbordist,

perinc,
newlsig,

Figure 2: Sign-preserving, shifted log transform for nor-
malizing features with peaked, heavy-detailed distributions.
Solid line: f(z) = sgn(z)log(1+|z|); dashed line: f(z) =
log(x).

sublsig, sub2sig, holeinref) were found
upon inspection of sample histograms, to have peaked,
heavy-tailed, and often skewed distributions. A simple log
transform, often used to transform kurtotic distributions
to more Gaussian-like distributions, could not be used
since the supernova features may take on negative values.
Instead we apply a modified log-transform that preserves
the feature’s sign, and is well-defined for all real values:

f(x) = sgn(x)log(1 + |z)
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Figure 3: Transformation of 4 different features: (a) pcygsig, (b) newlsig, (¢) sublsig, and (d) holeinref. For
each feature, the top histogram shows the original distribution of raw data, and the bottom histogram shows the distribution
of the transformed data, as described in Section 3. The skewed, sharply peaked, heavy-tailed distributions are transformed to
Gaussian-like distributions that are more amenable to statistical analysis.

Figure 2 illustrates the shape of the feature transform func-
tion, and Figure 3 shows sample histograms of features with
heavy-tailed, peaked distributions and their histograms after
transformation. Application of the transform improves the
positive and negative classification rates while preventing
overfitting of the data, as shown in Section 5.1.

4. Supernova Recognition

The SVM algorithm is a classification method that has
successfully been applied to many pattern recognition prob-
lems and is founded on an elegant mathematical theory of
statistical learning [9]. It finds an optimal hyperplane pa-
rameterized by a normal vector w and offset b in a high-
dimensional feature space that separates data samples be-
longing to two different classes. The hyperplane defines
the decision boundary maximizing the margin between data
samples in the two classes, therefore giving good general-
ization to new data samples. The decision boundary is de-
fined in terms of the hyperplane as the function f(x) =
W - ¢(x) + b, where ¢ is a function that embeds the problem
into a higher-dimensional feature space in which the classes
are more easily separable than in the original feature space.
A sample data point x is typically classified into one of the
two classes by thresholding f(x). The actual embedding is
achieved through a kernel function defining an inner prod-
uct in the embedding space, k(x1,X2) = ¢(x1) - d(x2),
which makes class prediction easy to implement and fast to
compute.

Due to a highly imbalanced data set, the choice of sam-
ple set for SVM training is nontrivial, and performance on

unseen data is highly sensitive to the samples used in build-
ing the model. A typical night yields 300,000-600,000 new
examples, among which 5-30 ( .001%-0.01%) are positive
examples. Of these positive examples, only several are ac-
tual supernovae and the rest are other transient objects that
appear in the image subtractions, e.g. asteroids, variable
stars, and AGNs, or imaging artifacts that resemble tran-
sient objects, both in the feature space and when visually
scanned.

Two sampling strategies are used to address the imbal-
anced data problem. First, oversampling of positives by
replication with random undersampling of negatives pre-
vents the SVM from favoring negative performance. As
shown in Section 5, positive oversampling by a factor of
10 and negative undersampling by a factor of about .001 to
construct a balanced training set, result in cross-validation
rates of 97% positive classification and 96% negative clas-
sification.

To improve the recognition of supernovae in new data,
we use an incremental sampling strategy to iteratively train
a new model using negative samples that are misclassified
with high decision values by a previously trained model.
Such boosting-like training schemes for SVMs have been
shown to be successful by [3, 4, 5]. We train an initial
model on a balanced set of randomly sampled negatives and
10-fold oversampled positives. This model is then tested on
a new set of negative examples, which are ranked by de-
scending SVM decision value. The top-ranked negatives
are chosen for a new training set, along with enough ran-
domly sampled negatives to match the oversampled positive
set. Section 5.2 demonstrates the SVM refinement’s ability



to decrease the false positive rate to less than 1%.

5. SVM Optimization

Optimal SVM parameter selection is accomplished by 5-
fold cross-validation and grid search. Three types of SVMs
and kernels were initially tested (C-SVM+RBF kernel, v-
SVM+RBF kernel, C-SVM+degree 3 polynomial kernel),
giving similar cross-validation results; all remaining tests
use a C-SVM with RBF kernel. The training set contains
200 positive examples of supernovae, variable stars, and any
other celestial objects saved by human scanners during a 2-
week period in May. In the same time period, there are sev-
eral million negative examples (several hundred thousand
examples per night of observation) from which to sample.
Positives are oversampled by a factor of 10 to yield 2000
positives, and 2000 negatives are randomly subsampled by
a factor of roughly 0.1% to create a balanced training set of
4000 examples. Table 2 shows 5-fold cross-validation rates
using several different parameter settings.

C-SVM+RBF 5-Fold Cross-Validation

Parameters 47 «“ SV

C=05~vy=20 |97% (1.2%) | 96.3% (.8%) | 15%

C=8.0,vy=0.13 | 97% 2.1%) | 94% (1.3%) | 16%

C=80,vy=20 | 92% (6.7%) | 98% (.6%) 6%

C=128v=0.13 | 95% (2.8%) | 96.7% (.7%) | 9%

Table 2: Positive and negative cross-validation rates using
parameters chosen by grid search for C' and . Standard
deviations from the mean classification rates are given in
parentheses. Percentages of training examples used as sup-
port vectors are shown in the last column.

5.1. Feature Transformation Experiments

The effectiveness of the feature transformation described
in Section 3 is tested using the parameter grid search, data
sampling, and cross-validation described above. Without
application of the shifted log transform, cross-validation
rates for the best parameters settings dropped by an average
of 5% for positive classification and an average of 14% for
negative classification. At the same time, the average per-
centage of training examples used as support vectors rose by
an average of 23%, suggesting that the model suffers from
overfitting when trained on untransformed data. A more in-
formative comparison examines the trade-off between pos-
itive and negative classification rates as the decision value
varies. Figure 4 shows improved ROCs (receiver operating
curves) for several parameter settings when training is per-
formed on transformed features as opposed to raw feature
values.
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Figure 4: Receiver operating curves for several parame-
ter settings. Models trained on transformed feature values
(dark solid lines) out-perform models trained on raw feature
values (gray dashed lines).

5.2. Incremental Sampling

In practice, the cross-validation performance reported
above must be improved upon due to the large number of
new negative examples generated each night. If a typical
night of observation returns 500,000 negative examples, a
98% classification rate returns 10,000 false positives, far too
many for human scanners to view each day. Even a 1% in-
crease in negative classification rate to 99% would reduce
the number of false positives by several thousand.

We leverage the availability of a large negative data set
for reducing the number of false positives. Starting with
the training set described in the previous section, we train a
base model with parameters C' = 0.5 and v = 2, and val-
idate its performance on an unseen test set of 417 positive
examples found in June and July, and 5000 randomly sam-
pled negatives, resulting in 99.5% positive and 96.4% nega-
tive classification. The base model is then applied to a new,
training set of 5000 negative examples, and these negatives
are ranked by descending SVM decision value. The original
training set is then modified by removing half of the ran-
domly sampled negatives and replacing them with the 1000
misclassified negatives with highest decision values from
the new training set. A new model is trained and applied
to another new training set to obtain a new set of misclas-
sified negatives with high decision values. This procedure
is iterated several times, each time choosing highly-ranked,
misclassified negatives from a new set of negative training
examples. The resulting series of models is tested on the
June/July test set, and Figure 5 shows the improvement in
negative performance rate by about 1%, the equivalent of
several thousand fewer false positives on a typical night, at
a corresponding positive recognition rate of 92.3%. Further
understanding of the types of positive errors is enabled by



the fact that all positives are classified during visual scan-
ning into categories indicating whether they were verified
by humans to be actual supernovae as opposed to other ce-
lestial objects or so-called junk. Of the 22 positive errors,
only one example was an actual supernovae, the rest being
asteroids, variable stars, AGNs, or of unknown type.
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Figure 5: Improvement by incremental sampling. Initial
model trained on randomly sampled negatives (dashed dark
line) is improved upon by iteratively retraining with mis-
classified negatives with high decision values. A 1% im-
provement in negative classification rate (solid dark line)
reduces the number of false positives by several thousand
on a typical night.

6. Discussion

This work describes a novel application of Support Vec-
tor Machines to a problem in astrophysics that is in growing
need of statistical learning methods: the search of increas-
ingly large collections of digital imagery for astronomical
objects. The difficulties brought about by noisy imagery,
imbalanced data, overlapping classes, and unusual feature
distributions raise interesting technical challenges that pre-
clude straightforward application of SVMs. We demon-
strate the importance of applying a sign-preserving, shifted
log transform to certain features, and the necessity of iter-
atively training and selectively sampling the data in order
to refine the decision boundary in the face of unbalanced
classes. Frequent changes in data acquisition procedures
exacerbate the difficulty, since the set of positive examples
disappears every time operations change, so the need to
quickly bootstrap a new model is essential. Comparisons
between SVMs and ensemble learners such as boosted de-
cision trees and random forests are currently underway.

The SVM has been integrated into a large-scale super-
nova survey that currently receives hundreds of thousands
of subimages per night, of which only a handful are ex-
pected to contain real supernovae. Astrophysicists who in

the past have visually scanned thresholded candidates to
eliminate false positives now rank-order all candidates by
SVM decision value so that likely supernovae are immedi-
ately viewed, and the effective scanning load has been re-
duced to less than 1 person-hour per day. This capability
allows scientists to quickly discover new supernova candi-
dates while drastically reducing the burden of visual scan-
ning. The resulting efficiency improvements demonstrate
the great impact that supervised learning may have on fu-
ture digital sky surveys that are slated to collect orders of
magnitude more imagery in search of far more numerous
and faint celestial objects.
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